茄科植物对盐胁迫耐受性的研究进展
Research Progress on the Tolerance of Solanaceae Plants to Salt Stress
DOI: 10.12677/br.2025.144030, PDF, HTML, XML,    科研立项经费支持
作者: 刘诗语, 刘 彤, 简 伟*:重庆师范大学生命科学学院,重庆
关键词: 茄科盐胁迫抗性基因耐盐机理Solanaceae Salt Stress Resistance Gene Salt Tolerance Mechanism
摘要: 作为制约植物生长的主要非生物胁迫,盐胁迫主要通过离子毒性、渗透胁迫和次生胁迫严重威胁植物的营养吸收、光合作用及糖代谢等过程。在长期进化中,植物形成了生理、基因、代谢物等多层次的响应机制,包括维持离子稳态、合成渗透调节物质、介导植物激素信号转导以及清除活性氧等。本文综述盐胁迫对植物的危害、植物对盐胁迫的适应性调控,并着重分析茄科作物的耐盐机理及相关基因研究进展,以期为盐碱地改良和耐盐育种提供参考。
Abstract: As the main abiotic stress restricting plant growth, salt stress seriously threatens the processes such as nutrient powder absorption, photosynthesis and sugar metabolism of plants mainly through ionic toxicity, osmotic stress and secondary stress. During long-term evolution, plants have developed multi-level response mechanisms such as physiology, genes, and metabolites, including maintaining ionic homeostasis, synthesizing osmotic regulatory substances, mediating plant hormone signal transduction, and eliminating reactive oxygen species, etc. This article reviews the harm of salt stress to plants, the adaptive regulation of plants to salt stress, and focuses on analyzing the salt tolerance mechanism of solanaceous crops and the research progress of related genes, with the aim of providing references for the improvement of saline-alkali land and salt-tolerant breeding.
文章引用:刘诗语, 刘彤, 简伟. 茄科植物对盐胁迫耐受性的研究进展[J]. 植物学研究, 2025, 14(4): 260-270. https://doi.org/10.12677/br.2025.144030

1. 引言

土壤盐渍化是对植物生长和产量影响最大的非生物胁迫,通常由过多可溶性盐累积引起,目前已经影响到三分之一以上的灌溉地区,并预计到2050年,全球一半以上的可耕地将面临盐渍化的危机[1]。据统计,盐碱化每年造成农业经济损失达2730万美元[2]。当前全球耕地面积持续缩减,开发利用盐渍土壤进行作物栽培已成为农业发展的重要方向。近年来,基因编辑技术为培育耐盐作物品种提供了有效途径。茄科植物涵盖番茄、马铃薯等15个世界性食物生产属,兼具营养价值和药用价值[3]。但该科作物在生殖生长期对盐胁迫敏感。开展耐盐基因挖掘及优良品种选育研究,将为盐渍土壤的高效利用提供关键技术支撑。

2. 盐胁迫对植物的影响

高盐度主要引发离子毒性、渗透胁迫和次级胁迫三种机制干扰植物的生理活动,阻碍其生长发育,进而制约农业可持续发展[4]。离子毒性打破胞内离子稳态平衡,引发细胞毒性效应,并直接损害细胞结构与生理功能。渗透胁迫则通过降低根际水势阻碍水分吸收,引发植株脱水,这些压力影响植物的所有主要过程,包括植物营养、光合作用和糖代谢。

2.1. 盐胁迫对植物营养的危害

高浓度的Na+和Cl等可溶性盐离子引发的土壤渗透势升高和离子毒性的产生对必需营养素的获取和平衡产生负面影响,导致植物营养亏缺[5]。Na+和K+之间的理化相似性会导致高浓度Na+竞争K+吸收位点[6]。K+作为多种关键酶的辅因子,其缺失会影响光合磷酸化和蛋白质合成等基础代谢过程。植物根系的吸收主要依赖 H 2 PO 4 /nH+共运子介导的跨膜运输[7]。盐胁迫下Na+ H 2 PO 4 的竞争效应会降低 PO 4 3 活性,引发的磷饥饿可显著改变植物能量代谢动态[8]。Cl的积累则干扰 NO 3 吸收,降低氮素利用效率[9]。值得注意的是,这些离子失衡最终造成多维度的营养系统紊乱,严重影响植物生长发育。

2.2. 盐胁迫对植物光合作用的危害

作为植物生命活动的能量来源,光合作用通过光能转化和碳同化将无机物转化为有机物,以此为后续的糖代谢提供初始碳源。但在盐渍环境下,植株通过关闭气孔限制CO2供应,降低碳同化速率,光合产物输出缓慢。同时Na+的过量积累会竞争性抑制光合酶活性,降低叶绿素含量及光系统II (PSII)效率[10]。ROS爆发也会导致光系统核心复合物降解,转录组分析发现,盐处理后的白菜中参与光合作用和碳代谢相关基因显著下调,其光合效率受损[11]

2.3. 盐胁迫对植物糖代谢的危害

糖代谢是维持植物能量稳态和代谢平衡的核心过程。海藻糖代谢和蔗糖代谢是糖代谢的重要分支,尤其是蔗糖代谢占据主导地位,其含量通常为海藻糖的100~1000倍[12]。盐胁迫持续抑制番茄叶片组织的蔗糖跨膜转运,导致依赖pH的糖摄取过程受阻[13]。蔗糖代谢平衡遭受破坏后会降低月季和大豆组织中的淀粉含量[14] [15]。尽管海藻糖在植物中的含量较低,但最近其因参与糖代谢调控而备受关注。例如盐胁迫通过降低玉米叶片6-磷酸海藻糖水平抑制海藻糖代谢,导致光合效率下降、生殖发育受阻和籽粒败育[16]。该过程主要由能量代谢紊乱而非碳水化合物缺乏引起。

3. 植物对盐胁迫的适应性调控

3.1. 植物对盐胁迫的传感机制

为应对盐分过多对植物造成的损害,植物进化出了盐胁迫感知机制。迄今为止,植物感知Na+的具体途径尚不明确,Na+传感器或受体的存在仍有待证实。然而有研究发现,NaCl或甘露醇刺激可在几秒钟内迅速提高细胞质Ca2+水平,这一现象可能与渗透胁迫受体和Ca2+通道的偶联有关[17]。基于此,研究者鉴定到了渗透感受器(OSCA1)。该Ca2+通道介导渗透胁迫下的Ca2+信号转导,其突变会导致气孔关闭障碍和根系生长受限[18]。通过类似策略鉴定的葡萄糖醛酸基转移酶(MOCA1)基因参与糖基肌醇磷酸神经酰胺(GIPC)合成。GIPC可直接结合Na+,通过阻止膜电位去极化来触发Ca2+内流[19]。越来越多的研究表明,膜联蛋白(ANNEXINs)、质体K+交换反向转运蛋白(KEAs)、机械敏感性离子通道MscS-Like (MSL)和mid1补体活性蛋白(MCA)共同调控盐诱导的Ca2+信号和膨压变化,形成复杂的胁迫感知网络[20]-[23]。质外体中离子的过度积累会影响细胞壁成分的稳定,因此植物感知盐诱导的细胞结构变化也是识别盐胁迫的策略之一。盐胁迫下,富含亮氨酸的重复延伸素、快速碱化因子和受体样激酶模块(LRXs-RALFs-FER)负责监测细胞壁完整性[24]。此外,细胞壁相关激酶(WAKs)能识别果胶降解产物寡聚半乳糖醛酸(OGs)与Ca2+的结合,从而启动盐胁迫响应基因的表达[25] [26]。这些多样化的感知机制协同作用,共同增强植物对盐胁迫的适应性。

3.2. 植物对盐胁迫的调控机制

3.2.1. 渗透调节物质合成

渗透调节是植物为避免渗透胁迫造成的细胞缺水而进化出的主要适应性策略,植物可通过参与渗透调节的一些可溶性物质来降低细胞内的渗透压和维持细胞形态。这些渗透调节物质可分为无机离子和小分子有机物两类。无机离子一般从外界环境中摄入,如Na+、Cl、K+和无机酸盐等,通过维持细胞内离子平衡避免毒害。小分子有机物主要包含脯氨酸(Pro)、甜菜碱、可溶性糖和多元醇等,通过降低细胞溶质渗透势来维持水分吸收。Pro作为关键的渗透调节物质,其含量的升高促使盐分在液泡中区隔化储存,有效维持液泡与细胞质间的渗透压差。值得注意的是,耐盐番茄基因型通常表现出更高的Pro积累水平[27]。此外,外源施加20 mM甘氨酸甜菜碱可显著增强乌拉尔甘草的渗透调节能力及排盐效率,有效缓解盐害造成的影响[28]。另有实验证实,经10 mM可溶性糖或多元醇预处理的小麦籽粒,其抗氧化酶活性和苯类物质合成均得到显著增强[29]

3.2.2. 活性氧清除

抗氧化防御系统中酶促反应和非酶促反应反映了植物克服氧化应激所需的一般策略,可清除一定程度的不同ROS。酶促反应中的超氧化物歧化酶(SOD)是氧化应激防御系统的第一道防线,特异性催化 O 2 转化为H2O2 [30];随后产生的H2O2由过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)等进一步分解[31]。当酶系统不足以清除ROS时,抗坏血酸(AsA)、谷胱甘肽(GSH)、类胡萝卜素和类黄酮等非酶类抗氧化剂受到植物依赖。耐盐植物品系BvM14和Giza9中AsA和GSH的含量受到调控以此降低植物的氧化损伤,从而增强植物对盐胁迫的耐受性[32] [33]。这两个重要代谢产物与APX、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)共同构成了AsA-GSH循环[34],其活性和代谢水平的提升已被多项研究证实可有效缓解ROS毒害作用[35] [36]

3.2.3. 植物激素调节

植物在承受不断变化的环境压力中已形成了应激反应类激素介导的抗逆机制,这些激素现已得到很好的表征,主要包括脱落酸(ABA)、茉莉酸(JA)、水杨酸(SA)和乙烯(ET)。ABA作为参与盐胁迫响应的重要二级信号分子,被迅速积累后会增加可溶性蛋白和糖分来维持渗透稳态。乙烯则通过增强SOS1的表达和活性,促进Na+的外排和K+的吸收[37]。类似的,SA在调控离子平衡和抗氧化防御发挥重要作用[38]。值得注意的是,野生番茄中K+和Na+的渗透调节能力显著高于栽培种,这可能与其SA、ET和细胞分裂素的差异调控有关[39]。深入研究表明,番茄耐盐机制涉及SA与多胺通过调控ET代谢途径,协同线粒体交替氧化酶(AOX)和盐过度敏感(SOS)途径形成的复杂调控网络[40]。JA作为重要的胁迫响应激素,外源施加可上调抗氧化酶系统,显著改善小麦幼苗的耐盐性[41]。不仅如此,生长素、油菜素内酯(BR)等生长类激素也被证实在提升植物耐盐性上发挥功能。生长素不仅调控植物形态建成,其主要活性物质吲哚-3-乙酸(IAA)在长期胁迫下呈现稳定积累的趋势,尤其是在盐胁迫期间[42]。BR主要通过构建渗透保护剂等相容的溶质、激活表面的K+离子转运蛋白和抗氧化剂等机制来调控耐盐性[43]

4. 茄科植物耐盐基因研究进展

4.1. Na+/K+转运机制

植物通过SOS信号通路和液泡区隔化两大机制维持Na+稳态。SOS信号通路依赖位于质膜上的Na+/H+反转运体(SOS1)、丝氨酸/苏氨酸蛋白激酶(SOS2)和钙结合蛋白(SOS3)三种蛋白质的共同作用。盐胁迫触发的胞质Ca2+信号被SOS3感知,与SOS2结合后激活SOS1的Na+外排功能,这一机制已在拟南芥中得到证实[44]。番茄和马铃薯中的SOS1基因也被证明受到盐胁迫诱导且两者在耐盐功能上存在明显分化。具体而言,StSOS1可能通过与钾转运蛋白互作以此参与胁迫响应,而SlSOS1则主要调控离子稳态及Na+的组织特异性分配[45] [46]。研究表明,番茄从野生种到栽培种的驯化过程导致遗传多样性的锐减和耐盐能力的大幅度降低,这与SOS信号通路关键基因的变异密切相关。Hong等人发现,SlSOS2基因启动子区上游存在一个与耐盐性相关的插入缺失标记变异,该变异与番茄根系Na+/K+比及耐盐性显著相关。在栽培番茄中,该变异插入了一个额外的ABI4结合位点,使转录因子ABI4能更有效地抑制SlSOS2表达,导致其表达水平显著低于野生番茄[47]。此外,朱健康团队和李传友团队分别证实,SlSOS1SlSCaBP8启动子区的变异在驯化过程中同样下调了基因表达,这直接解释了栽培番茄耐盐性显著衰退的遗传基础[48] [49]。液泡区隔化则通过NHX家族转运体实现,以此降低细胞质中Na+的毒性浓度。迄今为止,NHX家族基因已在番茄、马铃薯和辣椒等多种茄科作物中被成功鉴定,且所编码的转运蛋白活性差异直接影响品种耐盐性表现[50]-[52]。如LeNHX2/4既能外排根部Na+,又能调控木质部Na+装载和K+区隔化,从而赋予番茄耐盐性[53]

高亲和性K+转运体(HKT)是植物体内重要的离子转运体,在系统发育上可分为I类(Na+专一转运)和II类亚组(Na+/K+共转运)。通常,II类亚组活性受外部离子组成(如Mg2+或Ca2+)调控[54]。在茄科植物中,HKT家族成员通过不同机制增强耐盐性。长叶茄SgHKT1;1通过调控木质部Na+卸载减少叶片Na+积累,而SgHKT1;2介导Na+循环转运,二者协同维持Na+稳态[55]。番茄SlHKT1;1维持根部低Na+/K+比,SlHKT1;2则保护生殖器官免受Na+毒害,从而显著降低盐胁迫对产量的影响[56] [57]。此外,在驯化过程中,栽培番茄丧失了野生番茄特有的SlHY5转录因子结合位点(G/A-box),该结合位点位于K⁺通道调节亚基KSB1启动子区,这一关键序列变异显著抑制了栽培品种在盐胁迫下KSB1的诱导表达,进而破坏根系Na+/K+平衡,降低植株存活率,导致其耐盐表现明显逊于野生番茄[58]

4.2. Cl转运机制

NaCl是植物盐毒性的主要诱因。盐胁迫下,植物Na+积累常伴随Cl增加[10] [59]。高浓度Cl会抑制光合作用和生长,因此有效排除根部或茎部的Cl对减轻其毒害至关重要[59]。多种转运蛋白参与Cl调控,包括氯通道(CLC)、S型阴离子通道(SLAC)和多药和有毒化合物挤出转运蛋白(DTX/MATE) [60]-[62]。CLC充当重要的内膜Cl交换器或通道,在茄科植物中发挥巨大作用[63]-[65]。譬如,烟草中的NtCLC2/13和番茄中的SlCLC05均为作物抵御盐分和调控氯稳态的新靶点[66]。SLAC蛋白家族主要在植物阴离子摄取和气孔开闭过程中起到重要作用。SLAC1家族编码的S型阴离子通道对苹果酸和Cl具有高通透性。在烟草BY-2细胞中过表达AtSLAC1增强了cryptogen诱导的Cl⁻外排[62]。而沉默SLAC1-6导致番茄抗氧化酶异常增加,破坏渗透平衡[67]。其同源基因SLAH1则在盐胁迫下调控拟南芥Cl积累和耐盐性,而在烟草中抑制根部Cl⁻向地上部转运[68] [69]

DTX33/35被证实是拟南芥中调控膨压的Cl通道,其双突变体会损害质外体Cl通道活性[70]。尽管DTX/MATE家族作为新发现的次级转运蛋白在茄科植物中的研究仍较有限,但番茄与拟南芥MATE基因的功能保守性提示其可能参与Cl转运调控,然而具体作用机制尚待阐明[71]。值得注意的是,马铃薯MATE家族虽不参与Cl转运,但其各亚科展现出明显的功能特异性,分别涉及重金属离子、SA及类黄酮等多种物质的转运[72]。这些发现为通过优化阴离子转运蛋白选择性来提升Cl外排效率提供了新思路,将有力推动耐盐作物育种的发展。

4.3. 植物激素信号传导途径

植物在盐胁迫下会通过多重信号交互以协调各种激素的合成、信号传递和代谢,从而建立起一个防御系统[73]。ABA信号核心调节因子SnRK2已被证明可以直接磷酸化ABA反应元件结合蛋白(ABFs),进而调控ABA响应基因表达[74]。辣椒中编码SnRK2 II亚类的CaDSK2-1特异性激活ABA响应基因,而CaDSK2-2虽对ABA不敏感但能引起ABA超敏反应[75]。不同茄科植物的SnRK2基因成员功能存在差异:番茄SlSnRK2通过抑制胁迫相关基因表达和降低抗氧化酶活性,负向调控植株的渗透胁迫适应能力,而NtSnRK2.2的过表达通过调节碳水化合物代谢和侧根发育来增强烟草的耐盐性[74] [76]。JA信号通路中的COI1通过激活ROS清除系统提升耐盐性,如番茄SlCOI1 [77]。野生番茄与栽培番茄的转录组分析表明,SABP2基因受野生材料的特异性诱导,这暗示了水杨酸信号通路的激活可能参与了其耐盐性调控,这也为解释栽培番茄耐盐性衰退提供了分子证据[78]。生长素可快速激活特定基因表达,其中Aux/IAA家族基因在耐盐调控中发挥重要作用。例如,NtIAA26通过调节K吸收和抗氧化活性正向调节烟草的耐盐性[79]。此外,BR合成关键酶基因DWF4的过表达在马铃薯幼苗中可以减轻盐胁迫的负面影响[80]

4.4. 响应盐胁迫的转录因子

转录因子通过将胁迫信号转化为基因表达的变化,将胁迫感应与许多耐受机制相联系。作为植物中最大的转录家族之一,NAC家族的转录因子在盐胁迫下可协调关键生理生化过程[81]CaNAC46可激活ROS清除酶和促进辣椒根系发育[82]StNAC1过表达植株在盐胁迫下则表现出ROS积累减少和脯氨酸含量增加的特性[83]。除NAC家族外,bZIP、WRKY、AP2/ERF和MYB也是参与植物逆境响应的四类关键转录因子,它们通过调控离子平衡、渗透调节和抗氧化防御等途径减轻盐胁迫造成的损害[84] [85]。例如,番茄SlHDZ34的沉默致使植株在盐胁迫下光合速率下降和ABA生物合成基因表达降低[86]。AP2/ERF和WRKY在茄科植物参与盐胁迫响应的研究中更加深入。CaDREB32在烟草中的异源表达虽抑制生长但增强对盐和渗透胁迫的抵抗力[87]。番茄ERF蛋白通过EAR基序调控其转录活性,该基序缺失可增强胁迫响应基因表达和氧化胁迫抗性[88]。WRKY家族成员通过激活ERF协同调控下游基因,维持氧化还原稳态,如SmWRKY11 [89]。此外,WRKY转录因子还与植物激素信号转导途径存在密切关联。异源表达SmWRKY40能够显著调控ABA信号通路,而番茄SlWRKY42-SlMYC2模块则通过JA信号和亚精胺合成途径协同增强耐盐性[90] [91]。这些响应盐胁迫的转录因子基因均可作为未来培育耐盐番茄品种的候选基因,实现在盐度条件下生产高产优质茄科植物的目标。

5. 展望

盐碱地改良是现代农业面临的重大挑战。茄科作物作为中度盐敏感植物,其耐盐种质筛选与机制研究具有重要意义。尽管茄科植物种类丰富,但现有研究多集中于番茄、马铃薯等主要经济作物,且对野生耐盐资源的挖掘仍显不足。近年来,茄科植物耐盐机制研究在细胞内外离子转运以及植物激素信号传导等方面取得一定进展,但多局限于生理生化响应或单个耐盐基因的功能验证,而盐胁迫应答的整体调控网络仍不明确。新构建的茄科种间泛基因组为系统挖掘耐盐基因提供了革命性工具。可据此开展比较基因组学分析,强化野生近缘种耐盐资源筛选;同时可利用CRISPR编辑内源耐盐基因,结合合成生物学引入外源通路,协同提升耐盐性;此外,需整合基因组重测序、时空转录组、表观调控组和代谢组等多维组学数据,系统解析耐盐基因调控网络的层级响应机制。

基金项目

重庆市自然科学基金创新发展联合基金项目(CSTB2023NSCQ-LZX0057)、国家自然科学基金项目(32001845)、重庆市科学技术委员会项目(cstc2020jcyj-msxmX0774)、重庆市教委科技研究项目(KJQN202000520)。

NOTES

*通讯作者。

参考文献

[1] Singh, A. (2021) Soil Salinization Management for Sustainable Development: A Review. Journal of Environmental Management, 277, Article 111383.
https://doi.org/10.1016/j.jenvman.2020.111383
[2] Wichelns, D. and Qadir, M. (2015) Achieving Sustainable Irrigation Requires Effective Management of Salts, Soil Salinity, and Shallow Groundwater. Agricultural Water Management, 157, 31-38.
https://doi.org/10.1016/j.agwat.2014.08.016
[3] Samuels, J. (2015) Biodiversity of Food Species of the Solanaceae Family: A Preliminary Taxonomic Inventory of Subfamily Solanoideae. Resources, 4, 277-322.
https://doi.org/10.3390/resources4020277
[4] Shrivastava, P. and Kumar, R. (2015) Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of The Tools for Its Alleviation. Saudi Journal of Biological Sciences, 22, 123-131.
https://doi.org/10.1016/j.sjbs.2014.12.001
[5] Abdelraheem, A., Esmaeili, N., O’Connell, M. and Zhang, J. (2019) Progress and Perspective on Drought and Salt Stress Tolerance in Cotton. Industrial Crops and Products, 130, 118-129.
https://doi.org/10.1016/j.indcrop.2018.12.070
[6] Benito, B., Haro, R., Amtmann, A., Cuin T.A. and Dreyer, I. (2014) The Twins K+ and Na+ in Plants. Journal of Plant Physiology, 171, 723-731.
https://doi.org/10.1016/j.jplph.2013.10.014
[7] 董旭, 王雪, 石磊, 蔡红梅, 徐芳森, 丁广大. 植物磷转运子PHT1家族研究进展[J/OL]. 植物营养与肥料学报. 2017, 23(3): 799-810.
https://link.cnki.net/urlid/11.3996.S.20170216.1644.004, 2025-05-23.
[8] 潘晶, 王磊, 黄翠华, 尤全刚, 郭平林, 郭琪, 等. 盐胁迫对干旱区植物能量代谢过程的影响综述[J]. 中国沙漠. 2024, 44(1): 111-118.
[9] Zhang, K., Chang, L., Li, G. and Li, Y. (2023) Advances and Future Research in Ecological Stoichiometry Under Saline-Alkali Stress. Environmental Science and Pollution Research, 30, 5475-5486.
https://doi.org/10.1007/s11356-022-24293-x
[10] Munns, R. and Tester, M. (2008) Mechanisms of Salinity Tolerance. Plant Biology, 59, 651-681.
https://doi.org/10.1146/annurev.arplant.59.032607.092911
[11] Jia, J., Wang, F., Yuan, M., Wang, Z., Qin, Z., Zhang, X., et al. (2025) Transcriptomic Analysis Reveals That the Photosynthesis and Carotenoid Metabolism Pathway Is Involved in the Salinity Stress Response in Brassica rapa L. ssp. Pekinensis. Plants. 14, Article 566.
https://doi.org/10.3390/plants14040566
[12] Carillo, P., Feil, R., Gibon, Y., Satoh-Nagasawa, N., Jackson, D., Bläsing, O.E., et al. (2013) A Fluorometric Assay for Trehalose in the Picomole Range. Plant Methods, 9, Article No. 21.
https://doi.org/10.1186/1746-4811-9-21
[13] Wilson, C., Clark, R.A. and Madore, M.A. (1992) Effect of Salt Stress on Sugar Transport in Tomato, HortScience, 27, 684d-684.
https://doi.org/10.21273/HORTSCI.27.6.684d
[14] Zhang, Z., Zhao, Q., Wang, W., Feng, R., Cao, Y., Wang, G., et al. (2025) Starch-Sucrose Metabolic Homeostasis in Germinating Soybean Reserve Mobilization with Different Levels of Salt Stress. Plant Physiology and Biochemistry, 225, Article 110050.
https://doi.org/10.1016/j.plaphy.2025.110050
[15] Li, C., Yuhuan, L., Peiyu, C., Zhao, H.-H., Zunmiao, W., Yan, C., et al. (2022) Effects of Salt Stress on Sucrose Metabolism and Growth in Chinese Rose (Rosa chinensis). Biotechnology & Biotechnological Equipment, 36, 706-716.
https://doi.org/10.1080/13102818.2022.2116356
[16] Henry, C., Bledsoe, S.W., Griffiths, C.A., Kollman, A., Paul, M.J., Sakr, S., et al. (2015) Differential Role for Trehalose Metabolism in Salt-Stressed Maize. Plant Physiology, 169, 1072-1089.
https://doi.org/10.1104/pp.15.00729
[17] Knight, H., Trewavas, A.J. and Knight, M.R. (1997) Calcium Signalling in Arabidopsis thaliana Responding to Drought and Salinity. The Plant Journal, 12, 1067-1078.
https://doi.org/10.1046/j.1365-313X.1997.12051067.x
[18] Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., et al. (2014) OSCA1 Mediates Osmotic-Stress-Evoked Ca2+ Increases Vital for Osmosensing in Arabidopsis. Nature, 514, 367-371.
https://doi.org/10.1038/nature13593
[19] Jiang, Z., Zhou, X., Tao, M., Yuan, F., Liu, L., Wu, F., et al. (2019) Plant Cell-Surface GIPC Sphingolipids Sense Salt to Trigger Ca2+ Influx. Nature, 572, 341-346.
https://doi.org/10.1038/s41586-019-1449-z
[20] Ma, L., Ye, J., Yang, Y., Lin, H., Yue, L., Luo, J., et al. (2019) The SOS2-SCaBP8 Complex Generates and Fine-Tunes an AtANN4-Dependent Calcium Signature under Salt Stress. Developmental Cell, 48, 697-709.E5.
https://doi.org/10.1016/j.devcel.2019.02.010
[21] Stephan, A.B., Kunz, H.-H., Yang, E. and Schroeder, J.I. (2016) Rapid Hyperosmotic-Induced Ca2+ Responses in Arabidopsis thaliana Exhibit Sensory Potentiation and Involvement of PLASTIDIAL KEA Transporters. Proceedings of the National Academy of Sciences of the United States of America, 113, E5242-E5249.
https://doi.org/10.1073/pnas.1519555113
[22] Kaur, A., Taneja, M., Tyagi, S., Sharma, A., Singh, K. and Upadhyay, S.K. (2020) Genome-Wide Characterization and Expression Analysis Suggested Diverse Functions of the Mechanosensitive Channel of Small Conductance-Like (MSL) Genes in Cereal Crops. Scientific Reports, 10, Article No. 16583.
https://doi.org/10.1038/s41598-020-73627-7
[23] Kurusu, T., Kuchitsu, K., Nakano, M., Nakayama, Y. and Iida, H. (2013) Plant Mechanosensing and Ca2+ Transport. Trends in Plant Science, 18, 227-233.
https://doi.org/10.1016/j.tplants.2012.12.002
[24] Zhao, C., Jiang, W., Zayed, O., Liu, X., Tang, K., Nie, W., et al. (2020) The LRXs-RALFs-FER Module Controls Plant Growth and Salt Stress Responses by Modulating Multiple Plant Hormones. National Science Review, 8, nwaa149.
https://doi.org/10.1093/nsr/nwaa149
[25] Kohorn, B.D. (2015) Cell Wall-Associated Kinases and Pectin Perception. Journal of Experimental Botany, 67, 489-494.
https://doi.org/10.1093/jxb/erv467
[26] Decreux, A. and Messiaen, J. (2005) Wall-Associated Kinase WAK1 Interacts with Cell Wall Pectins in a Calcium-induced Conformation. Plant and Cell Physiology, 46, 268-278.
https://doi.org/10.1093/pcp/pci026
[27] Alam, M.S., Tester, M., Fiene, G. and Mousa, M.A.A. (2021) Early Growth Stage Characterization and the Biochemical Responses for Salinity Stress in Tomato. Plants, 10, Article 712.
https://doi.org/10.3390/plants10040712
[28] Islam, S., Mohammad, F., Shakeel, A. and Corpas, F.J. (2024) Glycine Betaine: A Multifaceted Protectant Against Salt Stress in Indian Mustard Through Ionic Homeostasis, ROS Scavenging and Osmotic Regulation. Physiologia Plantarum, 176, e14530.
https://doi.org/10.1111/ppl.14530
[29] Alhudhaibi, A.M., Ibrahim, M.A.R., Abd-Elaziz, S.M.S., Farag, H.R.M., Elsayed, S.M., Ibrahim, H.A., et al. (2024) Enhancing Salt Stress Tolerance in Wheat (Triticum aestivum) Seedlings: Insights from Trehalose and Mannitol. BMC Plant Biology, 24, Article No. 472.
https://doi.org/10.1186/s12870-024-04964-2
[30] Alscher, R.G., Erturk, N. and Heath, L.S. (2002) Role of Superoxide Dismutases (SODs) in Controlling Oxidative Stress in Plants. Journal of Experimental Botany, 53, 1331-1341.
https://doi.org/10.1093/jexbot/53.372.1331
[31] 岳宏, MdNAC1在苹果响应盐胁迫中的功能分析[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2022.
[32] Li, J., Yu, B., Ma, C., Li, H., Jiang, D., Nan, J., et al. (2023) Functional Characterization of Sugar Beet M14 Antioxidant Enzymes in Plant Salt Stress Tolerance. Antioxidants, 12, Article 57.
https://doi.org/10.3390/antiox12010057
[33] Gaafar, R.M. and Seyam, M.M. (2018) Ascorbate-Glutathione Cycle Confers Salt Tolerance in Egyptian Lentil Cultivars. Physiology and Molecular Biology of Plants, 24, 1083-1092.
https://doi.org/10.1007/s12298-018-0594-4
[34] Hasanuzzaman, M., Bhuyan, M.H.M.B, Anee, T.I., Parvin, K., Nahar, K., Mahmud, J.A., et al. (2019) Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress. Antioxidants. 8, Article 384.
https://doi.org/10.3390/antiox8090384
[35] Raja, V., Wani, U.M., Wani, Z.A., Jan, N., Kottakota, C., Reddy, M.K., et al. (2022) Pyramiding Ascorbate-Glutathione Pathway in Lycopersicum esculentum Confers Tolerance to Drought and Salinity Stress. Plant Cell Reports, 41, 619-637.
https://doi.org/10.1007/s00299-021-02764-8
[36] Prajapati, P., Gupta, P., Kharwar, R.N. and Seth, C.S. (2022) Nitric Oxide Mediated Regulation of Ascorbate-Glutathione Pathway Alleviates Mitotic Aberrations and DNA Damage in Allium cepa L. under Salinity Stress. International Journal of Phytoremediation, 25, 403-414.
https://doi.org/10.1080/15226514.2022.2086215
[37] Zhang, X., Sun, J.W. and Dong, C.-H. (2024) Molecular Regulations of Ethylene Signaling in Plant Salt Stress Responses. Plant Stress, 14, Article 100583.
https://doi.org/10.1016/j.stress.2024.100583
[38] Rao, Y.R., Ansari, M.W., Sahoo, R.K., Wattal, R.K., Tuteja, N. and Kumar, V.R. (2021) Salicylic Acid Modulates ACS, NHX1, sos1 and HKT1;2 Expression to Regulate Ethylene Overproduction and Na+ Ions Toxicity that Leads to Improved Physiological Status and Enhanced Salinity Stress Tolerance in Tomato Plants cv. Pusa Ruby. Plant Signaling and Behavior, 16, Article 1950888.
https://doi.org/10.1080/15592324.2021.1950888
[39] Gharbi, E., Martínez, J.P., Benahmed, H., Hichri, I., Dobrev, P.I., Motyka, V., et al. (2017) Phytohormone Profiling in Relation to Osmotic Adjustment in NaCl-Treated Plants of the Halophyte Tomato Wild Relative Species Solanum chilense Comparatively to the Cultivated Glycophyte Solanum lycopersicum. Plant Science, 258, 77-89.
https://doi.org/10.1016/j.plantsci.2017.02.006
[40] Yadav, P., Ansari, M.W., Kaula, B.C., Rao, Y.R., Meselmani, M.A., Siddiqui, Z.H., et al. (2023) Regulation of Ethylene Metabolism in Tomato under Salinity Stress Involving Linkages with Important Physiological Signaling Pathways. Plant Science, 334, Article 111736.
https://doi.org/10.1016/j.plantsci.2023.111736
[41] Horchani, F., Bouallegue, A. and Abbes, Z. (2024) Does Jasmonic Acid Mitigate the Adverse Effects of Salt Stress on Wheat through the Enhancement of Ascorbate Biosynthesis and the Induction of Glutamate Dehydrogenase Activity? Journal of Plant Nutrition and Soil Science, 187, 356-366.
https://doi.org/10.1002/jpln.202300437
[42] Smolko, A., Bauer, N., Pavlović, I., Pěnčík, A., Novák, O. and Salopek-Sondi, B. (2021) Altered Root Growth, Auxin Metabolism and Distribution in Arabidopsis thaliana Exposed to Salt and Osmotic Stress. International Journal of Molecular Sciences, 22, Article 7993.
https://doi.org/10.3390/ijms22157993
[43] Al-Taey, D.K.A., Al-Musawi, Z.J.M., Kadium S.M.A., Abbas, A.K., Alsaffar, M.F. and Mahmood, S.S. (2024) Brassinolides’ Function and Involvement in Salt Stress Response: A Review. IOP Conference Series: Earth and Environmental Science, 1371, Article 042032.
https://doi.org/10.1088/1755-1315/1371/4/042032
[44] Shi, H., Ishitani, M., Kim, C. and Zhu, J.K. (2000) The Arabidopsis thaliana Salt Tolerance Gene SOS1 Encodes a Putative Na+/H+ Antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 6896-6901.
https://doi.org/10.1073/pnas.120170197
[45] Liang, L., Guo, L., Zhai, Y., Hou, Z., Wu, W., Zhang, X., et al. (2023) Genome-Wide Characterization of SOS1 Gene Family in Potato (Solanum tuberosum) and Expression Analyses under Salt and Hormone Stress. Frontiers in Plant Science, 14, Article 1201730.
https://doi.org/10.3389/fpls.2023.1201730
[46] Olías, R., Eljakaoui, Z., Pardo, J.M. and Belver, A. (2009) The Na+/H+ Exchanger SOS1 Controls Extrusion and Distribution of Na+ in Tomato Plants under Salinity Conditions. Plant Signaling & Behavior, 4, 973-976.
https://doi.org/10.4161/psb.4.10.9679
[47] Hong, Y., Guan, X., Wang, X., Kong, D., Yu, S., Wang, Z., et al. (2022) Natural Variation in SlSOS2 Promoter Hinders Salt Resistance during Tomato Domestication. Horticulture Research, 10, uhac244.
https://doi.org/10.1093/hr/uhac244
[48] Wang, Z., Hong, Y., Li, Y., Shi, H., Yao, J., Liu, X., et al. (2021) Natural Variations in SlSOS1 Contribute to the Loss of Salt Tolerance during Tomato Domestication. Plant Biotechnology Journal, 19, 20-22.
https://doi.org/10.1111/pbi.13443
[49] Liu, J., Zhang, C., Sun, H., Zang, Y., Meng, X., Zhai, H., et al. (2024) A Natural Variation in SlSCaBP8 Promoter Contributes to the Loss of Saline-alkaline Tolerance during Tomato Improvement. Horticulture Research, 11, uhae055.
https://doi.org/10.1093/hr/uhae055
[50] Cavusoglu, E., Sari, U. and Tiryaki, I. (2023) Genome-wide Identification and Expression Analysis of Na+/H+ antiporter (NHX) Genes in Tomato under Salt Stress. Plant Direct, 7, e543.
https://doi.org/10.1002/pld3.543
[51] 黄强, 姜伟业, 舒婷. 马铃薯NHX基因家族的鉴定与表达模式分析[J]. 江苏农业科学, 2024, 52(15): 44-52.
[52] 罗建, 许春苗, 张国斌, 郁继华. 辣椒NHX基因家族的鉴定和表达分析[J]. 华北农学报, 2021, 36(3): 15-24.
[53] Huertas, R., Olías, R., Eljakaoui, Z., Gálvez, F.J., Li, J., De Morales, P.A., et al. (2012) Overexpression of SlSOS2 (SlCIPK24) Confers Salt Tolerance to Transgenic Tomato. Plant, Cell & Environment, 35, 1467-1482.
https://doi.org/10.1111/j.1365-3040.2012.02504.x
[54] Horie, T., Brodsky, D.E., Costa, A., Kaneko, T., Lo Schiavo, F., Katsuhara, M., et al. (2011) K+ Transport by the OsHKT2;4 Transporter from Rice with Atypical Na+ Transport Properties and Competition in Permeation of K+ over Mg2+ and Ca2+ Ions. Plant Physiology, 156, 1493-1507.
https://doi.org/10.1104/pp.110.168047
[55] Asins, M.J., Romero-Aranda, M.R., Espinosa, J., González-Fernández, P., Jaime-Fernández, E., Traverso, J.A., et al. (2022) HKT1;1 and HKT1;2 Na+ Transporters from Solanum galapagense Play Different Roles in the Plant Na+ Distribution under Salinity. International Journal of Molecular Sciences, 23, Article 5130.
https://doi.org/10.3390/ijms23095130
[56] Romero-Aranda, M.R., González-Fernández, P., Pérez-Tienda, J.R., López-Diaz, M.R., Espinosa, J., Granum, E., et al. (2020) Na+ Transporter HKT1;2 Reduces Flower Na+ Content and Considerably Mitigates the Decline in Tomato Fruit Yields under Saline Conditions. Plant Physiology and Biochemistry, 154, 341-352.
https://doi.org/10.1016/j.plaphy.2020.05.012
[57] Romero-Aranda, M.R., Espinosa, J., González-Fernández, P., Jaime-Fernández, E., Traverso, J.Á., Asins, M.J., et al. (2021) Role of Na+ Transporters HKT1;1 and HKT1;2 in Tomato Salt Tolerance. I. Function Loss of Cheesmaniae Alleles in Roots and Aerial Parts. Plant Physiology and Biochemistry, 168, 282-293.
https://doi.org/10.1016/j.plaphy.2021.10.018
[58] Wang, Z., Hong, Y., Li, D., Wang, Z., Chao, Z.F., Yu, Y., et al. (2024) Association Analysis Provides Insights into Molecular Evolution in Salt Tolerance during Tomato Domestication. Plant Physiology, 196, 2721-2729.
https://doi.org/10.1093/plphys/kiae516
[59] Tavakkoli, E., Rengasamy, P. and McDonald, G.K. (2010) High Concentrations of Na+ and Cl Ions in Soil Solution Have Simultaneous Detrimental Effects on Growth of Faba Bean under Salinity Stress. Journal of Experimental Botany, 61, 4449-4459.
https://doi.org/10.1093/jxb/erq251
[60] Rajappa, S., Krishnamurthy, P., Huang, H., Yu, D., Friml, J., Xu, J., et al. (2024) The Translocation of a Chloride Channel from the Golgi to the Plasma Membrane Helps Plants Adapt to Salt Stress. Nature Communications, 15, Article No. 3978.
https://doi.org/10.1038/s41467-024-48234-z
[61] Ren, Z., Bai, F., Xu, J., Wang, L., Wang, X., Zhang, Q., et al. (2021) A Chloride Efflux Transporter, BIG RICE GRAIN 1, Is Involved in Mediating Grain Size and Salt Tolerance in Rice. Journal of Integrative Plant Biology, 63, 2150-2163.
https://doi.org/10.1111/jipb.13178
[62] Kurusu, T., Saito, K., Horikoshi, S., Hanamata, S., Negi, J., Yagi, C., et al. (2013) An S-Type Anion Channel SLAC1 Is Involved in Cryptogein-Induced Ion Fluxes and Modulates Hypersensitive Responses in Tobacco BY-2 Cells. PLOS ONE, 8, e70623.
https://doi.org/10.1371/journal.pone.0070623
[63] Zhang, H., Jin, J., Jin, L., Li, Z., Xu, G., Wang, R., et al. (2018) Identification and Analysis of the Chloride Channel Gene Family Members in Tobacco (Nicotiana tabacum). Gene, 676, 56-64.
https://doi.org/10.1016/j.gene.2018.06.073
[64] Lv, R., Mo, F., Li, C., Meng, F., Zhang, H., Yu, L., et al. (2024) Genome-wide Identification of the CLC Gene Family in Tomato (Solanum lycopersicum) and Functional Analysis of SlCLC8 in Salt Stress Tolerance. Scientia Horticulturae, 338, Article 113754.
https://doi.org/10.1016/j.scienta.2024.113754
[65] 贺晓琳, 王飞, 尹延旭, 余楚英, 吴方圆, 高升华, 等. 辣椒CLC基因家族鉴定及表达模式分析[J]. 分子植物育种, 2024, 1-12.
http://kns.cnki.net/kcms/detail/46.1068.S.20240705.1634.014.html, 2025-05-26.
[66] Ma, J., Li, S., Zaman, S. and Anwar, A. (2025) CLC Gene Family in Solanum lycopersicum: Genome-Wide Identification, Expression, and Evolutionary Analysis of Tomato in Response to Salinity and Cd Stress. Frontiers in Plant Science, 16, Article 1547723.
https://doi.org/10.3389/fpls.2025.1547723
[67] Mo, F., Xue, X., Meng, L., Zhang, Y., Cui, Y., Liu, J., et al. (2023) Genome-Wide Identification and Expression Analysis of SLAC1 Gene Family in Tomato (Solanum lycopersicum) and The Function of SlSLAC1-6 under Cold Stress. Scientia Horticulturae, 313, Article 111904.
https://doi.org/10.1016/j.scienta.2023.111904
[68] Qiu, J., Henderson, S.W., Tester, M., Roy, S.J. and Gilliham, M. (2016) SLAH1, A Homologue of the Slow Type Anion Channel SLAC1, Modulates Shoot Cl- Accumulation and Salt Tolerance in Arabidopsis thaliana. Journal of Experimental Botany, 67, 4495-4505.
https://doi.org/10.1093/jxb/erw237
[69] 张慧, 金立锋, 徐国云, 翟妞, 刘萍萍, 陈千思, 等. 烟草慢阴离子通道蛋白基因NtSLAH1的克隆及表达分析[J]. 烟草科技, 2018, 51(3): 1-6.
[70] Zhang, H., Zhao, F.G., Tang, R.J., Yu, Y., Song, J., Wang, Y., et al. (2017) Two Tonoplast MATE Proteins Function as Turgor-Regulating Chloride Channels in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 114, E2036-E2045.
https://doi.org/10.1073/pnas.1616203114
[71] Santos, A.L.D., Chaves-Silva, S., Yang, L., Maia, L.G.S., Chalfun-Júnior, A., Sinharoy, S., et al. (2017) Global Analysis of the MATE Gene Family of Metabolite Transporters in Tomato. BMC Plant Biology, 17, Article No. 185.
https://doi.org/10.1186/s12870-017-1115-2
[72] Li, Y., He, H. and He, L.F. (2019) Genome-Wide Analysis of the MATE Gene Family in Potato. Molecular Biology Reports, 46, 403-414.
https://doi.org/10.1007/s11033-018-4487-y
[73] Wang, B., Wang, J., Yang, T., Wang, J., Dai, Q., Zhang, F., et al. (2023) The Transcriptional Regulatory Network of Hormones and Genes under Salt Stress in Tomato Plants (Solanum lycopersicum L.). Frontiers in Plant Science, 14, Article 1115593.
https://doi.org/10.3389/fpls.2023.1115593
[74] Yang, Y., Tang, N., Xian, Z. and Li, Z. (2015) Two SnRK2 Protein Kinases Genes Play a Negative Regulatory Role in the Osmotic Stress Response in Tomato. Plant Cell, Tissue and Organ Culture, 122, 421-434.
https://doi.org/10.1007/s11240-015-0779-2
[75] Lim, C.W., Baek, W. and Lee, S.C. (2025) Two Pepper Subclass II SnRK2 Genes Positively Regulate Drought Stress Response, With Differential Responsiveness to Abscisic Acid. Plant Physiology and Biochemistry, 220, Article 109477.
https://doi.org/10.1016/j.plaphy.2025.109477
[76] Liu, M., Wang, J., Gou, J., Wang, X., Li, Z., Yang, X., et al. (2020) Overexpression of NtSnRK2.2 Enhances Salt Tolerance in Nicotiana tabacum by Regulating Carbohydrate Metabolism and Lateral Root Development. Functional Plant Biology, 47, 537-543.
https://doi.org/10.1071/FP19299
[77] Kadam, S.B. and Barvkar, V.T. (2024) COI1 Dependent Jasmonic Acid Signalling Positively Modulates ROS Scavenging System in Transgenic Hairy Root Culture of Tomato. Plant Physiology and Biochemistry, 206, Article 108229.
https://doi.org/10.1016/j.plaphy.2023.108229
[78] Sun, W., Xu, X., Zhu, H., Liu, A., Liu, L., Li, J., et al. (2010) Comparative Transcriptomic Profiling of a Salt-Tolerant Wild Tomato Species and A Salt-Sensitive Tomato Cultivar. Plant and Cell Physiology, 51, 997-1006.
https://doi.org/10.1093/pcp/pcq056
[79] Fu, Y., Wang, C., Lian, W., Zhu, X., Yu, Q., Jia, Y., et al. (2022) NtIAA26 Positively Regulates Salt Tolerance in Tobacco by Modulating Potassium Uptake and Antioxidant Activity. Plant Growth Regulation, 97, 559-569.
https://doi.org/10.1007/s10725-022-00825-w
[80] Zhou, X., Zhang, N., Yang, J., Tang, X., Wen, Y. and Si, H. (2018) Functional Analysis of StDWF4 Gene in Response to Salt Stress in Potato. Plant Physiology and Biochemistry, 125, 63-73.
https://doi.org/10.1016/j.plaphy.2018.01.027
[81] Trishla, V.S. and Kirti, P.B. (2021) Structure-Function Relationship of Gossypium hirsutum NAC Transcription Factor, GhNAC4 with Regard to ABA and Abiotic Stress Responses. Plant Science, 302, Article 110718.
https://doi.org/10.1016/j.plantsci.2020.110718
[82] Ma, J., Wang, L.Y., Dai, J.X., Wang, Y. and Lin, D. (2021) The NAC-Type Transcription Factor CaNAC46 Regulates the Salt and Drought Tolerance of Transgenic Arabidopsis thaliana. BMC Plant Biology, 21, Article No. 11.
https://doi.org/10.1186/s12870-020-02764-y
[83] Yue, L., Zhuang, Y., Gu, Y., Li, H., Tu, S., Yang, X., et al. (2021) Heterologous Expression of Solanum tuberosum NAC1 Gene Confers Enhanced Tolerance to Salt Stress in Transgenic Nicotiana benthamiana. Journal of Plant Biology, 64, 531-542.
https://doi.org/10.1007/s12374-021-09327-0
[84] Li, Y., Yang, Z., Zhang, Y., Guo, J., Liu, L., Wang, C., et al. (2022) The Roles of HD-ZIP Proteins in Plant Abiotic Stress Tolerance. Frontiers in Plant Science, 13, Article 1027071.
https://doi.org/10.3389/fpls.2022.1027071
[85] Liu, H., Tang, X., Zhang, N., Li, S. and Si, H. (2023) Role of bZIP Transcription Factors in Plant Salt Stress. International Journal of Molecular Sciences, 24, Article 7893.
https://doi.org/10.3390/ijms24097893
[86] Hong, Y., Liu, Y., Zhang, Y., Jia, L., Yang, X., Zhang, X., et al. (2022) Genome-Wide Characterization of Homeobox-Leucine Zipper Gene Family in Tomato (Solanum lycopersicum) and Functional Analysis of SlHDZ34 (III Sub-Family Member) under Salinity Stress. Environmental and Experimental Botany, 192, Article 104652.
https://doi.org/10.1016/j.envexpbot.2021.104652
[87] Sun, N., Sun, X., Zhou, J., Zhou, X., Gao, Z., Zhu, X., et al. (2025) Genome-Wide Characterization of Pepper DREB Family Members and Biological Function of CaDREB32 in Response to Salt and Osmotic Stresses. Plant Physiology and Biochemistry, 222, Article 109736.
https://doi.org/10.1016/j.plaphy.2025.109736
[88] Pan, I.C., Li, C.W., Su, R.C., Cheng, C.P., Lin, C.S. and Chan, M.T. (2010) Ectopic Expression of an EAR Motif Deletion Mutant of SlERF3 Enhances Tolerance to Salt Stress and Ralstonia solanacearum in Tomato. Planta, 232, 1075-1086.
https://doi.org/10.1007/s00425-010-1235-5
[89] Shen, L., Xia, X., Zhang, L., Yang, S. and Yang, X. (2023) SmWRKY11 Acts as a Positive Regulator in Eggplant Response to Salt Stress. Plant Physiology and Biochemistry, 205, Article 108209.
https://doi.org/10.1016/j.plaphy.2023.108209
[90] Zhang, A., Shang, J., Xiao, K., Zhang, M., Wang, S., Zhu, W., et al. (2024) WRKY Transcription Factor 40 from Eggplant (Solanum melongena L.) Regulates ABA and Salt Stress Responses. Scientific Reports, 14, Article No. 19289.
https://doi.org/10.1038/s41598-024-69670-3
[91] Liu, X., Shang, C., Duan, P., Yang, J., Wang, J., Sui, D., et al. (2025) The SlWRKY42-SlMYC2 Module Synergistically Enhances Tomato Saline-alkali Tolerance by Activating the Jasmonic Acid Signaling and Spermidine Biosynthesis Pathway. Journal of Integrative Plant Biology, 67, 1254-1273.
https://doi.org/10.1111/jipb.13839