[1]
|
Melincovici, C.S., Boşca, A.B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., et al. (2018) Vascular Endothelial Growth Factor (VEGF)—Key Factor in Normal and Pathological Angiogenesis. Romanian Journal of Morphology and Embryology, 59, 455-467.
|
[2]
|
Camarda, N., Travers, R., Yang, V.K., London, C. and Jaffe, I.Z. (2022) VEGF Receptor Inhibitor-Induced Hypertension: Emerging Mechanisms and Clinical Implications. Current Oncology Reports, 24, 463-474. https://doi.org/10.1007/s11912-022-01224-0
|
[3]
|
Risau, W. and Flamme, I. (1995) Vasculogenesis. Annual Review of Cell and Developmental Biology, 11, 73-91. https://doi.org/10.1146/annurev.cb.11.110195.000445
|
[4]
|
Semenza, G.L. (2021) Intratumoral Hypoxia and Mechanisms of Immune Evasion Mediated by Hypoxia-Inducible Factors. Physiology, 36, 73-83. https://doi.org/10.1152/physiol.00034.2020
|
[5]
|
Forsythe, J.A., Jiang, B., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., et al. (1996) Activation of Vascular Endothelial Growth Factor Gene Transcription by Hypoxia-Inducible Factor 1. Molecular and Cellular Biology, 16, 4604-4613. https://doi.org/10.1128/mcb.16.9.4604
|
[6]
|
Ferrara, N. (1995) The Role of Vascular Endothelial Growth Factor in Pathological Angiogenesis. Breast Cancer Research and Treatment, 36, 127-137. https://doi.org/10.1007/bf00666035
|
[7]
|
Neufeld, G., Cohen, T., Gengrinovitch, S. and Poltorak, Z. (1999) Vascular Endothelial Growth Factor (VEGF) and Its Receptors. The FASEB Journal, 13, 9-22. https://doi.org/10.1096/fasebj.13.1.9
|
[8]
|
Witmer, A.N., Dai, J., Weich, H.A., Vrensen, G.F.J.M. and Schlingemann, R.O. (2002) Expression of Vascular Endothelial Growth Factor Receptors 1, 2, and 3 in Quiescent Endothelia. Journal of Histochemistry & Cytochemistry, 50, 767-777. https://doi.org/10.1177/002215540205000603
|
[9]
|
Olsson, A., Dimberg, A., Kreuger, J. and Claesson-Welsh, L. (2006) VEGF Receptor Signalling—In Control of Vascular Function. Nature Reviews Molecular Cell Biology, 7, 359-371. https://doi.org/10.1038/nrm1911
|
[10]
|
Lankhorst, S., Saleh, L., Danser, A.J. and van den Meiracker, A.H. (2015) Etiology of Angiogenesis Inhibition-Related Hypertension. Current Opinion in Pharmacology, 21, 7-13. https://doi.org/10.1016/j.coph.2014.11.010
|
[11]
|
Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Van Oosterom, A.T. and De Bruijn, E.A. (2004) Vascular Endothelial Growth Factor and Angiogenesis. Pharmacological Reviews, 56, 549-580. https://doi.org/10.1124/pr.56.4.3
|
[12]
|
Pipsa, S., Lauri, E., Pipsa, S., Lauri, E., Kristina, H.P., Petri, B., et al. (2011) VEGF and Angiopoietin Signaling in Tumor Angio-Genesis and Metastasis. Trends in Molecular Medicine, 17, 347-362.
|
[13]
|
Zanetta, L., Marcus, S.G., Vasile, J., Dobryansky, M., Cohen, H., Eng, K., et al. (2000) Expression of Von Willebrand Factor, an Endothelial Cell Marker, Is Up-Regulated by Angiogenesis Factors: A Potential Method for Objective Assessment of Tumor Angiogenesis. International Journal of Cancer, 85, 281-288. https://doi.org/10.1002/(sici)1097-0215(20000115)85:2<281::aid-ijc21>3.0.co;2-3
|
[14]
|
Yang, J.C., Haworth, L., Sherry, R.M., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., et al. (2003) A Randomized Trial of Bevacizumab, an Anti-Vascular Endothelial Growth Factor Antibody, for Metastatic Renal Cancer. New England Journal of Medicine, 349, 427-434. https://doi.org/10.1056/nejmoa021491
|
[15]
|
Motzer, R.J., Hutson, T.E., Tomczak, P., Michaelson, M.D., Bukowski, R.M., Rixe, O., et al. (2007) Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. New England Journal of Medicine, 356, 115-124. https://doi.org/10.1056/nejmoa065044
|
[16]
|
Gauthier, A. and Ho, M. (2012) Role of Sorafenib in the Treatment of Advanced Hepatocellular Carcinoma: An Update. Hepatology Research, 43, 147-154. https://doi.org/10.1111/j.1872-034x.2012.01113.x
|
[17]
|
Belinda, J., Belinda, J., Karumanchi, S.A. and Karumanchi, S.A. (2017) Preeclampsia: Pathogenesis, Prevention, and Long-Term Complications. Seminars in Nephrology, 37, 386-397.
|
[18]
|
Steingart, R.M., Bakris, G.L., Chen, H.X., Chen, M., Force, T., Ivy, S.P., et al. (2012) Management of Cardiac Toxicity in Patients Receiving Vascular Endothelial Growth Factor Signaling Pathway Inhibitors. American Heart Journal, 163, 156-163. https://doi.org/10.1016/j.ahj.2011.10.018
|
[19]
|
Abdel-Qadir, H., Ethier, J., Lee, D.S., Thavendiranathan, P. and Amir, E. (2017) Cardiovascular Toxicity of Angiogenesis Inhibitors in Treatment of Malignancy: A Systematic Review and Meta-Analysis. Cancer Treatment Reviews, 53, 120-127. https://doi.org/10.1016/j.ctrv.2016.12.002
|
[20]
|
Shah, N.S., Lloyd-Jones, D.M., O’Flaherty, M., Capewell, S., Kershaw, K., Carnethon, M., et al. (2019) Trends in Cardiometabolic Mortality in the United States, 1999-2017. JAMA, 322, 780-782. https://doi.org/10.1001/jama.2019.9161
|
[21]
|
Jammal, N., Pan, E., Hurwitz, M. and Abramovitz, R.B. (2019) Outcomes of Combination Therapy with Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors in Metastatic Renal Cell Carcinoma—A Retrospective Study. Journal of Oncology Pharmacy Practice, 26, 556-563. https://doi.org/10.1177/1078155219854797
|
[22]
|
Riechelmann, R.P., Chin, S., Wang, L., Tannock, I.F., Berthold, D.R., Moore, M.J., et al. (2008) Sorafenib for Metastatic Renal Cancer: The Princess Margaret Experience. American Journal of Clinical Oncology, 31, 182-187. https://doi.org/10.1097/coc.0b013e3181574084
|
[23]
|
Chang, H., Okwuosa, T.M., Scarabelli, T., Moudgil, R. and Yeh, E.T.H. (2017) Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 2. Journal of the American College of Cardiology, 70, 2552-2565. https://doi.org/10.1016/j.jacc.2017.09.1095
|
[24]
|
Robinson, E.S., Matulonis, U.A., Ivy, P., Berlin, S.T., Tyburski, K., Penson, R.T., et al. (2010) Rapid Development of Hypertension and Proteinuria with Cediranib, an Oral Vascular Endothelial Growth Factor Receptor Inhibitor. Clinical Journal of the American Society of Nephrology, 5, 477-483. https://doi.org/10.2215/cjn.08111109
|
[25]
|
Baffert, F., Le, T., Sennino, B., Thurston, G., Kuo, C.J., Hu-Lowe, D., et al. (2006) Cellular Changes in Normal Blood Capillaries Undergoing Regression after Inhibition of VEGF Signaling. American Journal of Physiology-Heart and Circulatory Physiology, 290, H547-H559. https://doi.org/10.1152/ajpheart.00616.2005
|
[26]
|
Mourad, J., des Guetz, G., Debbabi, H. and Levy, B.I. (2008) Blood Pressure Rise Following Angiogenesis Inhibition by Bevacizumab. A Crucial Role for Microcirculation. Annals of Oncology, 19, 927-934. https://doi.org/10.1093/annonc/mdm550
|
[27]
|
Kikuchi, S., Yoshioka, Y., Prieto-Vila, M. and Ochiya, T. (2019) Involvement of Extracellular Vesicles in Vascular-Related Functions in Cancer Progression and Metastasis. International Journal of Molecular Sciences, 20, Article 2584. https://doi.org/10.3390/ijms20102584
|
[28]
|
Neves, K.B., Montezano, A.C., Lang, N.N. and Touyz, R.M. (2020) Vascular Toxicity Associated with Anti-Angiogenic Drugs. Clinical Science, 134, 2503-2520. https://doi.org/10.1042/cs20200308
|
[29]
|
Lankhorst, S., Kappers, M.H.W., van Esch, J.H.M., Danser, A.H.J. and van den Meiracker, A.H. (2014) Hypertension during Vascular Endothelial Growth Factor Inhibition: Focus on Nitric Oxide, Endothelin-1, and Oxidative Stress. Antioxidants & Redox Signaling, 20, 135-145. https://doi.org/10.1089/ars.2013.5244
|
[30]
|
Folkman, J. (1997) Angiogenesis and Angiogenesis Inhibition: An Overview. In: Goldberg, I.D. and Rosen, E.M., Eds., Regulation of Angiogenesis, Birkhäuser Basel, 1-8. https://doi.org/10.1007/978-3-0348-9006-9_1
|
[31]
|
Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J. and Holash, J. (2000) Vascular-Specific Growth Factors and Blood Vessel Formation. Nature, 407, 242-248. https://doi.org/10.1038/35025215
|
[32]
|
Deng, W., Duan, M., Qian, B., Zhu, Y., Lin, J., Zheng, L., et al. (2019) NADPH Oxidase 1/4 Inhibition Attenuates the Portal Hypertensive Syndrome via Modulation of Mesenteric Angiogenesis and Arterial Hyporeactivity in Rats. Clinics and Research in Hepatology and Gastroenterology, 43, 255-265. https://doi.org/10.1016/j.clinre.2018.10.004
|
[33]
|
Wang, W., Li, C., Zhuang, C., Zhang, H., Wang, Q., Fan, X., et al. (2022) Research on the Mechanism and Prevention of Hypertension Caused by Apatinib through the Rhoa/Rock Signaling Pathway in a Mouse Model of Gastric Cancer. Frontiers in Cardiovascular Medicine, 9, Article 873829. https://doi.org/10.3389/fcvm.2022.873829
|
[34]
|
Wang, T., Baron, M. and Trump, D. (2008) An Overview of Notch3 Function in Vascular Smooth Muscle Cells. Progress in Biophysics and Molecular Biology, 96, 499-509. https://doi.org/10.1016/j.pbiomolbio.2007.07.006
|
[35]
|
Del Gaudio, F., Liu, D. and Lendahl, U. (2022) Notch Signalling in Healthy and Diseased Vasculature. Open Biology, 12, Article ID: 220004. https://doi.org/10.1098/rsob.220004
|
[36]
|
Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., et al. (2003) VEGF Guides Angiogenic Sprouting Utilizing Endothelial Tip Cell Filopodia. The Journal of Cell Biology, 161, 1163-1177. https://doi.org/10.1083/jcb.200302047
|
[37]
|
Joutel, A., Favrole, P., Labauge, P., Chabriat, H., Lescoat, C., Andreux, F., et al. (2001) Skin Biopsy Immunostaining with a Notch3 Monoclonal Antibody for CADASIL Diagnosis. The Lancet, 358, 2049-2051. https://doi.org/10.1016/s0140-6736(01)07142-2
|
[38]
|
Clément, N., Gueguen, M., Glorian, M., Blaise, R., Andréani, M., Brou, C., et al. (2007) Notch3 and Il-1β Exert Opposing Effects on a Vascular Smooth Muscle Cell Inflammatory Pathway in Which NF-κB Drives Crosstalk. Journal of Cell Science, 120, 3352-3361. https://doi.org/10.1242/jcs.007872
|
[39]
|
Del Gaudio, F., Liu, D., Andaloussi Mäe, M., Braune, E., Hansson, E.M., Wang, Q., et al. (2023) Left Ventricular Hypertrophy and Metabolic Resetting in the Notch3-Deficient Adult Mouse Heart. Scientific Reports, 13, Article No. 15022. https://doi.org/10.1038/s41598-023-42010-7
|
[40]
|
Wang, W., Prince, C.Z., Mou, Y. and Pollman, M.J. (2002) Notch3 Signaling in Vascular Smooth Muscle Cells Induces C-Flip Expression via ERK/MAPK Activation. Resistance to FAS Ligand-Induced Apoptosis. Journal of Biological Chemistry, 277, 21723-21729. https://doi.org/10.1074/jbc.m202224200
|
[41]
|
Sweeney, C., Morrow, D., Birney, Y.A., Coyle, S., Hennessy, C., Scheller, A., et al. (2004) Notch 1 and 3 Receptors Modulate Vascular Smooth Muscle Cell Growth, Apoptosis and Migration via a CBF‐1/RBP‐Jk Dependent Pathway. The FASEB Journal, 18, 1421-1423. https://doi.org/10.1096/fj.04-1700fje
|
[42]
|
Yang, Y., Liu, R., Lee, P., Yeh, Y., Huang, Y., Lee, W., et al. (2013) Anti‐VEGFR Agents Ameliorate Hepatic Venous Dysregulation/Microcirculatory Dysfunction, Splanchnic Venous Pooling and Ascites of NASH‐Cirrhotic Rat. Liver International, 34, 521-534. https://doi.org/10.1111/liv.12299
|
[43]
|
Meadows, K.L. and Hurwitz, H.I. (2012) Anti-VEGF Therapies in the Clinic. Cold Spring Harbor Perspectives in Medicine, 2, a006577. https://doi.org/10.1101/cshperspect.a006577
|
[44]
|
Eechoute, K., van der Veldt, A.A.M., et al. (2012) Polymor-Phisms in Endothelial Nitric Oxide Synthase (eNOS) and Vascular Endothelial Growth Factor (VEGF) Predict Sunitinib-Induced Hypertension. Clinical Pharmacology & Therapeutics, 92, 503-510.
|
[45]
|
Kim, Y. and Byzova, T.V. (2014) Oxidative Stress in Angiogenesis and Vascular Disease. Blood, 123, 625-631. https://doi.org/10.1182/blood-2013-09-512749
|
[46]
|
Neves, K.B., Rios, F.J., van der Mey, L., Alves-Lopes, R., Cameron, A.C., Volpe, M., et al. (2018) VEGFR (vascular Endothelial Growth Factor Receptor) Inhibition Induces Cardiovascular Damage via Redox-Sensitive Processes. Hy-pertension, 71, 638-647. https://doi.org/10.1161/hypertensionaha.117.10490
|
[47]
|
Mirabito Colafella, K.M., Neves, K.B., Montezano, A.C., Garrelds, I.M., van Veghel, R., de Vries, R., et al. (2019) Selective ETA vs. Dual ETA/B Receptor Blockade for the Prevention of Sunitinib-Induced Hypertension and Albuminuria in WKY Rats. Cardiovascular Research, 116, 1779-1790. https://doi.org/10.1093/cvr/cvz260
|
[48]
|
Thijs, A.M.J., van Herpen, C.M.L., Sweep, F.C.G.J., Geurts-Moespot, A., Smits, P., van der Graaf, W.T.A., et al. (2013) Role of Endogenous Vascular Endothelial Growth Factor in Endothelium-Dependent Vasodilation in Humans. Hypertension, 61, 1060-1065. https://doi.org/10.1161/hypertensionaha.111.00841
|
[49]
|
Kappers, M.H.W., de Beer, V.J., Zhou, Z., Danser, A.H.J., Sleijfer, S., Duncker, D.J., et al. (2012) Sunitinib-Induced Systemic Vasoconstriction in Swine Is Endothelin Mediated and Does Not Involve Nitric Oxide or Oxidative Stress. Hypertension, 59, 151-157. https://doi.org/10.1161/hypertensionaha.111.182220
|
[50]
|
Kappers, M.H.W., Smedts, F.M.M., Horn, T., van Esch, J.H.M., Sleijfer, S., Leijten, F., et al. (2011) The Vascular Endothelial Growth Factor Receptor Inhibitor Sunitinib Causes a Preeclampsia-Like Syndrome with Activation of the Endothelin System. Hypertension, 58, 295-302. https://doi.org/10.1161/hypertensionaha.111.173559
|
[51]
|
Naseralallah, L. and Koraysh, S. (2024) Aprocitentan: A New Emerging Prospect in the Pharmacotherapy of Hypertension. Blood Pressure, 33, Article ID: 2424824. https://doi.org/10.1080/08037051.2024.2424824
|
[52]
|
Moncada, S. and Vane, J.R. (1978) Pharmacology and Endogenous Roles of Prostaglandin Endoperoxides, Thromboxane A2, and Prostacyclin. Pharmacological Reviews, 30, 293-331. https://doi.org/10.1016/s0031-6997(25)06759-6
|
[53]
|
Amraoui, F., Spijkers, L., Hassani Lahsinoui, H., Vogt, L., van der Post, J., Peters, S., et al. (2014) SFLT-1 Elevates Blood Pressure by Augmenting Endothelin-1-Mediated Vasoconstriction in Mice. PLOS ONE, 9, e91897. https://doi.org/10.1371/journal.pone.0091897
|
[54]
|
Po Kuei, H., Po-Yen, H., Aynura, M., Nadia, B.J., Aynura, M., Nadia, B.J., et al. (2021) Updates on Anticancer Therapy-Mediated Vascular Toxicity and New Horizons in Therapeutic Strategies. Frontiers in Cardiovascular Medicine, 8, Article 694711.
|
[55]
|
Pruthi, D., McCurley, A., Aronovitz, M., Galayda, C., Karumanchi, S.A. and Jaffe, I.Z. (2014) Aldosterone Promotes Vascular Remodeling by Direct Effects on Smooth Muscle Cell Mineralocorticoid Receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 355-364. https://doi.org/10.1161/atvbaha.113.302854
|
[56]
|
Wang, W., He, Q., Zhuang, C., Zhang, H., Fan, X., Wang, Q., et al. (2022) Apatinib through Activating the Rhoa/Rock Signaling Pathway to Cause Dysfunction of Vascular Smooth Muscle Cells. Applied Biochemistry and Biotechnology, 194, 5367-5385. https://doi.org/10.1007/s12010-022-04020-5
|
[57]
|
Kim, H. (2023) Arterial Stiffness and Hypertension. Clinical Hypertension, 29, 31. https://doi.org/10.1186/s40885-023-00258-1
|
[58]
|
Catino, A.B., Hubbard, R.A., et al. (2018) Longitudinal Assessment of Vascular Function with Sunitinib in Patients with Metastatic Renal Cell Carcinoma. Circulation Heart Failure, 11, e004408.
|
[59]
|
Dumor, K., Shoemaker-Moyle, M., Nistala, R. and Whaley-Connell, A. (2018) Arterial Stiffness in Hypertension: An Update. Current Hypertension Reports, 20, 72.
|
[60]
|
Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y. and Ochiya, T. (2010) Secretory Mechanisms and Intercellular Transfer of Micrornas in Living Cells. Journal of Biological Chemistry, 285, 17442-17452. https://doi.org/10.1074/jbc.m110.107821
|
[61]
|
Kikuchi, S., Yoshioka, Y., Prieto-Vila, M. and Ochiya, T. (2019) Involvement of Extracellular Vesicles in Vascular-Related Functions in Cancer Progression and Metastasis. International Journal of Molecular Sciences, 20, Article 2584. https://doi.org/10.3390/ijms20102584
|
[62]
|
Neves, K.B., Rios, F.J., Jones, R., Evans, T.R.J., Montezano, A.C. and Touyz, R.M. (2019) Microparticles from Vascular Endothelial Growth Factor Pathway Inhibitor-Treated Cancer Patients Mediate Endothelial Cell Injury. Cardiovascular Research, 115, 978-988. https://doi.org/10.1093/cvr/cvz021
|
[63]
|
Koch, S. and Claesson-Welsh, L. (2012) Signal Transduction by Vascular Endothelial Growth Factor Receptors. Cold Spring Harbor Perspectives in Medicine, 2, a006502. https://doi.org/10.1101/cshperspect.a006502
|
[64]
|
Eremina, V., Sood, M., Haigh, J., Nagy, A., Lajoie, G., Ferrara, N., et al. (2003) Glomerular-Specific Alterations of VEGF-A Expression Lead to Distinct Congenital and Acquired Renal Diseases. Journal of Clinical Investigation, 111, 707-716. https://doi.org/10.1172/jci17423
|
[65]
|
Patel, T.V., Morgan, J.A., Demetri, G.D., George, S., Maki, R.G., Quigley, M., et al. (2008) A Preeclampsia-Like Syndrome Characterized by Reversible Hypertension and Proteinuria Induced by the Multitargeted Kinase Inhibitors Sunitinib and Sorafenib. JNCI Journal of the National Cancer Institute, 100, 282-284. https://doi.org/10.1093/jnci/djm311
|
[66]
|
van Dorst, D.C.H., Dobbin, S.J.H., Neves, K.B., Herrmann, J., Herrmann, S.M., Versmissen, J., et al. (2021) Hypertension and Prohypertensive Antineoplastic Therapies in Cancer Patients. Circulation Research, 128, 1040-1061. https://doi.org/10.1161/circresaha.121.318051
|
[67]
|
Liu, Y., Lu, M., Hu, L., Wong, P.T., Webb, G.D. and Bian, J. (2012) Hydrogen Sulfide in the Mammalian Cardiovascular System. Antioxidants & Redox Signaling, 17, 141-185. https://doi.org/10.1089/ars.2011.4005
|
[68]
|
Polhemus, D.J. and Lefer, D.J. (2014) Emergence of Hydrogen Sulfide as an Endogenous Gaseous Signaling Molecule in Cardiovascular Disease. Circulation Research, 114, 730-737. https://doi.org/10.1161/circresaha.114.300505
|
[69]
|
Renga, B. (2011) Hydrogen Sulfide Generation in Mammals: The Molecular Biology of Cystathionine-β-Synthase (CBS) and Cystathionine-γ-Lyase (CSE). Inflammation & Allergy—Drug Targets, 10, 85-91. https://doi.org/10.2174/187152811794776286
|
[70]
|
Huang, S., Li, H. and Ge, J. (2015) A Cardioprotective Insight of the Cystathionine γ-Lyase/Hydrogen Sulfide Pathway. IJC Heart & Vasculature, 7, 51-57. https://doi.org/10.1016/j.ijcha.2015.01.010
|
[71]
|
Zhang, Y., Jing, M., Cai, C., Zhu, S., Zhang, C., Wang, Q., et al. (2022) Role of Hydrogen Sulphide in Physiological and Pathological Angiogenesis. Cell Proliferation, 56, e13374. https://doi.org/10.1111/cpr.13374
|
[72]
|
Papapetropoulos, A., Pyriochou, A., Altaany, Z., Yang, G., Marazioti, A., Zhou, Z., et al. (2009) Hydrogen Sulfide Is an Endogenous Stimulator of Angiogenesis. Proceedings of the National Academy of Sciences, 106, 21972-21977. https://doi.org/10.1073/pnas.0908047106
|
[73]
|
Coletta, C., Papapetropoulos, A., Erdelyi, K., Olah, G., Módis, K., Panopoulos, P., et al. (2012) Hydrogen Sulfide and Nitric Oxide Are Mutually Dependent in the Regulation of Angiogenesis and Endothelium-Dependent Vasorelaxation. Proceedings of the National Academy of Sciences of the United States of America, 109, 9161-9166. https://doi.org/10.1073/pnas.1202916109
|
[74]
|
Tao, B., Liu, S., Zhang, C., Fu, W., Cai, W., Wang, Y., et al. (2013) VEGFR2 Functions as an H2S-Targeting Receptor Protein Kinase with Its Novel Cys1045-Cys1024 Disulfide Bond Serving as a Specific Molecular Switch for Hydrogen Sulfide Actions in Vascular Endothelial Cells. Antioxidants & Redox Signaling, 19, 448-464. https://doi.org/10.1089/ars.2012.4565
|
[75]
|
Wu, D., Hu, Q., Ma, F. and Zhu, Y.Z. (2015) Vasorelaxant Effect of a New Hydrogen Sulfide‐Nitric Oxide Conjugated Donor in Isolated Rat Aortic Rings through CGMP Pathway. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 7075682. https://doi.org/10.1155/2016/7075682
|
[76]
|
Lyon, A.R., López-Fernández, T., Couch, L.S., Asteggiano, R., Aznar, M.C., Bergler-Klein, J., et al. (2022) 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). European Heart Journal, 43, 4229-4361.
|