1. 引言
目前,基于蒸汽压缩技术的制冷设备应用极为普遍[1],无论是民用或投入工业生产之中,其产生的物质都会对臭氧层有不可逆的伤害。1987年,随着《蒙特利尔议定书》的生效,氢氟碳化物(HFCs)和氢氟醚(HFEs)已被提议作为合适的工业替代品,用于制冷、电子元件清洗和润滑剂的载体化合物等方面,可依旧因其极高的全球变暖潜能值而对环境产生极大影响[2]。随着全球化生态压力的持续加剧,探索环境友好新型制冷技术的战略需求愈发凸显。本文所研究的磁制冷材料由此应运而生。
这种新型制冷技术基于铁磁材料固有的磁热现象,即磁热效应(Magnetocaloric effect, MCE)。最初由Warburg于1881年发现,表现为磁性材料因磁场变化而产生变热或变冷的现象。Debye和Giauque分别从不同角度解释了MCE的性质,并提出了其在绝热退磁过程中达到超低温的实际应用。随着不断深入的研究,磁热材料因具有高能效、低能耗、低碳排的绿色环保优势,甚至制冷效率高达卡诺循环的60%,成为了未来最有潜力替代传统蒸汽压缩制冷的方法[3]-[7]。而研发优良性能的磁热合金已成为实现磁制冷技术投用现实应用的核心突破口。
目前,常见的室温磁制冷材料主要有:稀土金属Gd型磁制冷材料[8]、La金属及其化合物型磁制冷材料[9]、钙钛矿型磁制冷材料[10]以及Fe2P型合金[11] [12]。其中,Mn-Fe-P-Si体系制冷材料具有巨磁热效应(GMCE),能量交换效率高,且具有一定强韧度,可使合金加工成各类形状,大小方便实际应用场景。有研究表明,Mn-Fe-P-Si合金实现室温磁制冷,可通过调节相变温度得到。而改变Mn/Fe比和P/Si比则可以调节该材料的居里温度Tc和热滞大小,但这也会减弱材料的混磁性,从而对磁热效应产生不利影响。
2. 实验
以高纯元素(>99.9 wt%)为原料,在氩气气氛下采用电弧熔炼法合成了(Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2)的磁热合金。将合金锭反复熔炼四到五次以保证均匀性,然后喷铸到直径为4 mm的铜模具中。利用真空机械泵与氢氧水焊机(605TH)进行密封真空处理。随后将其转移至马弗炉内,设置参数使之在4小时内从室温298 K升至1173 K,并在此温度恒温24小时完成热处理。最终将高温试样快速浸入冰水混合淬火介质,从而使合金成分均质化且无内应力。
制备获得的磁热合金样品进行各项表征,利用X射线衍射仪(X-ray diffraction, XRD, Bruker-AXS D8 Advance)分析晶格,扫描角度2θ为20˚~90˚,步长为0.01˚,停留2 s;使用场发射扫描电子显微镜(Scanning electron microscope, SEM, Talos F200X)进行微观形貌表征,并通过能谱分析仪(Energy dispersive spectrometer, EDS)检测样品元素分布情况;利用振动样品磁强计(Vibrating Sample Magnetometer, VSM, Lake Shore 7404-S)测量样品磁性与温度的变化关系,其最大施加磁场为3 T,测量温度范围为90~400 K;再使用综合物性测量系统(Physical Property Measurement System, PPMS)得其最大施加磁场为7 T,温度范围为2~400 K。
3. 结果与讨论
图1为(Mn, Fe)1.95−x(P, Si)Znx合金的室温XRD衍射图。样品分析采用的是粉末X射线衍射法,由图可见,所有样品结晶度良好。且对比不含Zn原始成分的XRD衍射图与掺杂合金的XRD衍射图,可以发现其主峰强度几乎没有变化,说明掺杂Zn并不影响主峰。但随着Zn含量的增加,峰位会有所偏移。
Figure 1. Room temperature XRD diffractograms of (Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2) and Zn-free original compositions
图1. (Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2)与不含Zn原始成分的室温XRD衍射图
图2展示了(Mn, Fe)1.95−x(P, Si)Znx合金在1.5 T磁场下的磁化强度–温度(M-T)关系曲线。测试过程为样品降温至150 K并稳定300秒后施加磁场,再进行升降温测量,以便有充分时间使得相变转化完成。结果表明,Zn掺杂浓度的提高导致合金相变温度上升。当掺杂量x = 0.1时,相变温度提升至约285 K,成功调控至室温温域。除此之外,还可看到所有样品的升、降温M-T曲线均未重合,证实了热磁滞现象的存在。但随着Zn含量的增大,合金的热磁滞呈现先减少后增加的趋势,从x = 0时的26.2 K降至x = 0.1时的2.4 K,降幅超过100%。当x进一步增至0.2时,热滞反而增大,因此x = 0.1时热滞达到最小值。同时,居里温度Tc随Zn含量的增加而持续升高,由x = 0时的195 K升至x = 0.2时的324.8 K。Tc升高的主要原因是Zn的引入使Fe2P相的晶胞参数c减小,从而强化了Mn-Fe原子层间的铁磁相互作用。综上,Zn掺杂量在0.05至0.1区间内,可在有效调控Mn-Fe-P-Si材料居里温度的同时,显著降低其热滞。
有研究表明,磁热性能与磁滞值密切相关,磁滞越小,磁耗损越小,能达到的磁热效应越强。为进一步研究磁滞表现最为优异的(Mn, Fe)1.95−x(P, Si)Znx (x = 0.1)磁热材料,现对该组分合金采用FEI场发射扫描电子显微镜,分析得出的SEM图以及各元素分布的EDS图如图3所示。由两图结合分析可以看出,Zn成功进入了主相的晶粒中,而并非在晶界处聚集堆积,达到了制备预期的Zn元素的掺杂取代了部分Fe元素的要求。该元素掺杂产生一定的掺杂效应,增强了Mn-Fe原子层之间的铁磁相互作用,使合金居里温度升高,同时降低了合金热滞。这也从微观层面有效验证与解释了上文所发现的结果。
Figure 2. M-T curves of (Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2) and Zn-free original compositions at 1.5 T in the external field
图2. (Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2)与不含Zn原始成分在外场1.5T时的M-T曲线
Figure 3. Scanning electron microscope (SEM) map and elemental distribution (EDS) of (Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2)
图3. (Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2)的扫描电镜(SEM)图和元素分布(EDS)图
基于以上研究,进一步分析比较(Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2)与不含Zn原始成分为合金样品在1.5 T磁场变化时的磁熵变–温度曲线,如图4所示。显然x = 0的合金磁熵变为峰值,其最大磁熵变分别为13.9 J∙kg−1∙K−1。而随着Zn含量的增加,最大磁熵变略有减少,但半高宽的增加有效弥补了缺失,综合各因素使得该组分整体制冷能力增强。
Figure 4. Isothermal entropy change curves of (Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2) and Zn-free original composition series alloys under 1.5 T magnetic field changes, respectively
图4. (Mn, Fe)1.95−x(P, Si)Znx (x = 0.05, 0.1, 0.2)与不含Zn原始成分系列合金分别在1.5 T磁场变化下的等温熵变曲线
4. 结论
本研究通过在Mn-Fe-P-Si基合金中掺杂微量的Zn,当Zn的掺杂量在0.05~0.1之间时,可以显著降低Mn-Fe-P-Si基合金的热滞,提高其制冷效率;同时,Zn的掺杂还能提高Mn-Fe-P-Si基合金的居里温度;微量掺杂下,合金的半高宽增加,整体制冷能力增强,提供了一种调控该合金居里温度的有效途径。
基金项目
本研究受到了南京理工大学大学生创新创业训练计划立项资助(国家级),项目编号为202410288097Z。
NOTES
*通讯作者。