VEGFR抑制剂在抗肿瘤治疗过程中引起血压升高的相关机制研究
Study on the Mechanisms of Hypertension Induced by VEGFR Inhibitors during Antitumor Therapy
DOI: 10.12677/acm.2025.1572176, PDF, HTML, XML,    国家科技经费支持
作者: 连升燚:湖州师范学院第一附属医院心血管内科,浙江 湖州;李国栋, 孙启银, 王文娟, 温晓红*:湖州师范学院第一附属医院心血管中心,浙江 湖州
关键词: VEGFR抑制剂高血压微循环稀疏一氧化氮内皮素1VEGFRi Hypertension Microvascular Rarefaction Nitric Oxide Endothelin-1
摘要: 随着医学的进步,在不断更新的抗肿瘤药物尤其是靶向药物和免疫疗法以及更完善的抗肿瘤方案下,癌症患者的生存率不断提高,生存周期延长,与此同时,与之伴随而来的心血管疾病成为其主要死因之一。在众多抗肿瘤药物中,我们发现临床上的常用药物血管内皮生长因子受体抑制剂(VEGFRi)会引起患者血压升高,而这种副作用产生后通常需要调整治疗剂量或停止治疗,从而造成对癌症治疗的负面影响。本课题组前期研究发现微血管稀疏可能是此类药物导致高血压的中心环节。因此本文综述了包括微血管稀疏在内的由VEGFRi治疗癌症中引起血压升高的相关机制以及最新进展,此外,还进一步讨论了细胞一氧化氮(NO)生成减少、平滑肌细胞对NO的反应性降低、收缩刺激物的产生或反应增加、血管壁顺应性和弹性降低以及硫化氢(H2S)的生成减少等机制。
Abstract: With advancements in medical science, cancer survival rates have significantly improved due to the development of novel antineoplastic drugs, particularly targeted therapies and immunotherapies, alongside optimized treatment regimens. However, cardiovascular diseases have concurrently emerged as a leading cause of mortality among cancer survivors. Among various antineoplastic drugs, vascular endothelial growth factor receptor inhibitors (VEGFRi) have been clinically observed to induce hypertension, necessitating dose adjustments or discontinuation of treatment, thereby negatively impacting cancer therapy outcomes. Our previous research identified microvascular rarefaction as a central mechanism underlying VEGFRi-induced hypertension. This review summarizes the mechanisms and recent advancements related to VEGFRi-induced hypertension, including microvascular rarefaction, reduced nitric oxide (NO) synthesis, diminished smooth muscle cell responsiveness to NO, increased production or sensitivity to contractile stimuli, decreased vascular wall compliance and elasticity, and reduced hydrogen sulfide (H₂S) generation.
文章引用:连升燚, 李国栋, 孙启银, 王文娟, 温晓红. VEGFR抑制剂在抗肿瘤治疗过程中引起血压升高的相关机制研究[J]. 临床医学进展, 2025, 15(7): 1697-1709. https://doi.org/10.12677/acm.2025.1572176

1. 前言

血管内皮生长因子受体抑制剂(VEGFRi)作为一类重要的靶向抗肿瘤药物,在多种癌症的治疗中发挥着关键作用[1]。然而,临床实践发现,VEGFRi的使用常常伴随了严重的不良心血管反应,其中最常见的是高血压[2]。因此,深入探究VEGFRi引起血压升高的机制,寻找有效的预防和治疗策略,对于提高癌症患者的整体治疗效果和生存质量具有重要意义。研究发现,微循环稀疏是VEGFRi引起血压升高的重要机制。VEGFRi通过阻断血管内皮生长因子(VEGF)信号通路,抑制内皮细胞的增殖、迁移和血管生成[2]。一方面,新生血管的减少导致微血管网络密度降低,血流调节和氧气运输功能受损;同时,内皮功能障碍导致NO合成减少,血管收缩与舒张功能失衡,进一步加剧微循环功能障碍,最终引起血压升高。另一方面,VEGF信号通路的抑制导致原本由VEGF维持的血管结构退化,尤其是毛细血管的退化,从而引起微循环结构稀疏。本文旨在综述VEGFRi治疗癌症中引起血压升高的相关机制及最新研究进展,从微循环稀疏、细胞NO生成减少、平滑肌细胞对NO的反应性降低、收缩刺激物的产生或反应增加、血管壁顺应性和弹性降低等多个角度,全面剖析VEGFRi导致血压升高的可能原因。见图1。通过深入理解和把握这些机制,我们期望能够为临床医生和科研人员提供有益的参考,推动心脏肿瘤学领域的发展,为癌症患者带来更加安全、有效的治疗方案。

2. VEGF及其受体在血管内皮细胞和肿瘤生长中的作用

血管由三层组成,最内层是内皮,由单层内皮细胞(ECs)构成,内皮细胞覆盖着血管腔的内壁,与血液和所有系统循环药物接触[3]。中间层由血管平滑肌细胞(VSMC)组成,健康的内皮细胞具有抗炎和抗血栓形成的功能,并通过释放血管舒张因子(如NO和前列环素(也称为前列腺素2,PGI))来放松血管平滑肌细胞(SMC),从而动态调节血管直径,维持正常的血流和血压。血管内皮生长因子(VEGF)是一种非常有效的促血管生成因子,对内皮细胞具有刺激细胞增殖和抗凋亡作用,能够增加血管通透性,促进细胞迁移等[1]。Hypoxia-Inducible Factor 1 (HIF-1)是一种在低氧环境中起关键作用的转录因子,在多种癌症中高度表达[4]。在缺氧细胞中,VEGFA是最早被HIF-1激活的基因之一[5]。VEGFA通过与内皮细胞表面的受体结合,驱动肿瘤血管生成[6]

Figure 1. Mechanisms of blood pressure elevation induced by VEGF inhibitors

1. VEGF抑制剂引起血压升高的机制

VEGF通过与VEGFR结合,激活受体内的酪氨酸激酶活性,进而启动下游信号传导通路,这些信号通路最终调控内皮细胞的增殖、迁移、存活以及血管生成等关键生物学效应[7]。VEGFR包括VEGFR-1、VEGFR-2和VEGFR-3三种亚型[8]。VEGFR-2被认为具有最强的促血管生成活性[1],主要在血管内皮细胞表达,是VEGF的主要受体。在正常情况下,VEGF信号通路受到严格调控,仅在特定生理过程激活,比如胚胎发育,组织修复[9],以维持血管稳态。在病理过程中,肿瘤生长严重依赖于足够的血液供应。随着实体肿瘤的生长,其核心区域变得缺氧,触发促血管生成因子的释放,诱导病理性血管生成,促进肿瘤生长[10]。同时在肿瘤新生血管生成过程中,内皮细胞与肿瘤细胞之间存在广泛的旁分泌相互作[11]。VEGF与VEGFR-2结合后,能够刺激内皮细胞分泌血管性血友病因子(vWF) [11],增强EC的通透性,破坏血管屏障功能,为癌细胞的迁移和转移创造有利条件[12]。内皮细胞的激活是肿瘤进展中的关键事件,对肿瘤的生长和转移至关[13]

3. VEGFRi引起血压升高的发病率及临床意义

VEGFRi通过不同的方式阻断VEGF/VEGFR信号通路,从而抑制血管生成和肿瘤生长。根据结合位点不同,VEGFRi可分为单克隆抗体和小分子酪氨酸激酶抑制剂(TKIs)。单克隆单抗通过直接与VEGF或VEGFR结合阻断VEGF/VEGFR信号通路,比如贝伐珠单抗[14]。通过直接与VEGF-A结合,阻止其与VEGFR的相互作用,又被称为间接抑制剂。小分子TKIs (如舒尼替尼[15])则直接与VEGFR的酪氨酸激酶结构域中的ATP结合位点结合,抑制其酪氨酸激酶活性,从而阻断下游信号通路,又被称为直接抑制剂。部分VEGFRi (如索拉非尼[16]、仑伐替尼)具有多靶点抑制作用,不仅抑制VEGFR,还抑制其他受体酪氨酸激酶(如PDGFR、FGFR),从而直接抑制肿瘤细胞增殖。显然VEGFRi改善了癌症的治疗效果,在肝细胞癌或肾细胞癌患者中将无进展生存期提高了一倍以上[17]。然而几乎所有接受VEGFRi治疗的患者都会出现血压升高[18] (见表1),多达70%的患者出现新的或加重的高血压,这种副作用通常需要调整治疗剂量或停药,对癌症治疗效果产生负面影响[19]。除了剂量调整对癌症结果的负面影响外,过去20年中,高血压导致的年龄调整死亡率有所增加,对于某些长期癌症幸存者,心血管死亡率已超过癌症死亡率[20]。最后,随着联合疗法的使用增加,每种疗法都有其特定的心血管毒性,且常常具有协同作用,这进一步增加了癌症治疗方案的心血管风险[21]。因此,深入探索VEGFRi诱导的高血压的机制对于改善患者预后具有重要意义。

Table 1. The incidence of hypertension associated with various VEGFRi

1. 不同VEGFRi引起高血压发病率

VEGFR抑制剂

发生率(%)

参考文献

贝伐珠单抗

4~35

[14]

索拉非尼

7~43

[22]

苏尼替尼

5~24

[15]

帕唑帕尼

42

[23]

阿昔替尼

40

[23]

帕纳替尼

68

[23]

西地尼布

43~87

[24]

4. VEGFRi引起血压升高的可能机制

4.1. VEGFRi相关性高血压中的微血管稀疏化机制及其可逆性

一项研究表明,VEGFR抑制剂治疗21天后,小鼠气管黏膜毛细血管网络密度减少30%,且终止抗血管生成治疗后该现象仍持续存在[25]。另一项研究进一步证实,在接受贝伐单抗(抗VEGF单克隆抗体)治疗的转移性结直肠癌患者中,为期6个月的治疗周期导致指背微循环毛细血管密度下降10%,且这种微血管稀疏化与血压(BP)升高呈显著正相关[26]。这些结果提示,VEGFRi可导致毛细血管密度显著降低从而导致血压升高。微血管稀疏化又会加重微循环受损以及增加血管阻力,进一步升高血压[27]。VEGFRis引起的高血压是直接血管效应与微血管稀疏化协同作用的结果。急性期以直接血管效应(如NO减少以及ET-1增多)为主导,内皮细胞功能障碍可能会引发血栓形成,从而进一步减少血管灌注,增加细胞凋亡和微血管闭塞[28]。既往研究表明,VEGFRi相关性高血压在治疗中止后迅速消退[29]。这表明微血管稀疏化在一定程度上是可逆的。当VEGFR抑制剂的抑制作用解除后,内皮细胞可能重新增殖,血管结构可能得到一定程度的恢复。

4.1.1. VEGFRi影响内皮细胞正常增殖:以肠系膜上动脉为例

血管生成是一个高度组织化的过程[30]。已知包括VEGF、表皮生长因子(EGF)和成纤维细胞生长因子(FGF)在内的几种生长因子会刺激内皮细胞分泌几种蛋白酶和纤溶酶原激活剂,从而降解血管基底膜[31]。这使得内皮细胞可以侵入周围的基质。在这一初始步骤之后,内皮细胞需要迁移到结缔组织中,迁移后微血管内皮细胞增殖,当VEGFR抑制VEGF信号通路时,微血管生成被抑制,微循环阻力增加。Deng等人研究发现,GKT137831降低门静脉高压时门静脉–全身的分流程度,体内外均抑制内脏血管生成,表现为降低肠系膜和小肠组织中蛋(Cluster of Differentiation 31 (CD31)、VEGF和VEGFR-2)表达[32]。此外,王等人研究发现阿帕替尼会损害肠系膜上动脉内皮的完整性,同时发现CD31表达减少[33],而CD31作为血管内皮细胞的重要标记物,其表达水平与微循环的稀疏程度密切相关。因此,VEGFR抑制剂影响肠系膜上动脉内皮细胞正常增殖引起肠系膜上动脉稀疏,从而导致血压升高。

4.1.2. VEGFRi通过影响Notch信号通路调节微循环血管生成

我们前期研究表明Notch信号通路与血管稀疏密切相关,这或许是一个潜在机制。Notch信号通路在进化上高度保守,对胚胎发生和出生后早期的细胞命运决定至关重要,包括血管发育的许多方面[34]。研究显示Notch信号在调节血管生成中起着关键作用,它不仅调节ECs,还调节壁细胞(如VSMC或周细胞) [35]。Notch信号的影响广泛,从通过调节内皮细胞中的尖端/茎干细胞平衡来控制血管的出芽和分支,到控制壁细胞的动脉与静脉分化,以及在稳态、应激和疾病状态下调节壁细胞的收缩型和合成型表型之间的平衡[36]。既往研究证实,Notch信号通路在调节血管生成中起关键作用,同时在Notch上游,VEGF可以通过影响Notch1和Delta-like ligand 4 (Dll4)对Notch信号通路产生作用[35]

Notch3几乎只在VSMCs中表达[37],它在血管发育和分化中起关键作用,Notch3激活的信号通路能够降低在白细胞介素-1β处理过的细胞中磷脂酶A2和前列腺素E2的分泌,并增强收缩标志物的表达[38]。Notch3缺失可以通过下调Cluster of Differentiation 36 (CD36)基因的表达,CD36在脂肪酸氧化过程中起着重要作用,从而导致血脂沉积,内皮细胞重塑,最终导致高血压[39]。同时研究表明,Notch3参与血管损伤[40],并且是VSMC存活的决定因素[41]

4.2. NO与ET-1失衡以及ETA抑制剂可能是潜在的治疗手段

NO是一种强效的血管扩张剂,由内皮细胞通过内皮型一氧化氮合酶(eNOS)产生。内皮细胞上一般有eNOS和诱导型一氧化氮合酶(iNOS)两种一氧化氮合酶,iNOS在正常生理状态下不表达,仅在细胞受到诱导剂(如细菌、病毒、炎症因子等)刺激后才会被诱导表达。VEGF与VEGFR1或VEGFR2结合后,激活细胞内受体酪氨酸激酶,从而刺激PI3K/Akt信号通路增强eNOS的磷酸化,最终导致NO的释放,产生直接的血管舒张作用[42]。VEGFRi可能通过阻碍VEGF与VEGFR结合影响eNOS磷酸化导致NO产生减少,在一项研究中,使用舒尼替尼(sunitinib)诱导高血压的大鼠模型中,舒尼替尼的治疗降低了尿液中的NO代谢产物,并损害了肠系膜动脉的内皮依赖性血管舒张功能[43]。此外,王等人发现阿帕替尼会导致eNOS与iNOS的比值失调[33],从而减少NO生成。Eechoute K等人的研究也显示,舒尼替尼治疗期间发生的高等级高血压也与eNOS基因表达的变化使得eNOS活性和血浆NO水平降低有关[44]。在正常生理状态下,NO和ET-1在血管调节中保持动态平衡,共同维持血管的正常张力。当NO水平下降时,这种动态平衡被打破,导致ET-1的相对增加,从而加剧了血管收缩,引起血压升高。

ET-1是一种由ECs分泌的肽,通过与SMCs上的ETA受体和ECs上的ETB受体相互作用,调节血管功能。当ET-1与SMCs上的ETA受体结合时会诱导血管收缩,而当ET-1与ECs上的ETB受体结合后,激活eNOS产生NO同时还会诱导前列环素(PGI₂)合成,进一步舒张血管。此外,ET-1会增强NADPH氧化酶(Nox)的活性从而增加了ROS的产生,使NO失活,进一步减少NO水平从而导致高血压[45]。一项研究表明,使用VEGFRi药物vatalanib处理人体主动脉内皮细胞,既减少了eNOS在Phosphorylation of Serine 1177 (Ser1177)上的磷酸化,从而降低了NO的产生,也通过增加Nox1和Nox4的表达以及减少抗氧化基因的表达,增加了ROS的生成[46]。研究显示,VEGFRi的使用将引起循环中ET-1水平的增加,同时这种促进效应与VEGFRi引起高血压的程度相关。Colafella等人使用选择性内皮素受体拮抗剂更进一步阐明了舒尼替尼诱导的高血压和蛋白尿是由ETA受体(而非ETB受体)介导的,这与已知的ETA在介导SMC收缩的作用一致[47]。此外,研究显示,ETA受体拮抗剂能够显著减少肠系膜动脉的ROS生成,这表明在VEGFRi治疗期间,ET-1通过激活ETA受体信号通路增强了血管ROS的生成[48]

一项通过对舒尼替尼诱导高血压的猪模型的动物研究探索了VEGFRi与ET-1信号传导之间的关系。该研究中,研究者使用非选择性内皮素受体拮抗剂tezosentan去治疗已建立的高血压猪模型,则显示出对舒尼替尼诱导的高血压起到完全恢复的作用,其效果比使用The antioxidant effects of 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (Tempol)和N-乙酰半胱氨酸清除ROS更加有效[49]。在大鼠模型中的类似发现显示,内皮素受体抑制比用Tempol清除ROS更有效地减少了舒尼替尼诱导的高血压[50]。这些实验结果均表明,相较于ROS引起的NO失活,ET-1信号通路在VEGFRi诱导的高血压中起主导作用,且ETA受体拮抗剂可能是一种有效的治疗策略。一项随机对照试验的结果表明,双重内皮素受体拮抗Aprocitentan在血压控制方面显著优于安慰剂[51]

4.3. VEGFRi通过抑制PGI2生成导致高血压的机制研究进展

VEGF通过ECs中的PLC/PKC信号通路,促进PGI2生成。PGI2是一种强效血管舒张分子,不仅能够扩张血管,还具有抑制血小板聚集的功能,从而在维持血管稳态和调节血压中发挥关键作用[52]。VEGFRi可能抑制VEGF信号通路,导致内皮细胞生成PGI减少,影响血管舒张功能以及血管通畅性,从而引起血压升高。此外PGI2还能抑制ET-1的表达和分泌,一项研究发现,高剂量阿司匹林(一种非选择性环氧化酶(COX)抑制剂,能阻止PGI的生成)与舒尼替尼联用,使得血压上升水平减少了50%,并在相似程度上抑制了蛋白尿的增加,这种抑制作用与高剂量西他沙坦(选择性ETA受体抑制剂)的效果类似[47]。在同一研究中,使用macitentan (一种非选择性ETA/ETB受体拮抗剂)并未阻止舒尼替尼诱导的PGI2水平下降,提示ETB受体对PGI2释放可能有负反馈调节作用[47]。在使用Soluble Fms-like tyrosine kinase-1 (sFlt1,可溶性VEGFR1,作为VEGF诱导剂,模拟子痫前期)处理的小鼠中,分离的动脉(非肠系膜动脉)段对ET-1的反应性增强,这一效应被非特异性COX抑制剂吲哚美辛抑制,提示ET-1在血管收缩反应中起重要作用[53]。目前关VEGFRi通过减少PGI2生成导致高血压的研究相对较少,其具体分子机制和调控路径仍需进一步深入探索和完善。

4.4. 血管重塑——VEGFRi对VSMC功能的影响及其机制探讨

内皮细胞被生长因子激活后开始分泌、迁移以及增殖分化,合成并沉积新的基底膜,并在大血管中诱导平滑肌分化[31]。VEGFRi通过抑制VEGFR的活性,可以阻断VEGF介导的VSMC增殖和迁移。

此外,VEGF信号通过内皮细胞(EC)释放的各种因子(包括NO)影响VSMC的功能,这对于维持血管平滑肌的稳态和调节血管平滑肌的收缩状态非常重要。因此,VEGFRi通过产生ROS和破坏NO的生物利用度而削弱了VSMC的功能[54]。既往认为VEGFR仅在EC上表达,但新近研究表明受损的VSMC也可以表达VEGFR,这提示在有基础血管疾病或心血管风险因素的患者中,VEGFRi可能直接影响VSMC [55]。另外,Wang等人的研究表明,阿帕替尼通过激活RhoA/Rock通路诱导Myosin Phosphatase Target Subunit 1 (MYPT-1)和Myosin Light Chain (MLC)的磷酸化水平变化影响VSMC的通透性,从而改变SMC的状态,这进一步支持了VEGFRi能够直接影响VSMC功能[56]。目前关于VSMC功能直接影响的相关研究仍不充分,尚待更深入的探索。

虽然VSMC的过度增殖和迁移会导致血管壁增厚、管腔狭窄,进而引发血管硬化。VEGFRi可以抑制VSMC的增殖和迁移,减缓血管硬化的进程。但是由于VEGFRi会导致血压升高,而高血压是血管硬化的重要危险因素。长期高血压使血管内压力持续增高,血管壁受到的压力增大,导致血管壁弹性降低,容易损伤血管内皮细胞,促使脂质沉积和纤维组织增生,进而引发血管硬化。动脉硬化程度长期以来被视为高血压的一种并发症,它综合体现了血压升高及其他风险因素所带来的长期不良影响[57]。血管硬化会导致心脏压力波反射速度更快,因此可以通过测量脉搏波速度来进行无创评估,而更快和更大振幅的压力波直接导致中心血压升高和微血管损伤。在一项针对84名转移性肾细胞癌患者的研究中,使用舒尼替尼治疗的患者在治疗的最初几周内就观察到血管硬化[58]。既往研究表明,血管硬化可能由EC固有硬度增加引起,这通常是细胞离子流动改变的结果或者由血管的结构重塑和纤维化引起的慢性过程[59]。虽然VEGFRi引起的血管硬化机制尚待深入探讨,但其快速发生和可逆性支持了这是一种暂时性的功能性改变,而非结构性重塑。

5. 其他潜在机制

5.1. VEGFRi治疗对细胞外囊泡的影响及其在癌症和血管毒性中的双重作用

细胞外囊泡(EVs)是来源于细胞的微粒,由脂质双层膜和无细胞器的小细胞质组成[60],作为细胞间通信的一种形式在细胞扰动或应激反应时释放。研究表明,EVs在癌细胞与其周围其他细胞之间的相互作用中起着重要作用[61]。Neves等人最近研究表明,VEGFRi治疗可促进癌症患者中促炎性EVs的形成[62]。进一步的研究发现,当用来自VEGFRi治疗过的ECs的EVs处理人类ECs时,与未处理的ECs的EVs相比,前者会导致ET-1基因表达增加、eNOS活性抑制、NO减少以及ROS增加[62]。因此,VEGFRi治疗对ECs中EVs的影响可能同时促进其抗癌效应和导致高血压的血管毒性。

Platelet-Derived Microparticles (PMP)和Endothelial Cell-Derived Microparticles (ECMPs)都是EVs的一种类型,两者来源于不同的细胞类型,PMP是由血小板释放的微囊泡,而ECMPs是由内皮细胞释放的微囊泡,属于EVs的一种类型。在与血管损伤相关的心血管疾病(高血压、动脉粥样硬化和冠状动脉疾病)中,ECMPs水平升高,似乎反映了内皮细胞活化和血管功能障碍[63]。研究发现VEGFi治疗后血浆中循环微粒的总数没有变化。然而,治疗后的微粒亚群存在差异。通过CD31+,CD41-标记确定的ECMPs数量在治疗后增加,而通过CD31+,CD42+标记确定的PMP数量不变。因此,VEGFi治疗对血浆中微粒具有选择性影响,特别是增加了ECMPs的数量,而PMPs数量保持不变。

5.2. VEGFi引发肾损伤及高血压的相关机制

肾小球主要由ECs和足细胞组成,这些细胞共同维持肾脏的滤过与屏障功能。足细胞表达VEGF,而肾小球内皮细胞则表达VEGF受体,两者通过VEGF信号通路维持肾小球滤过屏障的完整性。研究表明,足细胞特异性缺失单个VEGF等位基因会导致啮齿动物出现蛋白尿和毛细血管内皮增生,这提示VEGF信号在肾小球功能中的关键作用[64]。临床研究进一步证实,7例患者在使用多靶点激酶抑制剂(MTKI)舒尼替尼和索拉非尼后,出现以高血压和蛋白尿为特征的先兆子痫样综合征,并伴随水肿和/或低白蛋白血症[65]。此外,一项研究发现,VEGFRi处理的高盐饮食大鼠平均动脉压显著升高。VEGFRi阻断了VEGF对肾近端小管上皮细胞增殖的促进作用,并降低了肾小球微血管内皮细胞中eNOS的表达。因此,VEGF信号通路的抑制可能通过破坏肾小球内皮细胞功能和肾血管稳态,进而诱发高血压和肾功能损伤。

尽管临床和预临床研究均证实VEGFRi可引起肾脏损伤,但多项研究表明,血压升高通常早于肾脏损伤的发生,并且即使在较低剂量的VEGFRi治疗下也可观察到血压升高。这提示VEGFRi引起的血压急性反应可能是高血压发生的早期驱动因素,而继发的肾功能障碍则可能进一步加重血压升高[66]

5.3. H2S在VEGFRi引起的高血压治疗中的应用潜力

H2S一度被视为环境污染物,但随着科研技术的进步,大量研究表明,H2S是一种有效的心血管保护剂,可通过血管舒张、血管生成、炎症、氧化应激和细胞凋亡等途径促进心血管稳态和健康[67] [68]。H2S主要由半胱硫氨酸γ-裂解酶(CSE)、半胱硫氨酸β-合成酶(CBS)、3-巯基丙酮酸硫转移酶(3-MST)和半胱氨酸氨基转移酶(CAT)产生[69]。CSE是H2S在心血管系统中的主要来源,定位于心肌细胞、血管内皮细胞、VSMC等[70]。H2S与VEGF相互作用可促进血管生成[71]。研究发现CSE抑制剂或CSE沉默可以抑制VEGF刺激血管内皮细胞生成[72],同时经过VEGF的刺激作用,血管内皮细胞会被诱导合成更多的H2S。虽然具体机制尚未明确,但有人提出VEGF与VEGFR2结合可能通过以钙依赖的方式激活CSE导致H2S生成增多[73]。反过来,H2S通过亲核攻击Cys 1045-1024之间的二硫键导致二硫还原并提高VEGFR2酪氨酸激酶活性。并且H2S增加了Specificity protein 1 (Sp1)的稳定性和转录活性,增强了VEGFR2的转录[74]。VEGFRi可能通过阻断VEGF信号通路,间接抑制了H2S的生成,进而削弱了血管的舒张功能,导致血压升高。此外,H2S与NO能相互作,共同调节血管生成。一项研究表明,在内皮完整的离体大鼠主动脉中,ZYZ-803 (新型硫化氢(H2S)-一氧化氮(NO)偶联供体)在1~100 μmol/L浓度范围内显示出剂量依赖性的舒张作用。相比之下,单独使用H2S供体或NO供体在相同浓度范围内产生的舒张作用较弱,表明H2S与NO具有协同增效作用[75]。虽然目前直接关于VEGFRi对H2S影响的研究较少,但根据现有的研究可以推测,VEGFRi可能通过影响与H2S相关的信号通路来间接调节血压。

6. 展望

VEGFRi在癌症治疗中显示出显著疗效,但其引起的高血压机制复杂多样。本文讲述了VEGFRi通过阻断VEGF与VEGFR的结合,抑制VEGFR的酪氨酸激酶活性及其下游信号通路,导致内皮细胞功能障碍、微血管稀疏和血管阻力增加,从而引发高血压。具体机制包括:VEGFRi抑制eNOS活性,减少NO生成,从而削弱血管舒张能力。同时,VEGFRi上调ET-1表达,激活ETA受体介导的血管收缩,并促进ROS生成,ROS的增加不仅进一步削弱NO的生物利用度,还可能通过氧化应激加剧血管损伤。此外,VEGFRi通过抑制血管生成和内皮细胞增殖,导致微循环稀疏,增加外周血管阻力,进一步升高血压。研究还表明,VEGFRi通过激活Notch信号通路和RhoA/Rock通路,影响血管平滑肌细胞(VSMC)的功能和血管重塑,加剧高血压的发生。VEGFRi还可能通过影响EVs的释放和H2S的生成,进一步加剧血压升高。总体而言,VEGFRi诱导的高血压是多种机制共同作用的结果,涉及内皮功能障碍、微血管稀疏、ET-1信号通路激活、氧化应激和血管重塑等复杂过程。

针对因使用VEGFR抑制剂引起血压异常的患者,2022年ESC肿瘤心脏病指南给出了建议,指南建议临床上在使用VEGFRi等抗肿瘤药物时要合理监测血压情况并及时给予降压指导。此类高血压病人的目标血压应当控制在140/90 mmHg以下,当收缩压超过160 mmHg且舒张压超过100 mmHg时,需要进行降压治疗;当收缩压超过180 mmHg且舒张压超过110 mmHg时,此时需要停用抗肿瘤靶向药物,并且建议采用ETA拮抗剂,例如Aprocitentan。通过一周的血压监测,当患者血压降至140/90 mmHg以下,可以考虑重新启动抗肿瘤靶向药物治疗[76],见图2

Figure 2. Treatment protocol for hypertension in cancer patients

2. 肿瘤患者高血压的治疗流程

通过了解这些机制,临床医生采取更好的监测和管理措施,以改善患者的预后和治疗体验。未来的研究应继续探讨这些机制,以继续优化VEGFRi治疗相关的高血压管理策略。

致 谢

衷心感谢我的导师在论文撰写过程中给予的悉心指导与支持。同时,诚挚感谢审稿专家对本文提出的宝贵意见和建议,使论文质量得到显著提升。

基金项目

国家科技重大专项(科技创新2030-癌症、心脑血管、呼吸和代谢性疾病防治研究),项目编号: 2023ZD0509805。

NOTES

*通讯作者。

参考文献

[1] Melincovici, C.S., Boşca, A.B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., et al. (2018) Vascular Endothelial Growth Factor (VEGF)—Key Factor in Normal and Pathological Angiogenesis. Romanian Journal of Morphology and Embryology, 59, 455-467.
[2] Camarda, N., Travers, R., Yang, V.K., London, C. and Jaffe, I.Z. (2022) VEGF Receptor Inhibitor-Induced Hypertension: Emerging Mechanisms and Clinical Implications. Current Oncology Reports, 24, 463-474.
https://doi.org/10.1007/s11912-022-01224-0
[3] Risau, W. and Flamme, I. (1995) Vasculogenesis. Annual Review of Cell and Developmental Biology, 11, 73-91.
https://doi.org/10.1146/annurev.cb.11.110195.000445
[4] Semenza, G.L. (2021) Intratumoral Hypoxia and Mechanisms of Immune Evasion Mediated by Hypoxia-Inducible Factors. Physiology, 36, 73-83.
https://doi.org/10.1152/physiol.00034.2020
[5] Forsythe, J.A., Jiang, B., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., et al. (1996) Activation of Vascular Endothelial Growth Factor Gene Transcription by Hypoxia-Inducible Factor 1. Molecular and Cellular Biology, 16, 4604-4613.
https://doi.org/10.1128/mcb.16.9.4604
[6] Ferrara, N. (1995) The Role of Vascular Endothelial Growth Factor in Pathological Angiogenesis. Breast Cancer Research and Treatment, 36, 127-137.
https://doi.org/10.1007/bf00666035
[7] Neufeld, G., Cohen, T., Gengrinovitch, S. and Poltorak, Z. (1999) Vascular Endothelial Growth Factor (VEGF) and Its Receptors. The FASEB Journal, 13, 9-22.
https://doi.org/10.1096/fasebj.13.1.9
[8] Witmer, A.N., Dai, J., Weich, H.A., Vrensen, G.F.J.M. and Schlingemann, R.O. (2002) Expression of Vascular Endothelial Growth Factor Receptors 1, 2, and 3 in Quiescent Endothelia. Journal of Histochemistry & Cytochemistry, 50, 767-777.
https://doi.org/10.1177/002215540205000603
[9] Olsson, A., Dimberg, A., Kreuger, J. and Claesson-Welsh, L. (2006) VEGF Receptor Signalling—In Control of Vascular Function. Nature Reviews Molecular Cell Biology, 7, 359-371.
https://doi.org/10.1038/nrm1911
[10] Lankhorst, S., Saleh, L., Danser, A.J. and van den Meiracker, A.H. (2015) Etiology of Angiogenesis Inhibition-Related Hypertension. Current Opinion in Pharmacology, 21, 7-13.
https://doi.org/10.1016/j.coph.2014.11.010
[11] Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Van Oosterom, A.T. and De Bruijn, E.A. (2004) Vascular Endothelial Growth Factor and Angiogenesis. Pharmacological Reviews, 56, 549-580.
https://doi.org/10.1124/pr.56.4.3
[12] Pipsa, S., Lauri, E., Pipsa, S., Lauri, E., Kristina, H.P., Petri, B., et al. (2011) VEGF and Angiopoietin Signaling in Tumor Angio-Genesis and Metastasis. Trends in Molecular Medicine, 17, 347-362.
[13] Zanetta, L., Marcus, S.G., Vasile, J., Dobryansky, M., Cohen, H., Eng, K., et al. (2000) Expression of Von Willebrand Factor, an Endothelial Cell Marker, Is Up-Regulated by Angiogenesis Factors: A Potential Method for Objective Assessment of Tumor Angiogenesis. International Journal of Cancer, 85, 281-288.
https://doi.org/10.1002/(sici)1097-0215(20000115)85:2<281::aid-ijc21>3.0.co;2-3
[14] Yang, J.C., Haworth, L., Sherry, R.M., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., et al. (2003) A Randomized Trial of Bevacizumab, an Anti-Vascular Endothelial Growth Factor Antibody, for Metastatic Renal Cancer. New England Journal of Medicine, 349, 427-434.
https://doi.org/10.1056/nejmoa021491
[15] Motzer, R.J., Hutson, T.E., Tomczak, P., Michaelson, M.D., Bukowski, R.M., Rixe, O., et al. (2007) Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. New England Journal of Medicine, 356, 115-124.
https://doi.org/10.1056/nejmoa065044
[16] Gauthier, A. and Ho, M. (2012) Role of Sorafenib in the Treatment of Advanced Hepatocellular Carcinoma: An Update. Hepatology Research, 43, 147-154.
https://doi.org/10.1111/j.1872-034x.2012.01113.x
[17] Belinda, J., Belinda, J., Karumanchi, S.A. and Karumanchi, S.A. (2017) Preeclampsia: Pathogenesis, Prevention, and Long-Term Complications. Seminars in Nephrology, 37, 386-397.
[18] Steingart, R.M., Bakris, G.L., Chen, H.X., Chen, M., Force, T., Ivy, S.P., et al. (2012) Management of Cardiac Toxicity in Patients Receiving Vascular Endothelial Growth Factor Signaling Pathway Inhibitors. American Heart Journal, 163, 156-163.
https://doi.org/10.1016/j.ahj.2011.10.018
[19] Abdel-Qadir, H., Ethier, J., Lee, D.S., Thavendiranathan, P. and Amir, E. (2017) Cardiovascular Toxicity of Angiogenesis Inhibitors in Treatment of Malignancy: A Systematic Review and Meta-Analysis. Cancer Treatment Reviews, 53, 120-127.
https://doi.org/10.1016/j.ctrv.2016.12.002
[20] Shah, N.S., Lloyd-Jones, D.M., O’Flaherty, M., Capewell, S., Kershaw, K., Carnethon, M., et al. (2019) Trends in Cardiometabolic Mortality in the United States, 1999-2017. JAMA, 322, 780-782.
https://doi.org/10.1001/jama.2019.9161
[21] Jammal, N., Pan, E., Hurwitz, M. and Abramovitz, R.B. (2019) Outcomes of Combination Therapy with Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors in Metastatic Renal Cell Carcinoma—A Retrospective Study. Journal of Oncology Pharmacy Practice, 26, 556-563.
https://doi.org/10.1177/1078155219854797
[22] Riechelmann, R.P., Chin, S., Wang, L., Tannock, I.F., Berthold, D.R., Moore, M.J., et al. (2008) Sorafenib for Metastatic Renal Cancer: The Princess Margaret Experience. American Journal of Clinical Oncology, 31, 182-187.
https://doi.org/10.1097/coc.0b013e3181574084
[23] Chang, H., Okwuosa, T.M., Scarabelli, T., Moudgil, R. and Yeh, E.T.H. (2017) Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 2. Journal of the American College of Cardiology, 70, 2552-2565.
https://doi.org/10.1016/j.jacc.2017.09.1095
[24] Robinson, E.S., Matulonis, U.A., Ivy, P., Berlin, S.T., Tyburski, K., Penson, R.T., et al. (2010) Rapid Development of Hypertension and Proteinuria with Cediranib, an Oral Vascular Endothelial Growth Factor Receptor Inhibitor. Clinical Journal of the American Society of Nephrology, 5, 477-483.
https://doi.org/10.2215/cjn.08111109
[25] Baffert, F., Le, T., Sennino, B., Thurston, G., Kuo, C.J., Hu-Lowe, D., et al. (2006) Cellular Changes in Normal Blood Capillaries Undergoing Regression after Inhibition of VEGF Signaling. American Journal of Physiology-Heart and Circulatory Physiology, 290, H547-H559.
https://doi.org/10.1152/ajpheart.00616.2005
[26] Mourad, J., des Guetz, G., Debbabi, H. and Levy, B.I. (2008) Blood Pressure Rise Following Angiogenesis Inhibition by Bevacizumab. A Crucial Role for Microcirculation. Annals of Oncology, 19, 927-934.
https://doi.org/10.1093/annonc/mdm550
[27] Kikuchi, S., Yoshioka, Y., Prieto-Vila, M. and Ochiya, T. (2019) Involvement of Extracellular Vesicles in Vascular-Related Functions in Cancer Progression and Metastasis. International Journal of Molecular Sciences, 20, Article 2584.
https://doi.org/10.3390/ijms20102584
[28] Neves, K.B., Montezano, A.C., Lang, N.N. and Touyz, R.M. (2020) Vascular Toxicity Associated with Anti-Angiogenic Drugs. Clinical Science, 134, 2503-2520.
https://doi.org/10.1042/cs20200308
[29] Lankhorst, S., Kappers, M.H.W., van Esch, J.H.M., Danser, A.H.J. and van den Meiracker, A.H. (2014) Hypertension during Vascular Endothelial Growth Factor Inhibition: Focus on Nitric Oxide, Endothelin-1, and Oxidative Stress. Antioxidants & Redox Signaling, 20, 135-145.
https://doi.org/10.1089/ars.2013.5244
[30] Folkman, J. (1997) Angiogenesis and Angiogenesis Inhibition: An Overview. In: Goldberg, I.D. and Rosen, E.M., Eds., Regulation of Angiogenesis, Birkhäuser Basel, 1-8.
https://doi.org/10.1007/978-3-0348-9006-9_1
[31] Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J. and Holash, J. (2000) Vascular-Specific Growth Factors and Blood Vessel Formation. Nature, 407, 242-248.
https://doi.org/10.1038/35025215
[32] Deng, W., Duan, M., Qian, B., Zhu, Y., Lin, J., Zheng, L., et al. (2019) NADPH Oxidase 1/4 Inhibition Attenuates the Portal Hypertensive Syndrome via Modulation of Mesenteric Angiogenesis and Arterial Hyporeactivity in Rats. Clinics and Research in Hepatology and Gastroenterology, 43, 255-265.
https://doi.org/10.1016/j.clinre.2018.10.004
[33] Wang, W., Li, C., Zhuang, C., Zhang, H., Wang, Q., Fan, X., et al. (2022) Research on the Mechanism and Prevention of Hypertension Caused by Apatinib through the Rhoa/Rock Signaling Pathway in a Mouse Model of Gastric Cancer. Frontiers in Cardiovascular Medicine, 9, Article 873829.
https://doi.org/10.3389/fcvm.2022.873829
[34] Wang, T., Baron, M. and Trump, D. (2008) An Overview of Notch3 Function in Vascular Smooth Muscle Cells. Progress in Biophysics and Molecular Biology, 96, 499-509.
https://doi.org/10.1016/j.pbiomolbio.2007.07.006
[35] Del Gaudio, F., Liu, D. and Lendahl, U. (2022) Notch Signalling in Healthy and Diseased Vasculature. Open Biology, 12, Article ID: 220004.
https://doi.org/10.1098/rsob.220004
[36] Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., et al. (2003) VEGF Guides Angiogenic Sprouting Utilizing Endothelial Tip Cell Filopodia. The Journal of Cell Biology, 161, 1163-1177.
https://doi.org/10.1083/jcb.200302047
[37] Joutel, A., Favrole, P., Labauge, P., Chabriat, H., Lescoat, C., Andreux, F., et al. (2001) Skin Biopsy Immunostaining with a Notch3 Monoclonal Antibody for CADASIL Diagnosis. The Lancet, 358, 2049-2051.
https://doi.org/10.1016/s0140-6736(01)07142-2
[38] Clément, N., Gueguen, M., Glorian, M., Blaise, R., Andréani, M., Brou, C., et al. (2007) Notch3 and Il-1β Exert Opposing Effects on a Vascular Smooth Muscle Cell Inflammatory Pathway in Which NF-κB Drives Crosstalk. Journal of Cell Science, 120, 3352-3361.
https://doi.org/10.1242/jcs.007872
[39] Del Gaudio, F., Liu, D., Andaloussi Mäe, M., Braune, E., Hansson, E.M., Wang, Q., et al. (2023) Left Ventricular Hypertrophy and Metabolic Resetting in the Notch3-Deficient Adult Mouse Heart. Scientific Reports, 13, Article No. 15022.
https://doi.org/10.1038/s41598-023-42010-7
[40] Wang, W., Prince, C.Z., Mou, Y. and Pollman, M.J. (2002) Notch3 Signaling in Vascular Smooth Muscle Cells Induces C-Flip Expression via ERK/MAPK Activation. Resistance to FAS Ligand-Induced Apoptosis. Journal of Biological Chemistry, 277, 21723-21729.
https://doi.org/10.1074/jbc.m202224200
[41] Sweeney, C., Morrow, D., Birney, Y.A., Coyle, S., Hennessy, C., Scheller, A., et al. (2004) Notch 1 and 3 Receptors Modulate Vascular Smooth Muscle Cell Growth, Apoptosis and Migration via a CBF‐1/RBP‐Jk Dependent Pathway. The FASEB Journal, 18, 1421-1423.
https://doi.org/10.1096/fj.04-1700fje
[42] Yang, Y., Liu, R., Lee, P., Yeh, Y., Huang, Y., Lee, W., et al. (2013) Anti‐VEGFR Agents Ameliorate Hepatic Venous Dysregulation/Microcirculatory Dysfunction, Splanchnic Venous Pooling and Ascites of NASH‐Cirrhotic Rat. Liver International, 34, 521-534.
https://doi.org/10.1111/liv.12299
[43] Meadows, K.L. and Hurwitz, H.I. (2012) Anti-VEGF Therapies in the Clinic. Cold Spring Harbor Perspectives in Medicine, 2, a006577.
https://doi.org/10.1101/cshperspect.a006577
[44] Eechoute, K., van der Veldt, A.A.M., et al. (2012) Polymor-Phisms in Endothelial Nitric Oxide Synthase (eNOS) and Vascular Endothelial Growth Factor (VEGF) Predict Sunitinib-Induced Hypertension. Clinical Pharmacology & Therapeutics, 92, 503-510.
[45] Kim, Y. and Byzova, T.V. (2014) Oxidative Stress in Angiogenesis and Vascular Disease. Blood, 123, 625-631.
https://doi.org/10.1182/blood-2013-09-512749
[46] Neves, K.B., Rios, F.J., van der Mey, L., Alves-Lopes, R., Cameron, A.C., Volpe, M., et al. (2018) VEGFR (vascular Endothelial Growth Factor Receptor) Inhibition Induces Cardiovascular Damage via Redox-Sensitive Processes. Hy-pertension, 71, 638-647.
https://doi.org/10.1161/hypertensionaha.117.10490
[47] Mirabito Colafella, K.M., Neves, K.B., Montezano, A.C., Garrelds, I.M., van Veghel, R., de Vries, R., et al. (2019) Selective ETA vs. Dual ETA/B Receptor Blockade for the Prevention of Sunitinib-Induced Hypertension and Albuminuria in WKY Rats. Cardiovascular Research, 116, 1779-1790.
https://doi.org/10.1093/cvr/cvz260
[48] Thijs, A.M.J., van Herpen, C.M.L., Sweep, F.C.G.J., Geurts-Moespot, A., Smits, P., van der Graaf, W.T.A., et al. (2013) Role of Endogenous Vascular Endothelial Growth Factor in Endothelium-Dependent Vasodilation in Humans. Hypertension, 61, 1060-1065.
https://doi.org/10.1161/hypertensionaha.111.00841
[49] Kappers, M.H.W., de Beer, V.J., Zhou, Z., Danser, A.H.J., Sleijfer, S., Duncker, D.J., et al. (2012) Sunitinib-Induced Systemic Vasoconstriction in Swine Is Endothelin Mediated and Does Not Involve Nitric Oxide or Oxidative Stress. Hypertension, 59, 151-157.
https://doi.org/10.1161/hypertensionaha.111.182220
[50] Kappers, M.H.W., Smedts, F.M.M., Horn, T., van Esch, J.H.M., Sleijfer, S., Leijten, F., et al. (2011) The Vascular Endothelial Growth Factor Receptor Inhibitor Sunitinib Causes a Preeclampsia-Like Syndrome with Activation of the Endothelin System. Hypertension, 58, 295-302.
https://doi.org/10.1161/hypertensionaha.111.173559
[51] Naseralallah, L. and Koraysh, S. (2024) Aprocitentan: A New Emerging Prospect in the Pharmacotherapy of Hypertension. Blood Pressure, 33, Article ID: 2424824.
https://doi.org/10.1080/08037051.2024.2424824
[52] Moncada, S. and Vane, J.R. (1978) Pharmacology and Endogenous Roles of Prostaglandin Endoperoxides, Thromboxane A2, and Prostacyclin. Pharmacological Reviews, 30, 293-331.
https://doi.org/10.1016/s0031-6997(25)06759-6
[53] Amraoui, F., Spijkers, L., Hassani Lahsinoui, H., Vogt, L., van der Post, J., Peters, S., et al. (2014) SFLT-1 Elevates Blood Pressure by Augmenting Endothelin-1-Mediated Vasoconstriction in Mice. PLOS ONE, 9, e91897.
https://doi.org/10.1371/journal.pone.0091897
[54] Po Kuei, H., Po-Yen, H., Aynura, M., Nadia, B.J., Aynura, M., Nadia, B.J., et al. (2021) Updates on Anticancer Therapy-Mediated Vascular Toxicity and New Horizons in Therapeutic Strategies. Frontiers in Cardiovascular Medicine, 8, Article 694711.
[55] Pruthi, D., McCurley, A., Aronovitz, M., Galayda, C., Karumanchi, S.A. and Jaffe, I.Z. (2014) Aldosterone Promotes Vascular Remodeling by Direct Effects on Smooth Muscle Cell Mineralocorticoid Receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 355-364.
https://doi.org/10.1161/atvbaha.113.302854
[56] Wang, W., He, Q., Zhuang, C., Zhang, H., Fan, X., Wang, Q., et al. (2022) Apatinib through Activating the Rhoa/Rock Signaling Pathway to Cause Dysfunction of Vascular Smooth Muscle Cells. Applied Biochemistry and Biotechnology, 194, 5367-5385.
https://doi.org/10.1007/s12010-022-04020-5
[57] Kim, H. (2023) Arterial Stiffness and Hypertension. Clinical Hypertension, 29, 31.
https://doi.org/10.1186/s40885-023-00258-1
[58] Catino, A.B., Hubbard, R.A., et al. (2018) Longitudinal Assessment of Vascular Function with Sunitinib in Patients with Metastatic Renal Cell Carcinoma. Circulation Heart Failure, 11, e004408.
[59] Dumor, K., Shoemaker-Moyle, M., Nistala, R. and Whaley-Connell, A. (2018) Arterial Stiffness in Hypertension: An Update. Current Hypertension Reports, 20, 72.
[60] Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y. and Ochiya, T. (2010) Secretory Mechanisms and Intercellular Transfer of Micrornas in Living Cells. Journal of Biological Chemistry, 285, 17442-17452.
https://doi.org/10.1074/jbc.m110.107821
[61] Kikuchi, S., Yoshioka, Y., Prieto-Vila, M. and Ochiya, T. (2019) Involvement of Extracellular Vesicles in Vascular-Related Functions in Cancer Progression and Metastasis. International Journal of Molecular Sciences, 20, Article 2584.
https://doi.org/10.3390/ijms20102584
[62] Neves, K.B., Rios, F.J., Jones, R., Evans, T.R.J., Montezano, A.C. and Touyz, R.M. (2019) Microparticles from Vascular Endothelial Growth Factor Pathway Inhibitor-Treated Cancer Patients Mediate Endothelial Cell Injury. Cardiovascular Research, 115, 978-988.
https://doi.org/10.1093/cvr/cvz021
[63] Koch, S. and Claesson-Welsh, L. (2012) Signal Transduction by Vascular Endothelial Growth Factor Receptors. Cold Spring Harbor Perspectives in Medicine, 2, a006502.
https://doi.org/10.1101/cshperspect.a006502
[64] Eremina, V., Sood, M., Haigh, J., Nagy, A., Lajoie, G., Ferrara, N., et al. (2003) Glomerular-Specific Alterations of VEGF-A Expression Lead to Distinct Congenital and Acquired Renal Diseases. Journal of Clinical Investigation, 111, 707-716.
https://doi.org/10.1172/jci17423
[65] Patel, T.V., Morgan, J.A., Demetri, G.D., George, S., Maki, R.G., Quigley, M., et al. (2008) A Preeclampsia-Like Syndrome Characterized by Reversible Hypertension and Proteinuria Induced by the Multitargeted Kinase Inhibitors Sunitinib and Sorafenib. JNCI Journal of the National Cancer Institute, 100, 282-284.
https://doi.org/10.1093/jnci/djm311
[66] van Dorst, D.C.H., Dobbin, S.J.H., Neves, K.B., Herrmann, J., Herrmann, S.M., Versmissen, J., et al. (2021) Hypertension and Prohypertensive Antineoplastic Therapies in Cancer Patients. Circulation Research, 128, 1040-1061.
https://doi.org/10.1161/circresaha.121.318051
[67] Liu, Y., Lu, M., Hu, L., Wong, P.T., Webb, G.D. and Bian, J. (2012) Hydrogen Sulfide in the Mammalian Cardiovascular System. Antioxidants & Redox Signaling, 17, 141-185.
https://doi.org/10.1089/ars.2011.4005
[68] Polhemus, D.J. and Lefer, D.J. (2014) Emergence of Hydrogen Sulfide as an Endogenous Gaseous Signaling Molecule in Cardiovascular Disease. Circulation Research, 114, 730-737.
https://doi.org/10.1161/circresaha.114.300505
[69] Renga, B. (2011) Hydrogen Sulfide Generation in Mammals: The Molecular Biology of Cystathionine-β-Synthase (CBS) and Cystathionine-γ-Lyase (CSE). Inflammation & AllergyDrug Targets, 10, 85-91.
https://doi.org/10.2174/187152811794776286
[70] Huang, S., Li, H. and Ge, J. (2015) A Cardioprotective Insight of the Cystathionine γ-Lyase/Hydrogen Sulfide Pathway. IJC Heart & Vasculature, 7, 51-57.
https://doi.org/10.1016/j.ijcha.2015.01.010
[71] Zhang, Y., Jing, M., Cai, C., Zhu, S., Zhang, C., Wang, Q., et al. (2022) Role of Hydrogen Sulphide in Physiological and Pathological Angiogenesis. Cell Proliferation, 56, e13374.
https://doi.org/10.1111/cpr.13374
[72] Papapetropoulos, A., Pyriochou, A., Altaany, Z., Yang, G., Marazioti, A., Zhou, Z., et al. (2009) Hydrogen Sulfide Is an Endogenous Stimulator of Angiogenesis. Proceedings of the National Academy of Sciences, 106, 21972-21977.
https://doi.org/10.1073/pnas.0908047106
[73] Coletta, C., Papapetropoulos, A., Erdelyi, K., Olah, G., Módis, K., Panopoulos, P., et al. (2012) Hydrogen Sulfide and Nitric Oxide Are Mutually Dependent in the Regulation of Angiogenesis and Endothelium-Dependent Vasorelaxation. Proceedings of the National Academy of Sciences of the United States of America, 109, 9161-9166.
https://doi.org/10.1073/pnas.1202916109
[74] Tao, B., Liu, S., Zhang, C., Fu, W., Cai, W., Wang, Y., et al. (2013) VEGFR2 Functions as an H2S-Targeting Receptor Protein Kinase with Its Novel Cys1045-Cys1024 Disulfide Bond Serving as a Specific Molecular Switch for Hydrogen Sulfide Actions in Vascular Endothelial Cells. Antioxidants & Redox Signaling, 19, 448-464.
https://doi.org/10.1089/ars.2012.4565
[75] Wu, D., Hu, Q., Ma, F. and Zhu, Y.Z. (2015) Vasorelaxant Effect of a New Hydrogen Sulfide‐Nitric Oxide Conjugated Donor in Isolated Rat Aortic Rings through CGMP Pathway. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 7075682.
https://doi.org/10.1155/2016/7075682
[76] Lyon, A.R., López-Fernández, T., Couch, L.S., Asteggiano, R., Aznar, M.C., Bergler-Klein, J., et al. (2022) 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). European Heart Journal, 43, 4229-4361.