[1]
|
国家心血管病中心, 中国心血管健康与疾病报告编写组, 胡盛寿. 中国心血管健康与疾病报告2023概要[J]. 中国循环杂志, 2024, 39(7): 625-660.
|
[2]
|
Nakano, S., Kohsaka, S., Chikamori, T., Fukushima, K., Kobayashi, Y., Kozuma, K., et al. (2022) JCS 2022 Guideline Focused Update on Diagnosis and Treatment in Patients with Stable Coronary Artery Disease. Circulation Journal, 86, 882-915. https://doi.org/10.1253/circj.cj-21-1041
|
[3]
|
El-khodary, N.M., Ghoneim, A.I., El-tayaar, A.A. and El-touny, E.M. (2022) The Impact of Trimetazidine on Cardiac Fibrosis, Inflammation, and Function in Ischemic Cardiomyopathy Patients. Cardiovascular Drugs and Therapy, 37, 955-964. https://doi.org/10.1007/s10557-022-07340-0
|
[4]
|
Kantor, P.F., Lucien, A., Kozak, R. and Lopaschuk, G.D. (2000) The Antianginal Drug Trimetazidine Shifts Cardiac Energy Metabolism from Fatty Acid Oxidation to Glucose Oxidation by Inhibiting Mitochondrial Long-Chain 3-Ketoacyl Coenzyme a Thiolase. Circulation Research, 86, 580-588. https://doi.org/10.1161/01.res.86.5.580
|
[5]
|
McCarthy, C.P., Mullins, K.V. and Kerins, D.M. (2015) The Role of Trimetazidine in Cardiovascular Disease: Beyond an Anti-Anginal Agent. European Heart Journal—Cardiovascular Pharmacotherapy, 2, 266-272. https://doi.org/10.1093/ehjcvp/pvv051
|
[6]
|
Chen, X., Xia, X., Dong, T., Lin, Z., Du, L. and Zhou, H. (2022) Trimetazidine Reduces Cardiac Fibrosis in Rats by Inhibiting NOX2-Mediated Endothelial-to-Mesenchymal Transition. Drug Design, Development and Therapy, 16, 2517-2527. https://doi.org/10.2147/dddt.s360283
|
[7]
|
Harrington, J., Jones, W.S., Udell, J.A., Hannan, K., Bhatt, D.L., Anker, S.D., et al. (2022) Acute Decompensated Heart Failure in the Setting of Acute Coronary Syndrome. JACC: Heart Failure, 10, 404-414. https://doi.org/10.1016/j.jchf.2022.02.008
|
[8]
|
Zhu, Y. and Duan, X. (2021) Predictive Nursing Helps Improve Treatment Efficacy, Treatment Compliance, and Quality of Life in Unstable Angina Pectoris Patients. American Journal of Translational Research, 13, 3473-3479.
|
[9]
|
吴鑫. 生脉活血汤联合曲美他嗪对不稳定型心绞痛患者心功能及血清ET-1、Hcy、cTnT水平的影响[J]. 湖北中医杂志, 2023, 45(6): 3-6.
|
[10]
|
陈明荣, 王才进, 何冰, 等. 曲美他嗪联合冠心宁制剂在微血管性心绞痛患者中的治疗效果观察[J]. 中国现代药物应用, 2022, 16(13): 22-25.
|
[11]
|
Ferrari, R., Ford, I., Fox, K., Challeton, J.P., Correges, A., Tendera, M., et al. (2020) Efficacy and Safety of Trimetazidine after Percutaneous Coronary Intervention (ATPCI): A Randomised, Double-Blind, Placebo-Controlled Trial. The Lancet, 396, 830-838. https://doi.org/10.1016/s0140-6736(20)31790-6
|
[12]
|
Bobescu, E., Marceanu, L.G., Dima, L., Balan, A., Strempel, C.G. and Covaciu, A. (2021) Trimetazidine Therapy in Coronary Artery Disease: The Impact on Oxidative Stress, Inflammation, Endothelial Dysfunction, and Long-Term Prognosis. American Journal of Therapeutics, 28, e540-e547. https://doi.org/10.1097/mjt.0000000000001430
|
[13]
|
姜顺涛, 周钰龙, 巩亮. 尼可地尔联合曲美他嗪治疗老年STEMI合并多支病变的效果及对冠脉血流的影响[J]. 中国老年学杂志, 2025, 45(3): 521-525.
|
[14]
|
毛刚, 杨向东. 曲美他嗪联合替罗非班治疗经皮冠状动脉介入治疗术后ST段抬高型心肌梗死患者的临床研究[J]. 中国临床药理学杂志, 2020, 36(13): 1782-1785.
|
[15]
|
王素娟, 杨萌萌, 李新洁. 曲美他嗪联合替罗非班对接受介入治疗的急性ST段抬高型心肌梗死患者心肌的影响[J]. 河南医学研究, 2021, 30(20): 3777-3780.
|
[16]
|
杨颖, 李梦媛. 基于Granada-Ⅱ分类系统评价临床应用曲美他嗪的药物相关问题[J]. 上海医药, 2024, 45(15): 48-52.
|
[17]
|
Knuuti, J., Wijns, W., Saraste, A., Capodanno, D., Barbato, E., Funck-Brentano, C., et al. (2019) 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes. European Heart Journal, 41, 407-477. https://doi.org/10.1093/eurheartj/ehz425
|
[18]
|
吴蓓蕾. 益气疏血饮联合西医治疗冠心病稳定性心绞痛的临床疗效[J]. 中华养生保健, 2024, 42(20): 30-33.
|
[19]
|
张乐青. 美托洛尔片联合曲美他嗪片治疗稳定型心绞痛的临床疗效及安全性[J]. 系统医学, 2021, 6(11): 1-3+14.
|
[20]
|
Rustamova, Y., Imanov, G. and Azizov, V. (2025) The Effect of Trimetazidine on the Left Ventricular Global Longitudinal Strain Assessed by Cardiac Magnetic Resonance in Stable Angina Patients and Left Ventricular Dysfunction. Journal of Cardiovascular Magnetic Resonance, 27, Article ID: 101354. https://doi.org/10.1016/j.jocmr.2024.101354
|
[21]
|
赵海双, 李永东. 曲美他嗪在冠心病治疗中的应用进展[J]. 医学综述, 2020, 26(1): 148-152+158.
|
[22]
|
赵云飞, 闫晓蕾, 谢飞, 等. 重组人脑利钠肽和螺内酯联合治疗对缺血性心肌病心力衰竭患者心功能及心肌损伤指标的影响[J]. 实用心电与临床诊疗, 2025, 34(1): 76-79.
|
[23]
|
杜慧锋. 琥珀酸美托洛尔缓释片联合曲美他嗪在冠心病心绞痛治疗中的应用效果[J]. 中外医疗, 2023, 42(14): 120-124.
|
[24]
|
Farzaei, M.H., Ramezani-Aliakbari, F., Ramezani-Aliakbari, M., Zarei, M., Komaki, A., Shahidi, S., et al. (2023) Regulatory Effects of Trimetazidine in Cardiac Ischemia/Reperfusion Injury. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396, 1633-1646. https://doi.org/10.1007/s00210-023-02469-7
|
[25]
|
张健, 张宇辉, 周蕾. 国家心力衰竭指南2023(精简版) [J]. 中国循环杂志, 2023, 38(12): 1207-1238.
|
[26]
|
Yang, K., Xue, Y., Yu, M., Jiao, H., Li, Y., Wei, X., et al. (2022) Protective Effect of Trimetazidine on Potassium Ion Homeostasis in Myocardial Tissue in Mice with Heart Failure. BioMed Research International, 2022, Article ID: 2387860. https://doi.org/10.1155/2022/2387860
|
[27]
|
Hassoun, P.M. (2021) Pulmonary Arterial Hypertension. New England Journal of Medicine, 385, 2361-2376. https://doi.org/10.1056/nejmra2000348
|
[28]
|
Parra, V., Bravo-Sagua, R., Norambuena-Soto, I., Hernández-Fuentes, C.P., Gómez-Contreras, A.G., Verdejo, H.E., et al. (2017) Inhibition of Mitochondrial Fission Prevents Hypoxia-Induced Metabolic Shift and Cellular Proliferation of Pulmonary Arterial Smooth Muscle Cells. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 2891-2903. https://doi.org/10.1016/j.bbadis.2017.07.018
|
[29]
|
Heymans, S., Lakdawala, N.K., Tschöpe, C. and Klingel, K. (2023) Dilated Cardiomyopathy: Causes, Mechanisms, and Current and Future Treatment Approaches. The Lancet, 402, 998-1011. https://doi.org/10.1016/s0140-6736(23)01241-2
|
[30]
|
Jatain, S., Kapoor, A., Sinha, A., Khanna, R., Kumar, S., Garg, N., et al. (2016) Metabolic Manipulation in Dilated Cardiomyopathy: Assessing the Role of Trimetazidine. Indian Heart Journal, 68, 803-808. https://doi.org/10.1016/j.ihj.2016.04.023
|
[31]
|
李丽, 韩丙超. 心肌炎的病因和治疗研究进展[J]. 临床误诊误治, 2024, 37(19): 94-100.
|
[32]
|
Zeng, M., Chen, Z., Zhang, Y. and Pang, Y. (2024) Combination of Trimetazidine and Coenzyme Q10 for the Treatment of Acute Viral Myocarditis: A Systematic Review and Meta-Analysis. The Journal of Infection in Developing Countries, 18, 658-665. https://doi.org/10.3855/jidc.18776
|
[33]
|
Yin, Y.J., Zeng, S.L., Li, Y.W., et al. (2021) The Effect of Coenzyme Q10 plus Trimetazidine on Acute Viral Myocarditis Treatment. American Journal of Translational Research, 13, 13854-13861.
|
[34]
|
Ogutveren, M.M., Satiroglu, O., Ozden, Z., Akyildiz, K., Yilmaz, A., Mercantepe, F., et al. (2025) Cardioprotective Effects of Dapagliflozin and Trimetazidine on Doxorubicin-Induced Cardiotoxicity in Streptozotocin-Induced Type 1 Diabetic Rats via Endoplasmic Reticulum Stress. Journal of Clinical Medicine, 14, Article No. 1315. https://doi.org/10.3390/jcm14041315
|
[35]
|
王凯. 曲美他嗪对棕榈酸诱导的H9C2心肌细胞脂毒性凋亡的影响[D]: [硕士学位论文]. 天津: 天津医科大学, 2022.
|
[36]
|
Lin, Y., Wang, Z. L., Yan, M., et al. (2020) Effect of Trimetazidine on Diabetic Patients with Coronary Heart Diseases: A Meta-Analysis of Randomized, Controlled Trials. Chinese Medical Sciences Journal, 35, 226-238. https://doi.org/10.24920/003678
|
[37]
|
Tang, S., Liu, X., Wang, S., Wang, H., Jovanović, A. and Tan, W. (2019) Trimetazidine Prevents Diabetic Cardiomyopathy by Inhibiting NOX2/TRPC3-Induced Oxidative Stress. Journal of Pharmacological Sciences, 139, 311-318. https://doi.org/10.1016/j.jphs.2019.01.016
|
[38]
|
Sikandar, A., Farhat, K., Afzal, A., et al. (2020) Protective Effects of Trimetazidine against Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity in Mice. Journal of Ayub Medical College Abbottabad, 32, 304-309.
|
[39]
|
Yang, Y., Li, N., Chen, T., Zhang, C., Liu, L., Qi, Y., et al. (2019) Trimetazidine Ameliorates Sunitinib-Induced Cardiotoxicity in Mice via the AMPK/mTOR/Autophagy Pathway. Pharmaceutical Biology, 57, 625-631. https://doi.org/10.1080/13880209.2019.1657905
|