[1]
|
Singh, A. (2021) Soil Salinization Management for Sustainable Development: A Review. Journal of Environmental Management, 277, Article 111383. https://doi.org/10.1016/j.jenvman.2020.111383
|
[2]
|
Wichelns, D. and Qadir, M. (2015) Achieving Sustainable Irrigation Requires Effective Management of Salts, Soil Salinity, and Shallow Groundwater. Agricultural Water Management, 157, 31-38. https://doi.org/10.1016/j.agwat.2014.08.016
|
[3]
|
Samuels, J. (2015) Biodiversity of Food Species of the Solanaceae Family: A Preliminary Taxonomic Inventory of Subfamily Solanoideae. Resources, 4, 277-322. https://doi.org/10.3390/resources4020277
|
[4]
|
Shrivastava, P. and Kumar, R. (2015) Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of The Tools for Its Alleviation. Saudi Journal of Biological Sciences, 22, 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
|
[5]
|
Abdelraheem, A., Esmaeili, N., O’Connell, M. and Zhang, J. (2019) Progress and Perspective on Drought and Salt Stress Tolerance in Cotton. Industrial Crops and Products, 130, 118-129. https://doi.org/10.1016/j.indcrop.2018.12.070
|
[6]
|
Benito, B., Haro, R., Amtmann, A., Cuin T.A. and Dreyer, I. (2014) The Twins K+ and Na+ in Plants. Journal of Plant Physiology, 171, 723-731. https://doi.org/10.1016/j.jplph.2013.10.014
|
[7]
|
董旭, 王雪, 石磊, 蔡红梅, 徐芳森, 丁广大. 植物磷转运子PHT1家族研究进展[J/OL]. 植物营养与肥料学报. 2017, 23(3): 799-810. https://link.cnki.net/urlid/11.3996.S.20170216.1644.004, 2025-05-23.
|
[8]
|
潘晶, 王磊, 黄翠华, 尤全刚, 郭平林, 郭琪, 等. 盐胁迫对干旱区植物能量代谢过程的影响综述[J]. 中国沙漠. 2024, 44(1): 111-118.
|
[9]
|
Zhang, K., Chang, L., Li, G. and Li, Y. (2023) Advances and Future Research in Ecological Stoichiometry Under Saline-Alkali Stress. Environmental Science and Pollution Research, 30, 5475-5486. https://doi.org/10.1007/s11356-022-24293-x
|
[10]
|
Munns, R. and Tester, M. (2008) Mechanisms of Salinity Tolerance. Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
|
[11]
|
Jia, J., Wang, F., Yuan, M., Wang, Z., Qin, Z., Zhang, X., et al. (2025) Transcriptomic Analysis Reveals That the Photosynthesis and Carotenoid Metabolism Pathway Is Involved in the Salinity Stress Response in Brassica rapa L. ssp. Pekinensis. Plants. 14, Article 566. https://doi.org/10.3390/plants14040566
|
[12]
|
Carillo, P., Feil, R., Gibon, Y., Satoh-Nagasawa, N., Jackson, D., Bläsing, O.E., et al. (2013) A Fluorometric Assay for Trehalose in the Picomole Range. Plant Methods, 9, Article No. 21. https://doi.org/10.1186/1746-4811-9-21
|
[13]
|
Wilson, C., Clark, R.A. and Madore, M.A. (1992) Effect of Salt Stress on Sugar Transport in Tomato, HortScience, 27, 684d-684. https://doi.org/10.21273/HORTSCI.27.6.684d
|
[14]
|
Zhang, Z., Zhao, Q., Wang, W., Feng, R., Cao, Y., Wang, G., et al. (2025) Starch-Sucrose Metabolic Homeostasis in Germinating Soybean Reserve Mobilization with Different Levels of Salt Stress. Plant Physiology and Biochemistry, 225, Article 110050. https://doi.org/10.1016/j.plaphy.2025.110050
|
[15]
|
Li, C., Yuhuan, L., Peiyu, C., Zhao, H.-H., Zunmiao, W., Yan, C., et al. (2022) Effects of Salt Stress on Sucrose Metabolism and Growth in Chinese Rose (Rosa chinensis). Biotechnology & Biotechnological Equipment, 36, 706-716. https://doi.org/10.1080/13102818.2022.2116356
|
[16]
|
Henry, C., Bledsoe, S.W., Griffiths, C.A., Kollman, A., Paul, M.J., Sakr, S., et al. (2015) Differential Role for Trehalose Metabolism in Salt-Stressed Maize. Plant Physiology, 169, 1072-1089. https://doi.org/10.1104/pp.15.00729
|
[17]
|
Knight, H., Trewavas, A.J. and Knight, M.R. (1997) Calcium Signalling in Arabidopsis thaliana Responding to Drought and Salinity. The Plant Journal, 12, 1067-1078. https://doi.org/10.1046/j.1365-313X.1997.12051067.x
|
[18]
|
Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., et al. (2014) OSCA1 Mediates Osmotic-Stress-Evoked Ca2+ Increases Vital for Osmosensing in Arabidopsis. Nature, 514, 367-371. https://doi.org/10.1038/nature13593
|
[19]
|
Jiang, Z., Zhou, X., Tao, M., Yuan, F., Liu, L., Wu, F., et al. (2019) Plant Cell-Surface GIPC Sphingolipids Sense Salt to Trigger Ca2+ Influx. Nature, 572, 341-346. https://doi.org/10.1038/s41586-019-1449-z
|
[20]
|
Ma, L., Ye, J., Yang, Y., Lin, H., Yue, L., Luo, J., et al. (2019) The SOS2-SCaBP8 Complex Generates and Fine-Tunes an AtANN4-Dependent Calcium Signature under Salt Stress. Developmental Cell, 48, 697-709.E5. https://doi.org/10.1016/j.devcel.2019.02.010
|
[21]
|
Stephan, A.B., Kunz, H.-H., Yang, E. and Schroeder, J.I. (2016) Rapid Hyperosmotic-Induced Ca2+ Responses in Arabidopsis thaliana Exhibit Sensory Potentiation and Involvement of PLASTIDIAL KEA Transporters. Proceedings of the National Academy of Sciences of the United States of America, 113, E5242-E5249. https://doi.org/10.1073/pnas.1519555113
|
[22]
|
Kaur, A., Taneja, M., Tyagi, S., Sharma, A., Singh, K. and Upadhyay, S.K. (2020) Genome-Wide Characterization and Expression Analysis Suggested Diverse Functions of the Mechanosensitive Channel of Small Conductance-Like (MSL) Genes in Cereal Crops. Scientific Reports, 10, Article No. 16583. https://doi.org/10.1038/s41598-020-73627-7
|
[23]
|
Kurusu, T., Kuchitsu, K., Nakano, M., Nakayama, Y. and Iida, H. (2013) Plant Mechanosensing and Ca2+ Transport. Trends in Plant Science, 18, 227-233. https://doi.org/10.1016/j.tplants.2012.12.002
|
[24]
|
Zhao, C., Jiang, W., Zayed, O., Liu, X., Tang, K., Nie, W., et al. (2020) The LRXs-RALFs-FER Module Controls Plant Growth and Salt Stress Responses by Modulating Multiple Plant Hormones. National Science Review, 8, nwaa149. https://doi.org/10.1093/nsr/nwaa149
|
[25]
|
Kohorn, B.D. (2015) Cell Wall-Associated Kinases and Pectin Perception. Journal of Experimental Botany, 67, 489-494. https://doi.org/10.1093/jxb/erv467
|
[26]
|
Decreux, A. and Messiaen, J. (2005) Wall-Associated Kinase WAK1 Interacts with Cell Wall Pectins in a Calcium-induced Conformation. Plant and Cell Physiology, 46, 268-278. https://doi.org/10.1093/pcp/pci026
|
[27]
|
Alam, M.S., Tester, M., Fiene, G. and Mousa, M.A.A. (2021) Early Growth Stage Characterization and the Biochemical Responses for Salinity Stress in Tomato. Plants, 10, Article 712. https://doi.org/10.3390/plants10040712
|
[28]
|
Islam, S., Mohammad, F., Shakeel, A. and Corpas, F.J. (2024) Glycine Betaine: A Multifaceted Protectant Against Salt Stress in Indian Mustard Through Ionic Homeostasis, ROS Scavenging and Osmotic Regulation. Physiologia Plantarum, 176, e14530. https://doi.org/10.1111/ppl.14530
|
[29]
|
Alhudhaibi, A.M., Ibrahim, M.A.R., Abd-Elaziz, S.M.S., Farag, H.R.M., Elsayed, S.M., Ibrahim, H.A., et al. (2024) Enhancing Salt Stress Tolerance in Wheat (Triticum aestivum) Seedlings: Insights from Trehalose and Mannitol. BMC Plant Biology, 24, Article No. 472. https://doi.org/10.1186/s12870-024-04964-2
|
[30]
|
Alscher, R.G., Erturk, N. and Heath, L.S. (2002) Role of Superoxide Dismutases (SODs) in Controlling Oxidative Stress in Plants. Journal of Experimental Botany, 53, 1331-1341. https://doi.org/10.1093/jexbot/53.372.1331
|
[31]
|
岳宏, MdNAC1在苹果响应盐胁迫中的功能分析[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2022.
|
[32]
|
Li, J., Yu, B., Ma, C., Li, H., Jiang, D., Nan, J., et al. (2023) Functional Characterization of Sugar Beet M14 Antioxidant Enzymes in Plant Salt Stress Tolerance. Antioxidants, 12, Article 57. https://doi.org/10.3390/antiox12010057
|
[33]
|
Gaafar, R.M. and Seyam, M.M. (2018) Ascorbate-Glutathione Cycle Confers Salt Tolerance in Egyptian Lentil Cultivars. Physiology and Molecular Biology of Plants, 24, 1083-1092. https://doi.org/10.1007/s12298-018-0594-4
|
[34]
|
Hasanuzzaman, M., Bhuyan, M.H.M.B, Anee, T.I., Parvin, K., Nahar, K., Mahmud, J.A., et al. (2019) Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress. Antioxidants. 8, Article 384. https://doi.org/10.3390/antiox8090384
|
[35]
|
Raja, V., Wani, U.M., Wani, Z.A., Jan, N., Kottakota, C., Reddy, M.K., et al. (2022) Pyramiding Ascorbate-Glutathione Pathway in Lycopersicum esculentum Confers Tolerance to Drought and Salinity Stress. Plant Cell Reports, 41, 619-637. https://doi.org/10.1007/s00299-021-02764-8
|
[36]
|
Prajapati, P., Gupta, P., Kharwar, R.N. and Seth, C.S. (2022) Nitric Oxide Mediated Regulation of Ascorbate-Glutathione Pathway Alleviates Mitotic Aberrations and DNA Damage in Allium cepa L. under Salinity Stress. International Journal of Phytoremediation, 25, 403-414. https://doi.org/10.1080/15226514.2022.2086215
|
[37]
|
Zhang, X., Sun, J.W. and Dong, C.-H. (2024) Molecular Regulations of Ethylene Signaling in Plant Salt Stress Responses. Plant Stress, 14, Article 100583. https://doi.org/10.1016/j.stress.2024.100583
|
[38]
|
Rao, Y.R., Ansari, M.W., Sahoo, R.K., Wattal, R.K., Tuteja, N. and Kumar, V.R. (2021) Salicylic Acid Modulates ACS, NHX1, sos1 and HKT1;2 Expression to Regulate Ethylene Overproduction and Na+ Ions Toxicity that Leads to Improved Physiological Status and Enhanced Salinity Stress Tolerance in Tomato Plants cv. Pusa Ruby. Plant Signaling and Behavior, 16, Article 1950888. https://doi.org/10.1080/15592324.2021.1950888
|
[39]
|
Gharbi, E., Martínez, J.P., Benahmed, H., Hichri, I., Dobrev, P.I., Motyka, V., et al. (2017) Phytohormone Profiling in Relation to Osmotic Adjustment in NaCl-Treated Plants of the Halophyte Tomato Wild Relative Species Solanum chilense Comparatively to the Cultivated Glycophyte Solanum lycopersicum. Plant Science, 258, 77-89. https://doi.org/10.1016/j.plantsci.2017.02.006
|
[40]
|
Yadav, P., Ansari, M.W., Kaula, B.C., Rao, Y.R., Meselmani, M.A., Siddiqui, Z.H., et al. (2023) Regulation of Ethylene Metabolism in Tomato under Salinity Stress Involving Linkages with Important Physiological Signaling Pathways. Plant Science, 334, Article 111736. https://doi.org/10.1016/j.plantsci.2023.111736
|
[41]
|
Horchani, F., Bouallegue, A. and Abbes, Z. (2024) Does Jasmonic Acid Mitigate the Adverse Effects of Salt Stress on Wheat through the Enhancement of Ascorbate Biosynthesis and the Induction of Glutamate Dehydrogenase Activity? Journal of Plant Nutrition and Soil Science, 187, 356-366. https://doi.org/10.1002/jpln.202300437
|
[42]
|
Smolko, A., Bauer, N., Pavlović, I., Pěnčík, A., Novák, O. and Salopek-Sondi, B. (2021) Altered Root Growth, Auxin Metabolism and Distribution in Arabidopsis thaliana Exposed to Salt and Osmotic Stress. International Journal of Molecular Sciences, 22, Article 7993. https://doi.org/10.3390/ijms22157993
|
[43]
|
Al-Taey, D.K.A., Al-Musawi, Z.J.M., Kadium S.M.A., Abbas, A.K., Alsaffar, M.F. and Mahmood, S.S. (2024) Brassinolides’ Function and Involvement in Salt Stress Response: A Review. IOP Conference Series: Earth and Environmental Science, 1371, Article 042032. https://doi.org/10.1088/1755-1315/1371/4/042032
|
[44]
|
Shi, H., Ishitani, M., Kim, C. and Zhu, J.K. (2000) The Arabidopsis thaliana Salt Tolerance Gene SOS1 Encodes a Putative Na+/H+ Antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 6896-6901. https://doi.org/10.1073/pnas.120170197
|
[45]
|
Liang, L., Guo, L., Zhai, Y., Hou, Z., Wu, W., Zhang, X., et al. (2023) Genome-Wide Characterization of SOS1 Gene Family in Potato (Solanum tuberosum) and Expression Analyses under Salt and Hormone Stress. Frontiers in Plant Science, 14, Article 1201730. https://doi.org/10.3389/fpls.2023.1201730
|
[46]
|
Olías, R., Eljakaoui, Z., Pardo, J.M. and Belver, A. (2009) The Na+/H+ Exchanger SOS1 Controls Extrusion and Distribution of Na+ in Tomato Plants under Salinity Conditions. Plant Signaling & Behavior, 4, 973-976. https://doi.org/10.4161/psb.4.10.9679
|
[47]
|
Hong, Y., Guan, X., Wang, X., Kong, D., Yu, S., Wang, Z., et al. (2022) Natural Variation in SlSOS2 Promoter Hinders Salt Resistance during Tomato Domestication. Horticulture Research, 10, uhac244. https://doi.org/10.1093/hr/uhac244
|
[48]
|
Wang, Z., Hong, Y., Li, Y., Shi, H., Yao, J., Liu, X., et al. (2021) Natural Variations in SlSOS1 Contribute to the Loss of Salt Tolerance during Tomato Domestication. Plant Biotechnology Journal, 19, 20-22. https://doi.org/10.1111/pbi.13443
|
[49]
|
Liu, J., Zhang, C., Sun, H., Zang, Y., Meng, X., Zhai, H., et al. (2024) A Natural Variation in SlSCaBP8 Promoter Contributes to the Loss of Saline-alkaline Tolerance during Tomato Improvement. Horticulture Research, 11, uhae055. https://doi.org/10.1093/hr/uhae055
|
[50]
|
Cavusoglu, E., Sari, U. and Tiryaki, I. (2023) Genome-wide Identification and Expression Analysis of Na+/H+ antiporter (NHX) Genes in Tomato under Salt Stress. Plant Direct, 7, e543. https://doi.org/10.1002/pld3.543
|
[51]
|
黄强, 姜伟业, 舒婷. 马铃薯NHX基因家族的鉴定与表达模式分析[J]. 江苏农业科学, 2024, 52(15): 44-52.
|
[52]
|
罗建, 许春苗, 张国斌, 郁继华. 辣椒NHX基因家族的鉴定和表达分析[J]. 华北农学报, 2021, 36(3): 15-24.
|
[53]
|
Huertas, R., Olías, R., Eljakaoui, Z., Gálvez, F.J., Li, J., De Morales, P.A., et al. (2012) Overexpression of SlSOS2 (SlCIPK24) Confers Salt Tolerance to Transgenic Tomato. Plant, Cell & Environment, 35, 1467-1482. https://doi.org/10.1111/j.1365-3040.2012.02504.x
|
[54]
|
Horie, T., Brodsky, D.E., Costa, A., Kaneko, T., Lo Schiavo, F., Katsuhara, M., et al. (2011) K+ Transport by the OsHKT2;4 Transporter from Rice with Atypical Na+ Transport Properties and Competition in Permeation of K+ over Mg2+ and Ca2+ Ions. Plant Physiology, 156, 1493-1507. https://doi.org/10.1104/pp.110.168047
|
[55]
|
Asins, M.J., Romero-Aranda, M.R., Espinosa, J., González-Fernández, P., Jaime-Fernández, E., Traverso, J.A., et al. (2022) HKT1;1 and HKT1;2 Na+ Transporters from Solanum galapagense Play Different Roles in the Plant Na+ Distribution under Salinity. International Journal of Molecular Sciences, 23, Article 5130. https://doi.org/10.3390/ijms23095130
|
[56]
|
Romero-Aranda, M.R., González-Fernández, P., Pérez-Tienda, J.R., López-Diaz, M.R., Espinosa, J., Granum, E., et al. (2020) Na+ Transporter HKT1;2 Reduces Flower Na+ Content and Considerably Mitigates the Decline in Tomato Fruit Yields under Saline Conditions. Plant Physiology and Biochemistry, 154, 341-352. https://doi.org/10.1016/j.plaphy.2020.05.012
|
[57]
|
Romero-Aranda, M.R., Espinosa, J., González-Fernández, P., Jaime-Fernández, E., Traverso, J.Á., Asins, M.J., et al. (2021) Role of Na+ Transporters HKT1;1 and HKT1;2 in Tomato Salt Tolerance. I. Function Loss of Cheesmaniae Alleles in Roots and Aerial Parts. Plant Physiology and Biochemistry, 168, 282-293. https://doi.org/10.1016/j.plaphy.2021.10.018
|
[58]
|
Wang, Z., Hong, Y., Li, D., Wang, Z., Chao, Z.F., Yu, Y., et al. (2024) Association Analysis Provides Insights into Molecular Evolution in Salt Tolerance during Tomato Domestication. Plant Physiology, 196, 2721-2729. https://doi.org/10.1093/plphys/kiae516
|
[59]
|
Tavakkoli, E., Rengasamy, P. and McDonald, G.K. (2010) High Concentrations of Na+ and Cl– Ions in Soil Solution Have Simultaneous Detrimental Effects on Growth of Faba Bean under Salinity Stress. Journal of Experimental Botany, 61, 4449-4459. https://doi.org/10.1093/jxb/erq251
|
[60]
|
Rajappa, S., Krishnamurthy, P., Huang, H., Yu, D., Friml, J., Xu, J., et al. (2024) The Translocation of a Chloride Channel from the Golgi to the Plasma Membrane Helps Plants Adapt to Salt Stress. Nature Communications, 15, Article No. 3978. https://doi.org/10.1038/s41467-024-48234-z
|
[61]
|
Ren, Z., Bai, F., Xu, J., Wang, L., Wang, X., Zhang, Q., et al. (2021) A Chloride Efflux Transporter, BIG RICE GRAIN 1, Is Involved in Mediating Grain Size and Salt Tolerance in Rice. Journal of Integrative Plant Biology, 63, 2150-2163. https://doi.org/10.1111/jipb.13178
|
[62]
|
Kurusu, T., Saito, K., Horikoshi, S., Hanamata, S., Negi, J., Yagi, C., et al. (2013) An S-Type Anion Channel SLAC1 Is Involved in Cryptogein-Induced Ion Fluxes and Modulates Hypersensitive Responses in Tobacco BY-2 Cells. PLOS ONE, 8, e70623. https://doi.org/10.1371/journal.pone.0070623
|
[63]
|
Zhang, H., Jin, J., Jin, L., Li, Z., Xu, G., Wang, R., et al. (2018) Identification and Analysis of the Chloride Channel Gene Family Members in Tobacco (Nicotiana tabacum). Gene, 676, 56-64. https://doi.org/10.1016/j.gene.2018.06.073
|
[64]
|
Lv, R., Mo, F., Li, C., Meng, F., Zhang, H., Yu, L., et al. (2024) Genome-wide Identification of the CLC Gene Family in Tomato (Solanum lycopersicum) and Functional Analysis of SlCLC8 in Salt Stress Tolerance. Scientia Horticulturae, 338, Article 113754. https://doi.org/10.1016/j.scienta.2024.113754
|
[65]
|
贺晓琳, 王飞, 尹延旭, 余楚英, 吴方圆, 高升华, 等. 辣椒CLC基因家族鉴定及表达模式分析[J]. 分子植物育种, 2024, 1-12. http://kns.cnki.net/kcms/detail/46.1068.S.20240705.1634.014.html, 2025-05-26.
|
[66]
|
Ma, J., Li, S., Zaman, S. and Anwar, A. (2025) CLC Gene Family in Solanum lycopersicum: Genome-Wide Identification, Expression, and Evolutionary Analysis of Tomato in Response to Salinity and Cd Stress. Frontiers in Plant Science, 16, Article 1547723. https://doi.org/10.3389/fpls.2025.1547723
|
[67]
|
Mo, F., Xue, X., Meng, L., Zhang, Y., Cui, Y., Liu, J., et al. (2023) Genome-Wide Identification and Expression Analysis of SLAC1 Gene Family in Tomato (Solanum lycopersicum) and The Function of SlSLAC1-6 under Cold Stress. Scientia Horticulturae, 313, Article 111904. https://doi.org/10.1016/j.scienta.2023.111904
|
[68]
|
Qiu, J., Henderson, S.W., Tester, M., Roy, S.J. and Gilliham, M. (2016) SLAH1, A Homologue of the Slow Type Anion Channel SLAC1, Modulates Shoot Cl- Accumulation and Salt Tolerance in Arabidopsis thaliana. Journal of Experimental Botany, 67, 4495-4505. https://doi.org/10.1093/jxb/erw237
|
[69]
|
张慧, 金立锋, 徐国云, 翟妞, 刘萍萍, 陈千思, 等. 烟草慢阴离子通道蛋白基因NtSLAH1的克隆及表达分析[J]. 烟草科技, 2018, 51(3): 1-6.
|
[70]
|
Zhang, H., Zhao, F.G., Tang, R.J., Yu, Y., Song, J., Wang, Y., et al. (2017) Two Tonoplast MATE Proteins Function as Turgor-Regulating Chloride Channels in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 114, E2036-E2045. https://doi.org/10.1073/pnas.1616203114
|
[71]
|
Santos, A.L.D., Chaves-Silva, S., Yang, L., Maia, L.G.S., Chalfun-Júnior, A., Sinharoy, S., et al. (2017) Global Analysis of the MATE Gene Family of Metabolite Transporters in Tomato. BMC Plant Biology, 17, Article No. 185. https://doi.org/10.1186/s12870-017-1115-2
|
[72]
|
Li, Y., He, H. and He, L.F. (2019) Genome-Wide Analysis of the MATE Gene Family in Potato. Molecular Biology Reports, 46, 403-414. https://doi.org/10.1007/s11033-018-4487-y
|
[73]
|
Wang, B., Wang, J., Yang, T., Wang, J., Dai, Q., Zhang, F., et al. (2023) The Transcriptional Regulatory Network of Hormones and Genes under Salt Stress in Tomato Plants (Solanum lycopersicum L.). Frontiers in Plant Science, 14, Article 1115593. https://doi.org/10.3389/fpls.2023.1115593
|
[74]
|
Yang, Y., Tang, N., Xian, Z. and Li, Z. (2015) Two SnRK2 Protein Kinases Genes Play a Negative Regulatory Role in the Osmotic Stress Response in Tomato. Plant Cell, Tissue and Organ Culture, 122, 421-434. https://doi.org/10.1007/s11240-015-0779-2
|
[75]
|
Lim, C.W., Baek, W. and Lee, S.C. (2025) Two Pepper Subclass II SnRK2 Genes Positively Regulate Drought Stress Response, With Differential Responsiveness to Abscisic Acid. Plant Physiology and Biochemistry, 220, Article 109477. https://doi.org/10.1016/j.plaphy.2025.109477
|
[76]
|
Liu, M., Wang, J., Gou, J., Wang, X., Li, Z., Yang, X., et al. (2020) Overexpression of NtSnRK2.2 Enhances Salt Tolerance in Nicotiana tabacum by Regulating Carbohydrate Metabolism and Lateral Root Development. Functional Plant Biology, 47, 537-543. https://doi.org/10.1071/FP19299
|
[77]
|
Kadam, S.B. and Barvkar, V.T. (2024) COI1 Dependent Jasmonic Acid Signalling Positively Modulates ROS Scavenging System in Transgenic Hairy Root Culture of Tomato. Plant Physiology and Biochemistry, 206, Article 108229. https://doi.org/10.1016/j.plaphy.2023.108229
|
[78]
|
Sun, W., Xu, X., Zhu, H., Liu, A., Liu, L., Li, J., et al. (2010) Comparative Transcriptomic Profiling of a Salt-Tolerant Wild Tomato Species and A Salt-Sensitive Tomato Cultivar. Plant and Cell Physiology, 51, 997-1006. https://doi.org/10.1093/pcp/pcq056
|
[79]
|
Fu, Y., Wang, C., Lian, W., Zhu, X., Yu, Q., Jia, Y., et al. (2022) NtIAA26 Positively Regulates Salt Tolerance in Tobacco by Modulating Potassium Uptake and Antioxidant Activity. Plant Growth Regulation, 97, 559-569. https://doi.org/10.1007/s10725-022-00825-w
|
[80]
|
Zhou, X., Zhang, N., Yang, J., Tang, X., Wen, Y. and Si, H. (2018) Functional Analysis of StDWF4 Gene in Response to Salt Stress in Potato. Plant Physiology and Biochemistry, 125, 63-73. https://doi.org/10.1016/j.plaphy.2018.01.027
|
[81]
|
Trishla, V.S. and Kirti, P.B. (2021) Structure-Function Relationship of Gossypium hirsutum NAC Transcription Factor, GhNAC4 with Regard to ABA and Abiotic Stress Responses. Plant Science, 302, Article 110718. https://doi.org/10.1016/j.plantsci.2020.110718
|
[82]
|
Ma, J., Wang, L.Y., Dai, J.X., Wang, Y. and Lin, D. (2021) The NAC-Type Transcription Factor CaNAC46 Regulates the Salt and Drought Tolerance of Transgenic Arabidopsis thaliana. BMC Plant Biology, 21, Article No. 11. https://doi.org/10.1186/s12870-020-02764-y
|
[83]
|
Yue, L., Zhuang, Y., Gu, Y., Li, H., Tu, S., Yang, X., et al. (2021) Heterologous Expression of Solanum tuberosum NAC1 Gene Confers Enhanced Tolerance to Salt Stress in Transgenic Nicotiana benthamiana. Journal of Plant Biology, 64, 531-542. https://doi.org/10.1007/s12374-021-09327-0
|
[84]
|
Li, Y., Yang, Z., Zhang, Y., Guo, J., Liu, L., Wang, C., et al. (2022) The Roles of HD-ZIP Proteins in Plant Abiotic Stress Tolerance. Frontiers in Plant Science, 13, Article 1027071. https://doi.org/10.3389/fpls.2022.1027071
|
[85]
|
Liu, H., Tang, X., Zhang, N., Li, S. and Si, H. (2023) Role of bZIP Transcription Factors in Plant Salt Stress. International Journal of Molecular Sciences, 24, Article 7893. https://doi.org/10.3390/ijms24097893
|
[86]
|
Hong, Y., Liu, Y., Zhang, Y., Jia, L., Yang, X., Zhang, X., et al. (2022) Genome-Wide Characterization of Homeobox-Leucine Zipper Gene Family in Tomato (Solanum lycopersicum) and Functional Analysis of SlHDZ34 (III Sub-Family Member) under Salinity Stress. Environmental and Experimental Botany, 192, Article 104652. https://doi.org/10.1016/j.envexpbot.2021.104652
|
[87]
|
Sun, N., Sun, X., Zhou, J., Zhou, X., Gao, Z., Zhu, X., et al. (2025) Genome-Wide Characterization of Pepper DREB Family Members and Biological Function of CaDREB32 in Response to Salt and Osmotic Stresses. Plant Physiology and Biochemistry, 222, Article 109736. https://doi.org/10.1016/j.plaphy.2025.109736
|
[88]
|
Pan, I.C., Li, C.W., Su, R.C., Cheng, C.P., Lin, C.S. and Chan, M.T. (2010) Ectopic Expression of an EAR Motif Deletion Mutant of SlERF3 Enhances Tolerance to Salt Stress and Ralstonia solanacearum in Tomato. Planta, 232, 1075-1086. https://doi.org/10.1007/s00425-010-1235-5
|
[89]
|
Shen, L., Xia, X., Zhang, L., Yang, S. and Yang, X. (2023) SmWRKY11 Acts as a Positive Regulator in Eggplant Response to Salt Stress. Plant Physiology and Biochemistry, 205, Article 108209. https://doi.org/10.1016/j.plaphy.2023.108209
|
[90]
|
Zhang, A., Shang, J., Xiao, K., Zhang, M., Wang, S., Zhu, W., et al. (2024) WRKY Transcription Factor 40 from Eggplant (Solanum melongena L.) Regulates ABA and Salt Stress Responses. Scientific Reports, 14, Article No. 19289. https://doi.org/10.1038/s41598-024-69670-3
|
[91]
|
Liu, X., Shang, C., Duan, P., Yang, J., Wang, J., Sui, D., et al. (2025) The SlWRKY42-SlMYC2 Module Synergistically Enhances Tomato Saline-alkali Tolerance by Activating the Jasmonic Acid Signaling and Spermidine Biosynthesis Pathway. Journal of Integrative Plant Biology, 67, 1254-1273. https://doi.org/10.1111/jipb.13839
|