1. 前言
近年来,随着油气管道与高压输电线或铁路系统平行或交叉的情况不断增加,人们对交流电流引起的埋地管道的腐蚀问题日益关注[1]-[5]。初期研究发现,与等量直流电流相比,交流电流干扰对埋地管道腐蚀的影响相对较小,仅占1%左右,因此曾被认为腐蚀危害可以被忽略。然而,深入的调查显示,交流电流干扰导致的腐蚀问题逐渐显露出对埋地钢质管道安全的严重威胁[6]-[11]。在埋地管道腐蚀加速过程中,杂散电流干扰扮演了关键角色,促使对腐蚀机理的重新审视[11]-[13]。研究表明,与直流电流相比,交流电流引起的电化学变化可能导致埋地钢管表面产生更为复杂的腐蚀特征,包括局部腐蚀和微观缺陷,长期的交流干扰会导致管道局部腐蚀速率加快,甚至引发应力腐蚀开裂(SCC)和氢脆(HE),严重威胁管道的结构完整性和服役安全性[13]-[16]。
本研究以L355管线钢为对象,对比分析其在交流/直流充氢条件下的电化学响应,分析交流与直流电流对极化行为和阻抗谱的影响差异,分析焊接接头与母材在氢渗透条件下的腐蚀敏感性差异,探讨微观组织(如M/A组元、位错密度)对氢损伤的影响机制。
2. 实验材料及方法
2.1. 实验材料
选用L355管线钢作为研究对象,表1展示了L355管线钢母材的主要化学成分。图1展示了L355管线钢母材的金相组织,母材金相呈现出细小均匀的晶粒结构,主要由针状铁素体(AF)和粒状贝氏体(GB)组成,在晶界处存在大量黑色岛状结构(马氏体–奥氏体(M/A))。
Table 1. Chemical composition of L355 pipeline steel (wt%)
表1. L355管线钢的化学成分(wt%)
元素 |
C |
Mn |
Si |
P |
S |
Ni |
Cu |
wt% |
0.463 |
1.94 |
0.28 |
0.07 |
0.008 |
0.08 |
0.002 |
元素 |
Mo |
Al |
Ti |
Nb |
N |
Cr |
Fe |
wt% |
0.2 |
0.07 |
0.04 |
0.07 |
0.013 |
0.29 |
Balance |
Figure 1. Metallographic structure photos of the L355 pipeline steel base metal and welded joints: (a) Base metal; (b) Welded joints
图1. L355管线钢母材和焊接接头的金相组织照片:(a) 母材;(b) 焊接接头
焊接实验采用管道的环焊缝,GTAW + FCAW-S复合焊接方法,研究对象为L355管线钢管道,其尺寸为D1016 mm × 15.3 mm。管道采用47˚ ± 3˚的V型坡口,保留1.0 ± 0.5 mm的钝边,且两根管道之间的组对间隙为3.5 ± 1.0 mm,具体结构如图2所示。
Figure 2. Schematic diagram of welding dimensions
图2. 焊接尺寸示意图
在焊接过程中,焊接接头的微观组织和成分受到热输入的显著影响。如图1(b)所示,L355管线钢焊接接头主要由铁素体组成,其中以针状铁素体为主,同时含有少量的多边形铁素体。焊接接头中存在的高密度的位错和沉淀析出等因素会增加材料的强韧性,但少量多边形铁素体可能会降低焊接接头的整体韧性水平。
图3展示了L355管线钢母材和焊接接头EBSD的图像。
Figure 3. Image quality maps of L355 pipeline steel base metal and welded joint: (a) Base metal; (b) Welded joints
图3. L355管线钢母材和焊接接头的图像质量图:(a) 母材;(b) 焊接接头
从图3可以看出,母材的微观组织是由针状铁素体和粒状贝氏体组成,晶界处存在大量黑色岛状结构,这些结构是M/A组元组成。焊接接头的微观组织由针状铁素体和多边形铁素体组成,这与之前的金相结构是一致的。
Figure 4. Grain orientation diagrams of L355 pipeline steel base metal and welded joints: (a) Base metal; (b) Welded joints
图4. L355管线钢母材和焊接接头的晶粒取向图:(a) 母材;(b) 焊接接头
图4展示了L355管线钢母材和焊接接头的晶粒取向图。母材和焊接接头的晶粒取向有所差异,母材内晶粒趋向于(001)取向和(111)取向,晶粒表现出各向异性;而焊接接头的针状铁素体的晶粒趋向于(101)取向,多边形铁素体的晶粒更加趋近于(001)取向和(111)取向,晶粒表现出各向异性。可以看出,焊接接头的晶粒取向受到了较大的变化。
2.2. 实验方法
使用CS310M电化学测试系统,电化学测试采用三电极体系。工作电极为L355管线钢试样,其暴露面积为1 cm2;辅助电极选用铂片,而参比电极则为饱和甘汞电极。电化学充氢过程中,试样作为阴极,而铂片则作为阳极。研究重点在于电流密度对L355管线钢电化学行为的影响。实验装置的示意图如图5所示。通过变阻器控制电流密度,同时采用电容(500 μF)和电感(15 H)以防止电化学测试系统和电化学充氢系统之间的电流相互干扰,保证两系统独立运行。实验研究了不同电流密度(0, 5, 10, 20, 30, 50 mA/cm2)的交流电流对L355管线钢电化学行为的影响,和不同电流密度(0, 5, 10, 20, 30, 50 mA/cm2)的直流电流对L355管线钢电化学行为的影响。
Figure 5. Schematic diagram of the electrochemical corrosion experiment
图5. 电化学腐蚀实验示意图
实验中对工作电极进行了预极化处理,施加了−1.0 V的电位,并持续3分钟,以消除试样表面可能形成的氧化膜。随后,试样在溶液中静置了1小时,然后开始施加交流电流或直流电流,并进行开路电位的测量。只有在开路电位达到稳定状态后,才能进行后续的交流阻抗和极化曲线测试。在测试过程中,采用了1 mV/s的扫描速率,扫描方向由负向正,扫描电位范围为−1~1.1 V。
3. 实验结果及分析
3.1. 强酸性溶液中的极化曲线
图6展示了L355管线钢在强酸性溶液(0.5 mol/L H2SO4 + 0.2 g/L CH4N2S)中,在未进行充氢的条件下,母材的自腐蚀电位(Ecorr = −0.45 V)高于焊接接头(Ecorr = −0.52 V),且腐蚀电流密度更低,表明其耐蚀性更优,极化曲线未出现钝化区,说明强酸性环境下腐蚀以析氢主导。
Figure 6. Polarization curves of the base metal and welded joints of L355 pipeline steel in a strongly acidic solution
图6. 在强酸性溶液中L355管线钢的母材和焊接接头的极化曲线
图7呈现了L355管线钢母材在不同交流和直流电流密度下,在强酸性环境(0.5 mol/L H2SO4 + 0.2 g/L CH4N2S)中的极化曲线。观察到交流电流对L355管线钢在强酸性溶液中的电化学行为没有明显影响,试样在施加或未施加交流电流时均表现为活性溶解。曲线变化不显著。仅在高电流密度(50 mA/cm2)下出现轻微振荡,反映双电层动态扰动。而在直流充氢条件下,随着电流密度的升高,极化曲线负移(ΔE ≈ 150 mV),腐蚀电位持续下降,阴极析氢反应加剧,并在−0.3~0 V出现钝化区,这可能与表面氢化物膜形成有关。
Figure 7. Polarization curves of L355 pipeline steel base metal under different hydrogen charging conditions in a strongly acidic environment: (a) Different AC current densities; (b) Different DC current densities
图7. 在强酸性环境中不同充氢条件下L355管线钢母材的极化曲线:(a) 不同交流电流密度;(b) 不同直流电流密度
图8呈现了L355管线钢焊接接头在不同交流和直流电流密度下,在强酸性环境(0.5 mol/L H2SO4 + 0.2 g/L CH4N2S)中的极化曲线。交流电流对L355管线钢在强酸性溶液中的腐蚀机制影响不明显。施加和未施加交流电流下的试样均表现为活性溶解,阳极区未出现钝化现象,而阴极区也未发生氧扩散控制区。焊接接头在交流电流充氢的条件下呈现出与母材相似的变化趋势。随着交流电流密度的增加,极化曲线的自腐蚀电位略微负移,同时极化曲线也略有右移。焊接接头在直流电流充氢条件下呈现与母材相似的变化趋势。随着直流电流密度的增加,极化曲线向右下方移动,腐蚀电位逐渐负移,腐蚀电流密度逐渐增大,并且出现明显的钝化区域。在钝化过程中,形成了保护性的钝化膜,该膜被认为具有层状结构。
Figure 8. Polarization curves of L355 pipeline steel welded joints under different hydrogen charging conditions in a strongly acidic environment: (a) Different AC current densities; (b) Different DC current densities
图8. 在强酸性环境中不同充氢条件下L355管线钢焊接接头的极化曲线:(a) 不同交流电流密度;(b) 不同直流电流密度
3.2. 强酸性溶液中的EIS分析
注:Rs代表溶液电阻,R1和CPE1分别表示钝化膜的电阻和电容。
Figure 9. Equivalent circuit of the impedance spectrum
图9. 阻抗谱的等效电路
图9是阻抗谱的等效电路结构。CPE的阻抗(
)可通过方程式(1)表示:
(1)
其中,Y0和n为CPE常数,n的范围为0 <n < 1,代表弥散效应的程度。
图10为强酸性环境(0.5 mol/L H2SO4 + 0.2 g/L CH4N2S)下L355管线钢母材和焊接接头的阻抗奈奎斯特(Nyquist)图。在强酸性环境中,L355管线钢焊接接头在不同充氢条件下表现出相同的氢损伤机制。然而,焊接接头的容抗弧半径明显大于母材,同时其电荷转移电阻值也显著高于母材。因此,焊接接头的耐蚀性较母材更为优越。在未充氢状态下,焊接接头容抗弧半径更大(Rt = 126.8 Ω·cm2,母材236.4 Ω·cm2),但CPEdl更低(5.46 × 10−5 F/cm2),说明其表面钝化膜更致密。在直流充氢条件下,接头Rt降至50.2 Ω·cm2,容抗弧收缩,表明氢渗透破坏钝化膜完整性。在交流充氢条件下,Rt降幅较小(~15%),但CPEdl增大,提示界面电容效应增强。
图11展示了在强酸性环境(0.5 mol/L H2SO4 + 0.2 g/L CH4N2S)中不同充氢条件下L355管线钢母材的阻抗奈奎斯特(Nyquist)图。在不同交流电流密度的作用下,试样的容抗弧半径显著减小,其中5 mA/cm2和10 mA/cm2作用的试样的容抗弧半径稍大,当电流密度超过10 mA/cm2时,容抗弧半径急剧减小。这表明低交流电流密度对试样表面钝化膜的破坏作用较小,但随着电流密度的增加,钝化膜的破坏变得更加显著。在直流充氢条件下,随着电流密度的增加,容抗弧收缩极为显著,表明阴极充氢严重破坏了钝化膜的完整性,电荷转移的阻力显著减小,试样的耐蚀性降低,相同电流密度下试样的容抗弧明显低于交流充氢状态。因此,交流电流充氢下试样的损伤状态相比直流电流充氢更为微弱。
Figure 10. Nyquist curves of the base metal and welded joints of L355 pipeline steel in a strongly acidic environment
图10. 在强酸性环境中L355管线钢的母材和焊接接头的Nyquist曲线
Figure 11. Nyquist diagrams of L355 pipeline steel base metal under different hydrogen charging conditions in a strongly acidic environment: (a) Under hydrogen charging with alternating current; (b) Under hydrogen charging with direct current
图11. 在强酸性环境中不同充氢条件下L355管线钢母材的Nyquist图:(a) 交流电流充氢下;(b) 直流电流充氢下
图12展示了在强酸性环境(0.5 mol/L H2SO4 + 0.2 g/L CH4N2S)中不同充氢条件下L355管线钢焊接接头的阻抗奈奎斯特(Nyquist)图。在施加和不施加交流电流的情况下,母材和焊接接头的试样呈现相似的氢损伤机制。在未进行充氢的状态下,试样表面的钝化膜完整且致密,其容抗弧半径达到最大值。然而,在充氢后,试样的容抗弧半径显著减小,随着电流密度的增加,容抗弧半径也相应减小。同时,在相同电流密度下,直流充氢状态下试样的容抗弧较交流充氢状态下更小,这与母材试样表现出的趋势相一致。
Figure 12. Nyquist diagrams of L355 pipeline steel welded joints under different hydrogen charging conditions in a strongly acidic environment: (a) Under hydrogen charging with alternating current; (b) Under hydrogen charging with direct current
图12. 在强酸性环境中不同充氢条件下L355管线钢焊接接头的Nyquist图:(a) 交流电流充氢下;(b) 直流电流充氢下
Table 2. Nyquist curve fitting of base metal and welded joints of L355 pipeline steel in a strongly acidic environment
表2. 强酸性环境中L355管线钢的母材和焊接接头的Nyquist曲线拟合
试样 |
Rs/(Ω∙cm2) |
CPE1 10−4/(F∙cm−2) |
n1 |
R1/(Ω∙cm2) |
CPEdl 10−4/(F∙cm−2) |
n2 |
Rt/(Ω∙cm2) |
母材 |
7.35 |
1.62 |
1 |
23.67 |
0.60 |
1 |
236.4 |
焊接接头 |
0.03 |
0.38 |
1 |
273.3 |
5.46E−5 |
1 |
126.8 |
表2呈现了在强酸性环境(0.5 mol/L H2SO4 + 0.2 g/L CH4N2S)中L355管线钢的母材和焊接接头的Nyquist曲线的拟合结果。母材和焊接接头的阻抗谱均采用R (QR)进行拟合,这表明强酸性溶液对钝化膜的破坏较小,试样表面的钝化膜相对较完整致密,试样耐蚀性高。
3.3. 讨论分析
母材和焊接接头存在不同的组织差异,母材晶界处马氏体–奥氏体(M/A)岛的存在是耐蚀性降低的主要原因,M/A组元中奥氏体富碳,马氏体高硬且易形成微电池,两者在腐蚀环境中可能优先溶解,引发局部电偶腐蚀或点蚀。焊接接头的高位错密度和M/A组元提供了更多的氢陷阱,但其多边形铁素体组织降低了局部耐蚀性,从而导致氢损伤敏感性升高。在不同的电流影响下,直流充氢通过持续阴极极化促进氢原子渗透,引发氢致开裂(HIC),而交流电流因周期性反转,氢渗透效率降低,但高频扰动可能加速了点蚀的萌生。
4. 结论
1) 交流电流对极化行为的影响较小,仅在高电流密度下引起双电层扰动;而直流充氢导致极化曲线显著负移,并在−0.3~0 V范围内形成钝化区,与氢化物膜的形成密切相关。
2) 母材的耐蚀性优于焊接接头,其自腐蚀电流密度更低,但焊接接头因高位错密度和M/A组元的存在,表现出更高的氢损伤敏感性。
3) 直流充氢通过阴极析氢反应加速氢渗透,引发氢致开裂(HIC);而交流电流通过动态扰动双电层结构,促进局部点蚀的萌生。
4) 微观组织差异(如晶粒取向、位错密度)是导致母材与焊接接头腐蚀行为差异的关键因素。