| [1] | Wu, Y., Jia, H., Zhou, H., Liu, X., Sun, J., Zhou, X., et al. (2021) Immune and Stromal Related Genes in Colon Cancer: Analysis of Tumour Microenvironment Based on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) Databases. Scandinavian Journal of Immunology, 95, e13119. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Wang, Y., Yan, Q., Fan, C., Mo, Y., Wang, Y., Li, X., et al. (2023) Overview and Countermeasures of Cancer Burden in China. Science China Life Sciences, 66, 2515-2526. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Pericay, C., Montagut, C., Reina, J.J., Melian, M., Alcaide, J., Tarazona, N., et al. (2024) SEOM-GEMCAD-TTD Clinical Guidelines for the Adjuvant Treatment of Colon Cancer (2023). Clinical and Translational Oncology, 26, 2812-2825. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Chadha, A. and Chadee, K. (2021) The NF-κB Pathway: Modulation by Entamoeba Histolytica and Other Protozoan Parasites. Frontiers in Cellular and Infection Microbiology, 11, Article 748404. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Williams, L.M. and Gilmore, T.D. (2020) Looking down on NF-κB. Molecular and Cellular Biology, 40, e00104-20. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Mirzaei, S., Zarrabi, A., Hashemi, F., Zabolian, A., Saleki, H., Ranjbar, A., et al. (2021) Regulation of Nuclear Factor-Kappab (NF-κB) Signaling Pathway by Non-Coding RNAs in Cancer: Inhibiting or Promoting Carcinogenesis? Cancer Letters, 509, 63-80. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Yu, Z., Gao, J., Zhang, X., Peng, Y., Wei, W., Xu, J., et al. (2022) Characterization of a Small-Molecule Inhibitor Targeting NEMO/IKKβ to Suppress Colorectal Cancer Growth. Signal Transduction and Targeted Therapy, 7, Article No. 71. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Ye, Y. and Zhou, J. (2023) The Protective Activity of Natural Flavonoids against Osteoarthritis by Targeting NF-κB Signaling Pathway. Frontiers in Endocrinology, 14, Article 1117489. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Sun, E., Motolani, A., Campos, L. and Lu, T. (2022) The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. International Journal of Molecular Sciences, 23, Article 8972. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Kubatka, P., Koklesova, L., Mazurakova, A., Brockmueller, A., Büsselberg, D., Kello, M., et al. (2023) Cell Plasticity Modulation by Flavonoids in Resistant Breast Carcinoma Targeting the Nuclear Factor Kappa B Signaling. Cancer and Metastasis Reviews, 43, 87-113. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Zhao, H., Pan, W.M., Zhang, H.H., et al. (2019) Cancer Testis Antigen 55 Deficiency Attenuates Colitis-Associated Colorectal Cancer by Inhibiting NF-κB Signaling. Cell Death & Disease, 10, Article No. 304. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Martin, M., Sun, M., Motolani, A. and Lu, T. (2021) The Pivotal Player: Components of NF-κB Pathway as Promising Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 22, Article 7429. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Deng, B., Li, A., Zhu, Y., Zhou, Y., Fei, J. and Miao, Y. (2023) SHCBP1 Contributes to the Proliferation and Self‑Renewal of Cervical Cancer Cells and Activation of the NF‑κB Signaling Pathway through EIF5A. Oncology Letters, 25, Article No. 246. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Gesmundo, I., Pedrolli, F., Vitale, N., Bertoldo, A., Orlando, G., Banfi, D., et al. (2022) Antagonist of Growth Hormone-Releasing Hormone Potentiates the Antitumor Effect of Pemetrexed and Cisplatin in Pleural Mesothelioma. International Journal of Molecular Sciences, 23, Article 11248. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Wang, X., Liu, X., Yang, Y. and Yang, D. (2022) Cyclin D1 Mediated by the Nuclear Translocation of Nuclear Factor Kappa B Exerts an Oncogenic Role in Lung Cancer. Bioengineered, 13, 6866-6879. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Pan, S., Hu, Y., Hu, M., Xu, Y., Chen, M., Du, C., et al. (2020) S100A8 Facilitates Cholangiocarcinoma Metastasis via Upregulation of VEGF through Tlr4/NF‑κB Pathway Activation. International Journal of Oncology, 56, 101-112. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Camarda, N., Travers, R., Yang, V.K., London, C. and Jaffe, I.Z. (2022) VEGF Receptor Inhibitor-Induced Hypertension: Emerging Mechanisms and Clinical Implications. Current Oncology Reports, 24, 463-474. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Capece, D., Verzella, D., Di Francesco, B., Alesse, E., Franzoso, G. and Zazzeroni, F. (2020) NF-κB and Mitochondria Cross Paths in Cancer: Mitochondrial Metabolism and Beyond. Seminars in Cell & Developmental Biology, 98, 118-128. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Hu, Z., Li, L., Lan, W., Wei, X., Wen, X., Wu, P., et al. (2022) Enrichment of Wee1/CDC2 and NF-κB Signaling Pathway Constituents Mutually Contributes to CDDP Resistance in Human Osteosarcoma. Cancer Research and Treatment, 54, 277-293. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Liu, X., Jiang, M., Pang, C., Wang, J. and Hu, L. (2022) Sodium Selenite Inhibits Proliferation and Metastasis through ROS-Mediated NF-κB Signaling in Renal Cell Carcinoma. BMC Cancer, 22, Article No. 870. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Spinelli, G., Biddeci, G., Artale, A., Valentino, F., Tarantino, G., Gallo, G., et al. (2021) A New P65 Isoform That Bind the Glucocorticoid Hormone and Is Expressed in Inflammation Liver Diseases and COVID-19. Scientific Reports, 11, Article No. 22913. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Oyama, S., Ebina, K., Etani, Y., Hirao, M., Kyuuma, M., Fujii, Y., et al. (2022) A Novel Anti-TNF-α Drug Ozoralizumab Rapidly Distributes to Inflamed Joint Tissues in a Mouse Model of Collagen Induced Arthritis. Scientific Reports, 12, Article No. 18102. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Lopetuso, L.R., Cuomo, C., Mignini, I., Gasbarrini, A. and Papa, A. (2023) Focus on Anti-Tumour Necrosis Factor (TNF)-α-Related Autoimmune Diseases. International Journal of Molecular Sciences, 24, Article 8187. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Lee, J.L.C. and Flavell, C.R. (2014) Inhibition and Enhancement of Contextual Fear Memory Destabilization. Frontiers in Behavioral Neuroscience, 8, Article 144. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Jaafar, F.R. and Abu-Raghif, A. (2023) Comparative Treatment of Sulfasalazine+Ezetimibe Combination and Sulfasalazine in a Rat Model with Induced Colitis. Journal of Medicine and Life, 16, 1165-1169. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Wackernagel, L.M., Abdi Sarabi, M., Weinert, S., Zuschratter, W., Richter, K., Fischer, K.D., et al. (2022) IKKγ/NEMO Localization into Multivesicular Bodies. International Journal of Molecular Sciences, 23, Article 6778. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Rhodes, C.A., Dougherty, P.G., Cooper, J.K., Qian, Z., Lindert, S., Wang, Q., et al. (2018) Cell-Permeable Bicyclic Peptidyl Inhibitors against NEMO-IκB Kinase Interaction Directly from a Combinatorial Library. Journal of the American Chemical Society, 140, 12102-12110. [Google Scholar] [CrossRef] [PubMed] |