|
[1]
|
Zhang, Y., Small, J.P., Pontius, W.V. and Kim, P. (2005) Fabrication and Electric-Field-Dependent Transport Measurements of Mesoscopic Graphite Devices. Applied Physics Letters, 86, Article ID: 073104. [Google Scholar] [CrossRef]
|
|
[2]
|
Machado, B.F. and Serp, P. (2012) Graphene-Based Materials for Catalysis. Catalysis Science & Technology, 2, 54-75. [Google Scholar] [CrossRef]
|
|
[3]
|
Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., et al. (2007) Room-Temperature Quantum Hall Effect in Graphene. Science, 315, 1379-1379. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Curl, R.F. and Smalley, R.E. (1988) Probing C60. Science, 242, 1017-1022. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Krätschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D.R. (1990) Solid C60: A New Form of Carbon. Nature, 347, 354-358. [Google Scholar] [CrossRef]
|
|
[6]
|
Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58. [Google Scholar] [CrossRef]
|
|
[7]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., et al. (2004) Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics. The Journal of Physical Chemistry B, 108, 19912-19916. [Google Scholar] [CrossRef]
|
|
[9]
|
Eda, G., Fanchini, G. and Chhowalla, M. (2008) Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nature Nanotechnology, 3, 270-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., et al. (2007) Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 45, 1558-1565. [Google Scholar] [CrossRef]
|
|
[11]
|
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., et al. (2009) Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9, 30-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bittencourt, J.A. (2010) Fundamentals of Plasma Physics. Springer.
|
|
[13]
|
Laroussi, M. (2015) Low-Temperature Plasma Jet for Biomedical Applications: A Review. IEEE Transactions on Plasma Science, 43, 703-712. [Google Scholar] [CrossRef]
|
|
[14]
|
Surowsky, B., Schlüter, O. and Knorr, D. (2014) Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review. Food Engineering Reviews, 7, 82-108. [Google Scholar] [CrossRef]
|
|
[15]
|
任想想. 等离子体增强化学气相沉积设备的技术要点及性能分析[J]. 模具制造, 2024, 24(7): 150-152.
|
|
[16]
|
Sun, J., Schmidt, M.E., Muruganathan, M., Chong, H.M.H. and Mizuta, H. (2016) Large-Scale Nanoelectromechanical Switches Based on Directly Deposited Nanocrystalline Graphene on Insulating Substrates. Nanoscale, 8, 6659-6665. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hong, H., Kim, N.Y., Yoon, A., Lee, S.W., Park, J., Yoo, J., et al. (2019) Synthesis of High-Quality Monolayer Graphene by Low-Power Plasma. Current Applied Physics, 19, 44-49. [Google Scholar] [CrossRef]
|
|
[18]
|
Siow, K.S., Britcher, L., Kumar, S. and Griesser, H.J. (2006) Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Processes and Polymers, 3, 392-418. [Google Scholar] [CrossRef]
|
|
[19]
|
Hertwig, C., Reineke, K., Ehlbeck, J., Knorr, D. and Schlüter, O. (2015) Decontamination of Whole Black Pepper Using Different Cold Atmospheric Pressure Plasma Applications. Food Control, 55, 221-229. [Google Scholar] [CrossRef]
|
|
[20]
|
Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Du, X., Skachko, I., Barker, A. and Andrei, E.Y. (2008) Approaching Ballistic Transport in Suspended Graphene. Nature Nanotechnology, 3, 491-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., et al. (2008) Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 146, 351-355. [Google Scholar] [CrossRef]
|
|
[23]
|
Slonczewski, J.C. and Weiss, P.R. (1958) Band Structure of Graphite. Physical Review, 109, 272-279. [Google Scholar] [CrossRef]
|
|
[24]
|
徐洋健, 肖润涵, 王浩敏, 于广辉. 化学气相沉积合成纯单层石墨烯的技术综述[J]. 固体电子学研究与进展, 2024, 44(6): 568-5751.
|
|
[25]
|
Li, J., Wijaya, L.N.A., Jang, D.W., Hu, Y., You, J., Cai, Y., et al. (2024) 2D Materials‐Based Field‐Effect Transistor Biosensors for Healthcare. Small, 21, Article ID: 2408961. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, Y.H., Chen, Z.Y., Wang, B., Wu, Y.W., Jin, Z., Liu, X.Y., et al. (2013) Controllable Growth of Millimeter-Size Graphene Domains on Cufoil. Materials Letters, 96, 149-151. [Google Scholar] [CrossRef]
|
|
[27]
|
Yang, M., Sasaki, S., Suzuki, K. and Miura, H. (2016) Control of the Nucleation and Quality of Graphene Grown by Low-Pressure Chemical Vapor Deposition with Acetylene. Applied Surface Science, 366, 219-226. [Google Scholar] [CrossRef]
|
|
[28]
|
Han, Z., Kimouche, A., Kalita, D., Allain, A., Arjmandi‐Tash, H., Reserbat‐Plantey, A., et al. (2013) Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches during CVD on Copper Foils. Advanced Functional Materials, 24, 964-970. [Google Scholar] [CrossRef]
|
|
[29]
|
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., et al. (2009) Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9, 30-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wu, T., Zhang, X., Yuan, Q., Xue, J., Lu, G., Liu, Z., et al. (2015) Fast Growth of Inch-Sized Single-Crystalline Graphene from a Controlled Single Nucleus on Cu-Ni Alloys. Nature Materials, 15, 43-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Guo, L., Zhang, Z., Sun, H., Dai, D., Cui, J., Li, M., et al. (2018) Direct Formation of Wafer-Scale Single-Layer Graphene Films on the Rough Surface Substrate by PECVD. Carbon, 129, 456-461. [Google Scholar] [CrossRef]
|