外泌体在治疗中枢神经系统疾病中的应用方向
Application of Exosomes in the Treatment of Central Nervous System Disorders: Current Perspectives
DOI: 10.12677/hjbm.2025.154092, PDF, HTML, XML,   
作者: 陈骏发:中山大学附属第七医院手术麻醉中心,广东 深圳
关键词: 外泌体中枢神经系统疾病miRNA生物标志物工程化外泌体Exosomes Central Nervous System Diseases miRNA Biomarkers Engineered Exosomes
摘要: 外泌体作为内体来源的细胞外囊泡(40~160 nm),携载核酸、蛋白质及脂质等生物活性分子,具有穿越血脑屏障、靶向递送物质的独特优势,在中枢神经系统(CNS)疾病治疗中展现出巨大潜力。本综述系统总结其应用进展:在创伤性脑损伤(TBI)中,间充质干细胞源外泌体(如BMSCs-Exos、ADSCs-Exo)通过递送miR-124-3p、circ-Scmh1等分子,抑制NLRP3炎症小体活化及谷氨酸兴奋毒性,促进神经再生;在缺血性卒中领域,外泌体调控miR-145、miR-760-3p等减轻脑缺血再灌注损伤,增强血管新生与运动功能恢复;针对神经退行性疾病,外泌体不仅参与阿尔茨海默病(AD)的β-淀粉样蛋白清除调控(如工程化Fe65-exos),还可通过富含miR-23b-3p的囊泡促进帕金森病(PD)神经元自噬与线粒体功能修复;在自身免疫性疾病中,嵌合CNS靶向肽外泌体(TAxI-exos)可调节Th/Treg免疫平衡,缓解实验性脑脊髓炎;此外,外泌体作为天然纳米载体可突破血脑屏障递送抗肿瘤药物(如miR-124-3p),抑制胶质瘤生长并预警脑转移。尽管临床前研究证实其神经保护与再生效能显著,但标准化分离、载药优化及临床转化仍需突破。工程化外泌体与无细胞治疗策略有望成为CNS疾病治疗的新范式。
Abstract: Exosomes, endosome-derived extracellular vesicles (40~160 nm), carry bioactive molecules including nucleic acids, proteins, and lipids. Their unique capacity to cross the blood-brain barrier (BBB) and achieve targeted substance delivery positions them as promising therapeutic agents for central nervous system (CNS) disorders. This review systematically summarizes recent advances: In traumatic brain injury (TBI), mesenchymal stem cell-derived exosomes (BMSCs-Exos, ADSCs-Exo) deliver molecules such as miR-124-3p and circ-Scmh1 to suppress NLRP3 inflammasome activation and glutamate excitotoxicity while promoting neural regeneration. For ischemic stroke, exosomes mitigate cerebral ischemia-reperfusion injury by regulating miR-145 and miR-760-3p, enhancing angiogenesis and motor function recovery. In neurodegenerative diseases, engineered Fe65-exosomes facilitate β-amyloid clearance in Alzheimer’s disease (AD), while vesicles enriched with miR-23b-3p promote neuronal autophagy and mitochondrial function restoration in Parkinson’s disease (PD). For autoimmune disorders, chimeric CNS-targeting peptide exosomes (TAxI-exos) modulate Th/Treg immune balance, alleviating experimental autoimmune encephalomyelitis. As natural nanocarriers, exosomes overcome the BBB to deliver antitumor agents (miR-124-3p), inhibiting glioma progression and detecting brain metastases. Despite significant neuroprotective and regenerative efficacy in preclinical studies, challenges remain in standardized isolation, drug-loading optimization, and clinical translation. Engineered exosomes and cell-free therapeutic strategies represent emerging paradigms for CNS disease treatment.
文章引用:陈骏发. 外泌体在治疗中枢神经系统疾病中的应用方向[J]. 生物医学, 2025, 15(4): 867-878. https://doi.org/10.12677/hjbm.2025.154092

1. 引言

外泌体(Exosomes)是由自然界所有的细胞,包括原核生物和真核生物,释放的一类细胞外囊泡(EVs)。EVs主要分为两大类,外泌体和外囊体。外囊体是通过向外出芽而夹断质膜表面的囊泡,并且包括微囊泡、微粒和直径在~50 nm至1 mm范围内的大囊泡。外泌体则是具有内体来源,直径约为40至160 nm (平均约100 nm)。EVs可携带来源细胞的多种成分,包括DNA、RNA、脂质、代谢物和胞质蛋白甚至病原体相关分子。研究表明,外泌体是细胞在特定生理或病理状态下,通过高度调控的生物过程产生的功能性产物[1]。目前的研究证实,外泌体在脑部神经元、星形胶质细胞、小胶质细胞、各类间充质干细胞以及血浆、血清中都有表达,并在细胞间信息交流中发挥重要作用。鉴于外泌体能够到达身体各部分,并在源细胞与靶细胞之间建立联系,在临床应用中展现出巨大潜力[2]。事实上,大量临床前研究已揭示了外泌体在中枢神经系统(CNS)疾病中的关键作用和治疗前景。本文旨在综述EVs的研究背景与现状,探讨外泌体作为可行病理生物标志物的作用及其应用,并重点阐述基于外泌体的中枢神经系统疾病治疗的策略。

2. 外泌体的发展历程

早在1946年的时候,科学研究者们就怀疑可能存在这种未知的物质。Chargaff和West在研究促凝血酶原激酶和血小板时,发现除了上述两种物质可以有助于凝血的过程外,它们分泌的微小分解产物也可以有助于凝血的过程,当时只是抱着一种怀疑的态度,并未做出进一步研究这种物质的具体成分[3]。到了1967年,这种未知的物质被一名叫Wolf的研究者证实并用电子显微镜所证实,他把微小分解产物证明了是富含血小板脂质的微小颗粒材料,并把它称作“血小板粉尘”。从此,Wolf就被认为是第一个具体描述并证实外泌体存在的研究者[4]

外泌体的这种叫法在1970年左右就被引述,究竟是谁最先这样称呼的,现在已无从考证[5]。在1971年,Aaronson首次在电镜下描述出外泌体的圆形结构,并对它以“细胞内外囊泡”这一术语,更重要的是,它用电镜证实了并不是单单一种细胞器才产生这种细胞内外囊泡,并描述了他自己是如通过离心装置回收这种囊泡的[6]。直到1981年,Trams等人才提出“外泌体”是指从质膜上剥离的“微泡”,并证实了这种物质的在细胞不同状态时选择性地脱落形成的[7]。再后来,随着电子显微镜的发展,他们在电镜的帮助下描述了两种囊泡群体,其中一种由直径约500至1000 nm的不规则形状的囊泡组成,另一种由平均尺寸约为40 nm的较小的球形囊泡组成。这是第一次描述后来被认为是多泡体(MVB)外泌体的来源。

到了1987年,Rose Johnston和他的研究团队在研究网织红细胞时发现多泡结构,外泌体再次被提上了热度,研究报道了这些多囊泡结构在与膜融合后将其包含的标记物囊泡释放到培养基中[8]。这将是第一个报道外泌体以细胞膜融合后脱落的形式形成的一种多囊泡结构。

外泌体在这之后的10年里很少被研究者们关注到,可能因为大家认为这种以脱囊泡形式形成的外泌体很难把握住它的本质,甚至认为它是细胞的代谢产物,没有研究的价值。随着医学各项领域技术的发展,外泌体逐渐被发现并证实在各种细胞中出现,现在逐渐地发现,外泌体地发生发展过程,并不是细胞随机地通过胞吐地形式排放地垃圾代谢,而是机体内有一套完整地、有目的性地、且有特定内容物地精确过程,这将逐渐揭开外泌体地面纱[9]

3. 外泌体在中枢神经系统疾病中的应用

中枢神经系统疾病是指影响大脑、脊髓和周围神经系统的疾病,包括多种类型的疾病。其中最常见的神经退行性疾病包括阿尔茨海默病、帕金森病、肿瘤、创伤、中风等。这些疾病通常会导致大脑细胞或脊髓细胞的死亡或退化,从而引起不同程度的认知障碍、运动障碍和其他症状。外泌体是一种细胞外囊泡,含有核酸、蛋白质、脂质、氨基酸和代谢物等成分,可以在不同的细胞、组织或器官之间转移,调节各种细胞间跨器官通讯以及正常和致病过程。外泌体在神经系统中的作用备受关注,特别是在神经保护和疾病治疗方面的潜力。

近期的研究发现外泌体可以穿过血脑屏障(BBB)并调节其生理功能,从而对中枢神经系统产生影响[10]。例如,基于MSC的疗法显示出对NLRP3炎性体激活的调节作用,实现了神经保护作用和改善行为障碍[11]。此外,神经营养性外泌体的应用显着改善了病理微环境并促进了原位中枢神经可塑性,最终引起了强烈的修复作用[12]

外泌体在脑血管疾病病理生理学中的作用也备受关注,并被认为具有临床应用价值,尤其是作为潜在疗法的生物标志物[13]。此外,外泌体还可能成为痴呆症的新诊断剂,提供了治疗痴呆症的潜力[14]。另一项研究表明外泌体可能与烟雾病(MMD)和颅内动脉粥样硬化性疾病(ICAD)的发病机制有关[15]

此外,外泌体来源于MSCs显示出对缺血再灌注损伤的潜在治疗作用,尤其是通过miR-145的调节作用减轻脑I/R损伤[16]。同时,人骨髓间充质干细胞(hBMSCs)的外泌体分泌对新生儿缺氧缺血性脑损伤具有调节作用[17]

外泌体还具有潜在的生物标志物作用,可以用于脑疾病诊断和预后,并且可以被利用为脑药物递送的治疗药物载体[18]。另外,外泌体中miR-155的表达与癫痫的诊断相关,并且外泌体通过抑制缺血再灌注后的Drp1/Fis1相互作用来减少星形胶质细胞的线粒体损伤,从而显著减轻了缺血性损伤[19] [20]

外泌体在某些脑部疾病的发病机制、诊断和治疗方式中也起着重要作用,包括缺血性中风,阿尔茨海默病,帕金森病,多发性硬化症和脑癌。工程化的外泌体被认为可以提高药物摄取效率和随后的药物功效,因此作为一种有前途的脑疾病药物递送策略备受关注[21]

最后,外泌体还被发现在围术期脑损伤机制中起到重要作用,特别是在急性和慢性炎症过程中的传播导致脑损伤[22] [23]。这些研究结果表明基于miRNA的外泌体治疗可能具有潜在的神经保护作用,并对脑疾病的治疗提供了新的方向[24]

综上,外泌体在神经系统中的作用涵盖了多个领域,包括疾病发病机制、诊断标志物、治疗方法等,其潜力和应用前景值得进一步深入研究和探讨,下面我们将对具体疾病详细介绍。

4. 外泌体在创伤性脑损伤治疗中的应用

创伤性脑损伤是指由头部受到外力导致的脑损伤,是世界范围内重要的公共卫生问题。它是一种严重的神经系统疾病,对患者的身体和心理健康产生很大影响。在治疗上早期治疗及时妥当非常重要,如果幸运地度过了危险期,后期的康复阶段的救治好坏将会大大影响患者的生命功能及质量。外泌体的作用是一个广泛而复杂的研究领域,下面将浅谈一下外泌体在创伤性脑损伤(TBI)中的一些作用及其相关机制。

首先,BMSCs-Exos (miR-124-3p)通过抑制p38 MAPK信号通路,上调谷氨酸转运蛋白1 (GLT-1),从而减轻TBI大鼠模型中谷氨酸介导的兴奋性毒性和神经损伤[25]

另外,脂肪干细胞外泌体(ADSCs-Exo)通过减少小胶质细胞分泌的NLRP3炎性体,减少创伤性脑损伤后的炎症反应,并具有神经保护作用[26]。这种保护作用可能与ADSCs-Exo对NLRP3介导的炎性体形成的抑制有关。

外泌体与巴黎协定研究所(BME)和多哈协议研究所(DHC)共同促进神经干细胞(NSCs)分化为神经元和少突胶质细胞,并抑制星形胶质细胞分化。此外,它们还诱导血管生成、神经发生以及轴突再生、髓鞘再生、突触形成等过程,促进TBI后的神经功能恢复[27]

虽然这些研究尚未应用于人类TBI,但临床前试验显示了外泌体在其他脑损伤和疾病中的潜力。外泌体的差异性使其成为TBI纳米载体的有力选择[28]

外泌体与纳米SDF的应用可以显著降低TBI后血清和脑样本中的氧化应激,并抑制Toll样受体4及其下游信号通路的表达,包括NF-kβ和白细胞介素-1β。此外,无细胞的治疗策略还能减少损伤部位的反应性神经胶质增生。研究结果显示,基于无细胞的治疗策略可能是TBI未来实践的有效选择[29]

研究还发现,基于海马基因亚型网络的计算解剖提供了星形胶质细胞整体功能的相关代理,并揭示了性别差异的发生。然而,星形胶质细胞外泌体的分析并不能准确提供海马星形胶质细胞整体功能的近似值,这可能是因为存在对货物分子充电的选择性细胞机制[30]

研究结果表明,ADSCs的外泌体通过递送circ-Scmh1和促进小胶质细胞M2极化来改善TBI后海马的神经损伤。circ-Scmh1可以通过促进M2小胶质细胞极化和减少炎症诱导的海马神经损伤来增加外泌体对TBI后海马神经损伤的治疗效果[31]

最后,BMSCs-Exos的实施可能是减轻TBI后神经损伤的有效前瞻性治疗方法。研究发现,BMSCs-Exos在大小、形态上具有一定的稳定性,并能够被星形胶质细胞内吞。因此,BMSCs-Exos的应用可能有助于减轻TBI后的谷氨酸兴奋毒性及其相关机制[32]

所以,外泌体在TBI中具有多种作用机制,包括抑制炎症反应、促进神经元和血管生成、减轻谷氨酸兴奋毒性、促进神经功能恢复等。虽然还存在一些问题需要解决,但外泌体作为TBI治疗的远景具有巨大的潜力。

5. 外泌体在缺血性卒中治疗中的应用

缺血性脑卒中是指由于脑部血管发生阻塞,导致脑部缺氧和供血不足,从而引起脑组织损伤和功能障碍的疾病。缺血性脑卒中是全球范围内主要的死亡和残疾原因之一。它是一种严重的神经系统疾病,治疗难度大,其主要原因是缺血性脑卒中发生后会迅速导致脑细胞死亡,从而造成不可逆的神经功能损伤。外泌体的兴起对这种不可逆的损伤现在提供了一些新的缓解与帮助,外泌体(Exos)是一种细胞分泌的纳米级囊泡,含有蛋白质、核酸和其他生物活性成分,已被证实在神经保护和修复中发挥重要作用。

近期研究中发现,神经干细胞(NSC)衍生的外泌体能够显著降低NSC移植后的炎症反应,减轻氧化应激,并促进体内NSCs的分化,从而改善了脑组织的损伤,包括脑梗死、神经元死亡和神经胶质瘢痕形成,并促进了运动功能的恢复[33]。此外,研究还发现microRNA在外泌体中的改变与多种生理功能相关,包括信号转导、神经保护和应激反应,并值得进一步研究这些差异表达的microRNA在人类疾病特别是缺血性中风中的作用[34]

另一项研究发现,脂肪干细胞(ADSCs)衍生的外泌体通过miR-760-3p靶向神经元中的CHAC1来促进其抑制铁浓化的功能,提出了一种有前途的基于外泌体的脑缺血/再灌注损伤抗铁浓化治疗策略[35]。此外,神经干细胞过表达肿瘤易感基因(TSG) 101显示出增强的外泌体分泌,外泌体治疗通过抗炎活性和DNA损伤途径抑制来防止脑损伤[36]。而外泌体还通过增强血管内皮重塑促进中风后的神经恢复,可能成为减轻中风后脑损伤的一种新方法[37]

此外,外泌体还对中风后的血管保护和脑损伤具有积极影响,如MSC衍生的外泌体可以抑制小胶质细胞和星形胶质细胞的促炎活性,并刺激其神经保护活性;此外,M2极化巨噬细胞衍生的外泌体对缺血性中风中的氧化损伤也具有保护作用[38]-[40]。最新研究结果还表明,外泌体通过miRNA载体介导的作用,可能对神经细胞具有保护作用,并且可能成为治疗中风的潜在有效选择[41]

总的来说,外泌体在缺血性卒中治疗中展现出巨大潜力,其生物活性成分,尤其是microRNA等分子的调控作用,为中风的治疗提供了新的思路和可能性。然而,尽管动物实验结果令人鼓舞,但仍需要更多的临床研究来验证外泌体在中风治疗中的安全性和有效性,以便为临床应用提供坚实的科学依据[42]

6. 外泌体在阿尔茨海默病治疗中的应用

阿尔茨海默病(Alzheimer’s disease, AD)是一种退行性神经系统疾病,是老年痴呆症的最常见类型。它会逐渐损伤大脑中负责记忆、学习和思考的神经细胞,导致智力退化和记忆丧失。还影响患者的行为和情感,导致他们失去自理能力。

目前,阿尔茨海默病没有完全治愈的方法,但早期诊断和治疗对于延缓疾病进程和减轻症状非常重要。外泌体在神经退行性疾病中的作用已成为科学研究的热点。外泌体携带了多种促炎分子,可以传播到中枢神经系统并靶向神经胶质细胞和神经元细胞。这一过程可能引发慢性神经炎症,影响神经病理学,损害淀粉样β清除能力,并改变关键基因的表达,从而成为阿尔茨海默病(AD)发展的重要危险因素[43]

另一方面,研究发现洋地黄的主要提取物梓醇可以通过促进神经干细胞分泌的miR-138-5p水平来减轻AD进展[44]。此外,外泌体中还含有多种物质,包括核酸、蛋白质和脂质,可以在AD早期发展过程中起到积极和消极的作用,有效控制氧化应激和解毒,在AD研究和临床实践中具有潜在应用价值[45]

此外,miR-23a-3p被发现可能对延髓型ALS中观察到的运动神经元丢失有影响,可能成为未来ALS治疗的新靶点[27]。研究还表明,干细胞产生的外泌体可以作为一种神经保护疗法来缓解AD病理,并改善神经退行性变[46]。此外,靶向APP和Fe65之间的相互作用也被认为是一种有前景的治疗方法,具有治疗干预措施的潜力[47]

针对AD的治疗方法也涉及到肠道微生物群和相关代谢物的调节,以增强外泌体治疗效果,为更多的AD患者受益提供可能性[48]

另一方面,外泌体在AD和PD发病机制中的作用被广泛讨论,作为药物载体向中枢神经系统递送药物具有潜在应用价值[49]。此外,外泌体的光调制也显示出治疗AD的关键作用,为使用近红外光生物调节治疗AD提供理论基础[50]。外泌体不仅在AD中发挥作用,在PD中也具有重要意义。外泌体被确定为AD生物标志物的最佳来源,具有潜在的诊断和治疗应用价值[51]

总的来说,外泌体作为一种潜在的治疗途径,为神经退行性疾病的研究和治疗提供了新的思路和方向。尽管仍然存在许多问题需要进一步研究和解决,但外泌体在神经退行性疾病领域的前景仍然值得期待。

7. 外泌体在帕金森疾病治疗中的应用

帕金森是一种慢性进行性神经系统退行性疾病。该疾病以运动障碍症状为主要表现,包括肢体僵硬、震颤和运动缓慢。帕金森疾病的发病机制主要涉及脑部多巴胺能神经元的损失和胆碱能神经元的功能失衡。导致多巴胺水平下降,从而引起运动控制的紊乱。目前尚不清楚该疾病的确切原因,除了运动障碍症状外,帕金森疾病还可能伴随有非运动症状,如睡眠障碍、便秘、抑郁等。目前没有完全治愈帕金森疾病的方法,但通过药物治疗和手术治疗,可以缓解症状并延缓疾病进展。外泌体的发现为PD提供了一种新的治疗思路,它们携带着丰富的生物学信息,包括蛋白质、miRNA等,对于神经退行性疾病的治疗具有潜在的重要作用。通过多种研究手段的分析,我们可以看到现在外泌体在神经系统中的作用机制和治疗潜力。

首先,通过对外泌体的组成进行研究,发现外泌体携带的miRNA如miR-155-5p可能是诱导神经胶质细胞炎症反应的关键因素,这表明外泌体可能是神经炎症的致病因素之一[52]。另外,富含miR-23b-3p的外泌体被证实可以促进神经元自噬,从而减轻帕金森病的进展[53]。此外,外泌体也被发现可以通过调节线粒体功能、抗氧化和凋亡基因的表达来减轻氧化应激和神经元凋亡,从而提供神经保护作用[54] [55]

另一方面,外泌体还被证实具有潜在的药物输送系统的作用。例如,一些研究表明,外泌体可以通过具有运动/趋化功能的人工模块和天然外泌体模块可控组合的工程化方法,实现疾病治疗过程中的“级联功能”,为帕金森病等疾病的治疗提供了新的思路[56]。另外,外泌体还被发现可以跨越多个膜屏障自我定向,并在作用部位释放药物,实现协同治疗效果,具有广阔的前景[57]

除此之外,外泌体还通过调节神经系统的微环境来实现神经保护和神经分化,因此MSC衍生的外泌体的生物学特性已被提议作为不同病理条件下的有益工具,为神经退行性疾病的治疗提供了新的思路[58]-[61]

总的来说,外泌体作为一种重要的细胞外囊泡,具有丰富的生物学信息和潜在的药物输送系统,对于神经退行性疾病的治疗具有重要的意义,同时也为神经科学领域的研究和临床应用提供了新的思路和方法。

8. 外泌体在自身免疫性疾病治疗中的应用

神经系统的自身免疫性疾病是一类涉及免疫系统攻击自身神经组织的疾病。神经系统的自身免疫性疾病的发病机制涉及遗传、免疫系统异常和环境因素的相互作用。然而,具体的发病机制仍需要进一步的研究来得到全面的理解,这些疾病的治疗主要通过控制免疫系统的过度活跃来减轻炎症反应,并提供对症治疗以缓解症状,外泌体的具有调节细胞间通讯和传递生物活性分子的功能在中枢神经系统疾病中的作用引起了科学界的广泛关注。一项研究发现,通过工程化外泌体,可以实现对中枢神经系统靶向的肽的嵌合。例如,嵌合中枢神经系统靶向肽工程的外泌体(TAxI-exos)展示了显著的中枢神经系统靶向特性,并且在抑制实验性自身免疫性脑脊髓炎(EAE)小鼠退行性过程方面表现出潜在的治疗价值[62]

另一项研究揭示了肠道病毒D68 (EV-D68)与急性弛缓性脊髓炎(AFM)之间的关系。该研究发现,EV-D68颗粒可以与外泌体粘附,并且与其他与细胞外囊泡相互作用的小核糖核酸病毒类似。这一发现对于寻找EV-D68感染运动神经元的受体以及病毒进入中枢神经系统的途径具有重要意义,有助于确定AFM发展的遗传风险因素[63]

进一步的研究表明,从怀孕小鼠获得的胎盘外泌体(PE)和外泌体在实验性自身免疫性脑脊髓炎(EAE)小鼠模型中显示出潜在的治疗效果。这些外泌体处理可以降低临床严重程度、脊髓脱髓鞘程度以及炎性细胞向脊髓的浸润。此外,外泌体处理还可以增加CD4+CD25+FoxP3+Treg细胞的频率,并降低炎性细胞因子的表达[64]

研究还发现,FOXP3-EXOs可以调节实验性自身免疫性脑脊髓炎(EAE)中的Th1和Th17细胞的产生,促进Treg细胞的产生,并改善疾病发展。这一发现揭示了FOXP3-EXOs在EAE中的作用和潜在机制,以及其对神经保护的作用,可能通过调节Th/Treg平衡实现[65]

此外,肌萎缩侧索硬化症(ALS)是一种至今没有有效治疗方法的神经系统疾病。然而,使用外泌体、间充质干细胞和神经营养因子改善ALS的研究显示出很大的潜力。间充质干细胞可以调节免疫反应、减轻氧化应激、促进神经元再生,并分化为功能性神经细胞。此外,间充质干细胞来源的外泌体通过防止其母细胞的异常分化发挥有益作用。另外,神经营养因子可以调节炎症反应,刺激神经元修复和功能恢复[66]

所以,外泌体在中枢神经系统疾病中展现出重要的作用。通过工程化外泌体,可以实现肽的靶向传递,对于治疗多发性硬化症(MS)和其他中枢神经系统疾病具有潜在的治疗价值。此外,外泌体还可能在肠道病毒D68感染和肌萎缩侧索硬化症等疾病的治疗中发挥作用。这些研究为我们深入了解外泌体在中枢神经系统疾病中的功能和机制提供了重要的参考[66]

9. 外泌体在癌症治疗中的应用

中国传统的文化里,人们都是谈癌色变,这其中不仅因为癌症是一种危害极大的疾病,更是得了癌症后常因发现不及时而错过救治的机会。近年来,外泌体在癌症领域备受关注,尤其是在癌症诊断与治疗中的应用。

外泌体被认为是一种天然药物载体,可以用于治疗各种类型的癌症,包括胶质母细胞瘤(GBM)和乳腺癌等。外泌体可以作为非侵入性的诊断工具,帮助早期预测乳腺癌脑转移的可能性[67]。一项研究发现,处理药物后释放的U87细胞外泌体可能是一种新的胶质母细胞瘤治疗方法,可以减少药物副作用的产生[68]。此外,外泌体还可以作为纳米载体用于药物或基因递送和癌症疫苗,具有潜力用于非侵入性的诊断和治疗方法[69]

血脑屏障在胶质母细胞瘤中起着重要的作用。由于血脑屏障的存在,药物很难充分输送到脑组织。然而,新型的被动和主动药物递送技术可以克服血脑屏障,其中外泌体被发现是一种优秀的新兴药物、基因和有效分子递送载体,用于胶质母细胞瘤的治疗[70]

研究还发现,外泌体对血脑屏障的完整性有影响,并可以调节肿瘤脑转移过程中的神经胶质激活[71]。此外,一些研究表明,从胶质母细胞瘤释放的外泌体可以改变神经元网络的电特性,导致脑癌患者的神经病理[72]

另外,外泌体也可以作为载体递送miRNA等生物活性物质,用于治疗其他类型的癌症。例如,外泌体携带miR-155-3p可以通过下调WDR82来增强髓母细胞瘤细胞的生长[73],而携带miR-124-3p的外泌体可以通过EXO-miR-124-3p/FLOT2/AKT1途径抑制神经胶质瘤的生长[74]

总的来说,外泌体作为天然药物载体,具有潜力用于癌症的诊断和治疗。在胶质母细胞瘤等脑肿瘤治疗中,外泌体可以克服血脑屏障,并通过递送生物活性物质来抑制肿瘤的生长和转移。然而,在将外泌体应用于临床之前,也还需要进一步的功能分析和验证。

10. 总结与展望

总之,外泌体在动物中枢神经系统疾病模型中的研究已经卓见成效,包括创伤性脑损伤、中风、PD、AD和脑部癌症的提前诊断、发病机制和后续治疗,都表现出令人满意的结果,其核心治疗机制具有共性:强大的抗炎作用、神经保护以及促进神经再生与修复作用。同时,外泌体在免疫调节和作为穿越BBB的靶向递送载体方面也显示出普适价值。然而,具体应用机制存在疾病特异性,对于不同的疾病发挥着不同的治疗方向与效果。这都表明外泌体在治疗CNS疾病是有巨大前景的,它比目前传统的治疗方式有着不可媲美的优点。

尽管外泌体目前在临床前研究中表现出对CNS疾病有很希望的效果,但是用于人类实际的疾病中还是有很大的挑战和风险,外泌体的来源异质性和缺乏标准化生产导致批次间差异显著,其复杂的作用机制尚未完全阐明,天然外泌体的靶向性和递送效率仍需优化,长期安全性评估不足,以及从动物模型到人体应用的临床转化鸿沟巨大。未来研究需聚焦于深入解析核心作用机制、开发高效可控的工程化改造策略、建立严格的质量标准、推进严谨的临床研究,并解决规模化生产难题,以期将这一充满潜力的天然载体真正转化为临床有效的治疗手段。

参考文献

[1] Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[2] Xie, R., Zeng, X., Yan, H., Huang, X. and Deng, C. (2022) Effects and Mechanisms of Exosomes from Different Sources in Cerebral Ischemia. Cells, 11, Article 3623.
https://doi.org/10.3390/cells11223623
[3] Chargaff, E. and West, R. (1946) The Biological Significance of the Thromboplastic Protein of Blood. Journal of Biological Chemistry, 166, 189-197.
https://doi.org/10.1016/s0021-9258(17)34997-9
[4] Wolf, P. (1967) The Nature and Significance of Platelet Products in Human Plasma. British Journal of Haematology, 13, 269-288.
https://doi.org/10.1111/j.1365-2141.1967.tb08741.x
[5] Fox, A.S. and Yoon, S.B. (1970) DNA-Induced Transformation in Drosophila: Locus-Specificity and the Establishment of Transformed Stocks. Proceedings of the National Academy of Sciences, 67, 1608-1615.
https://doi.org/10.1073/pnas.67.3.1608
[6] Aaronson, S., Behrens, U., Orner, R. and Haines, T.H. (1971) Ultrastructure of Intracellular and Extracellular Vesicles, Membranes, and Myelin Figures Produced by Ochromonas danica. Journal of Ultrastructure Research, 35, 418-430.
https://doi.org/10.1016/s0022-5320(71)80003-5
[7] Trams, E.G., Lauter, C.J., Norman Salem, J. and Heine, U. (1981) Exfoliation of Membrane Ecto-Enzymes in the Form of Micro-Vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes, 645, 63-70.
https://doi.org/10.1016/0005-2736(81)90512-5
[8] Johnstone, R.M., Adam, M., Hammond, J.R., Orr, L. and Turbide, C. (1987) Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). Journal of Biological Chemistry, 262, 9412-9420.
https://doi.org/10.1016/s0021-9258(18)48095-7
[9] Cocucci, E., Racchetti, G. and Meldolesi, J. (2009) Shedding Microvesicles: Artefacts No More. Trends in Cell Biology, 19, 43-51.
https://doi.org/10.1016/j.tcb.2008.11.003
[10] Osaid, Z., Haider, M., Hamoudi, R. and Harati, R. (2023) Exosomes Interactions with the Blood-Brain Barrier: Implications for Cerebral Disorders and Therapeutics. International Journal of Molecular Sciences, 24, Article 15635.
https://doi.org/10.3390/ijms242115635
[11] Nazari, S., Pourmand, S.M., Motevaseli, E. and Hassanzadeh, G. (2023) Mesenchymal Stem Cells (MSCs) and MSC-derived Exosomes in Animal Models of Central Nervous System Diseases: Targeting the NLRP3 Inflammasome. IUBMB Life, 75, 794-810.
https://doi.org/10.1002/iub.2759
[12] Mi, S., Chang, Z., Wang, X., Gao, J., Liu, Y., Liu, W., et al. (2023) Bioactive Spinal Cord Scaffold Releasing Neurotrophic Exosomes to Promote in Situ Centralis Neuroplasticity. ACS Applied Materials & Interfaces, 15, 16355-16368.
https://doi.org/10.1021/acsami.2c19607
[13] Lu, Z., Tang, H., Li, S., Zhu, S., Li, S. and Huang, Q. (2023) Role of Circulating Exosomes in Cerebrovascular Diseases: A Comprehensive Review. Current Neuropharmacology, 21, 1575-1593.
https://doi.org/10.2174/1570159x21666230214112408
[14] Joo, H.S., Jeon, H.Y., Hong, E.B., Kim, H.Y. and Lee, J.M. (2023) Exosomes for the Diagnosis and Treatment of Dementia. Current Opinion in Psychiatry, 36, 119-125.
https://doi.org/10.1097/yco.0000000000000842
[15] He, S., Liang, J., Xue, G., Wang, Y., Zhao, Y., Liu, Z., et al. (2023) RNA Profiling of Sev (Small Extracellular Vesicles)/Exosomes Reveals Biomarkers and Vascular Endothelial Dysplasia with Moyamoya Disease. Journal of Cerebral Blood Flow & Metabolism, 43, 1194-1205.
https://doi.org/10.1177/0271678x231162184
[16] Zhou, H., Zhou, J., Teng, H., Yang, H., Qiu, J. and Li, X. (2022) MiR-145 Enriched Exosomes Derived from Bone Marrow-Derived Mesenchymal Stem Cells Protects against Cerebral Ischemia-Reperfusion Injury through Downregulation of FOXO1. Biochemical and Biophysical Research Communications, 632, 92-99.
https://doi.org/10.1016/j.bbrc.2022.09.089
[17] Shu, J., Jiang, L., Wang, M., Wang, R., Wang, X., Gao, C., et al. (2022) Human Bone Marrow Mesenchymal Stem Cells-Derived Exosomes Protect against Nerve Injury via Regulating Immune Microenvironment in Neonatal Hypoxic-Ischemic Brain Damage Model. Immunobiology, 227, Article 152178.
https://doi.org/10.1016/j.imbio.2022.152178
[18] Shetgaonkar, G.G., Marques, S.M., DCruz, C.E.M., Vibhavari, R.J.A., Kumar, L. and Shirodkar, R.K. (2022) Exosomes as Cell-Derivative Carriers in the Diagnosis and Treatment of Central Nervous System Diseases. Drug Delivery and Translational Research, 12, 1047-1079.
https://doi.org/10.1007/s13346-021-01026-0
[19] Liu, Y., Yu, G., Ding, Y. and Zhang, Y. (2022) Expression of MiR-155 in Serum Exosomes in Children with Epilepsy and Its Diagnostic Value. Disease Markers, 2022, Article ID: 7979500.
https://doi.org/10.1155/2022/7979500
[20] Liu, W., Su, C., Qi, Y., Liang, J., Zhao, L. and Shi, Y. (2022) Brain-Targeted Heptapeptide-Loaded Exosomes Attenuated Ischemia-Reperfusion Injury by Promoting the Transfer of Healthy Mitochondria from Astrocytes to Neurons. Journal of Nanobiotechnology, 20, Article No. 242.
https://doi.org/10.1186/s12951-022-01425-6
[21] Jiang, Y., Wang, F., Wang, K., Zhong, Y., Wei, X., Wang, Q., et al. (2022) Engineered Exosomes: A Promising Drug Delivery Strategy for Brain Diseases. Current Medicinal Chemistry, 29, 3111-3124.
https://doi.org/10.2174/0929867328666210902142015
[22] Gall, A.R., Amoah, S., Kitase, Y. and Jantzie, L.L. (2022) Placental Mediated Mechanisms of Perinatal Brain Injury: Evolving Inflammation and Exosomes. Experimental Neurology, 347, Article 113914.
https://doi.org/10.1016/j.expneurol.2021.113914
[23] Fan, Y., Chen, Z. and Zhang, M. (2022) Role of Exosomes in the Pathogenesis, Diagnosis, and Treatment of Central Nervous System Diseases. Journal of Translational Medicine, 20, Article No. 291.
https://doi.org/10.1186/s12967-022-03493-6
[24] Chai, M., Su, G., Gao, J., Chen, W., Wu, Q., Dong, Y., et al. (2022) Molecular Mechanism of the Protective Effects of M2 Microglia on Neurons: A Review Focused on Exosomes and Secretory Proteins. Neurochemical Research, 47, 3556-3564.
https://doi.org/10.1007/s11064-022-03760-4
[25] Zhuang, Z., Liu, M., Dai, Z., Luo, J., Zhang, B., Yu, H., et al. (2023) Bone Marrow Stromal Cells-Derived Exosomes Reduce Neurological Damage in Traumatic Brain Injury through the MiR-124-3p/p38 MAPK/GLT-1 Axis. Experimental Neurology, 365, Article 114408.
https://doi.org/10.1016/j.expneurol.2023.114408
[26] Tang, L., Xu, Y., Wang, L. and Pan, J. (2023) Adipose-Derived Stem Cell Exosomes Ameliorate Traumatic Brain Injury through the NLRP3 Signaling Pathway. NeuroReport, 34, 677-684.
https://doi.org/10.1097/wnr.0000000000001941
[27] Liu, Y., Ding, M., Pan, S., Zhou, R., Yao, J., Fu, R., et al. (2023) MicroRNA-23a-3p Is Upregulated in Plasma Exosomes of Bulbar-Onset ALS Patients and Targets ERBB4. Neuroscience, 524, 65-78.
https://doi.org/10.1016/j.neuroscience.2023.05.030
[28] Hennigan, K. and Lavik, E. (2023) Nature vs. Manmade: Comparing Exosomes and Liposomes for Traumatic Brain Injury. The AAPS Journal, 25, Article No. 83.
https://doi.org/10.1208/s12248-023-00849-8
[29] Hajinejad, M., Ebrahimzadeh, M.H., Ebrahimzadeh-Bideskan, A., Rajabian, A., Gorji, A. and Sahab Negah, S. (2023) Exosomes and Nano-SDF Scaffold as a Cell-Free-Based Treatment Strategy Improve Traumatic Brain Injury Mechanisms by Decreasing Oxidative Stress, Neuroinflammation, and Increasing Neurogenesis. Stem Cell Reviews and Reports, 19, 1001-1018.
https://doi.org/10.1007/s12015-022-10483-0
[30] Guebel, D.V. (2023) Human Hippocampal Astrocytes: Computational Dissection of Their Transcriptome, Sexual Differences and Exosomes across Ageing and Mild-Cognitive Impairment. European Journal of Neuroscience, 58, 2677-2707.
https://doi.org/10.1111/ejn.16081
[31] Chen, S., Wang, X., Qian, Z., Wang, M., Zhang, F., Zeng, T., et al. (2023) Exosomes from ADSCS Ameliorate Nerve Damage in the Hippocampus Caused by Post Traumatic Brain Injury via the Delivery of Circ-Scmh1 Promoting Microglial M2 Polarization. Injury, 54, Article 110927.
https://doi.org/10.1016/j.injury.2023.110927
[32] Zhuang, Z., Liu, M., Luo, J., Zhang, X., Dai, Z., Zhang, B., et al. (2022) Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Attenuate Neurological Damage in Traumatic Brain Injury by Alleviating Glutamate-Mediated Excitotoxicity. Experimental Neurology, 357, Article 114182.
https://doi.org/10.1016/j.expneurol.2022.114182
[33] Zhang, R., Mao, W., Niu, L., Bao, W., Wang, Y., Wang, Y., et al. (2023) NSC-Derived Exosomes Enhance Therapeutic Effects of NSC Transplantation on Cerebral Ischemia in Mice. eLife, 12, e84493.
https://doi.org/10.7554/elife.84493
[34] Wang, Z., Xu, F., Zhao, X., Zhang, Y., Wang, X., Zhang, Z., et al. (2023) Expression Analysis and Targets Prediction of MicroRNAs in OGD/R Treated Astrocyte-Derived Exosomes by SmallRNA Sequencing. Genomics, 115, Article 110594.
https://doi.org/10.1016/j.ygeno.2023.110594
[35] Wang, Y., Niu, H., Li, L., Han, J., Liu, Z., Chu, M., et al. (2023) Anti-CHAC1 Exosomes for Nose-to-Brain Delivery of MiR-760-3p in Cerebral Ischemia/Reperfusion Injury Mice Inhibiting Neuron Ferroptosis. Journal of Nanobiotechnology, 21, Article No. 109.
https://doi.org/10.1186/s12951-023-01862-x
[36] Yoon, E., Choi, Y., Kim, T.M., Choi, E., Kim, Y. and Park, D. (2022) The Neuroprotective Effects of Exosomes Derived from TSG101-Overexpressing Human Neural Stem Cells in a Stroke Model. International Journal of Molecular Sciences, 23, Article 9532.
https://doi.org/10.3390/ijms23179532
[37] Ye, Y., Chang, Z., Wang, P., Wang, Y., Liang, J., Chen, C., et al. (2022) Infarct-Preconditioning Exosomes of Umbilical Cord Mesenchymal Stem Cells Promoted Vascular Remodeling and Neurological Recovery after Stroke in Rats. Stem Cell Research & Therapy, 13, Article No. 378.
https://doi.org/10.1186/s13287-022-03083-9
[38] Zhou, L., Liang, J. and Xiong, T. (2022) Research Progress of Mesenchymal Stem Cell-Derived Exosomes on Inflammatory Response after Ischemic Stroke. Journal of Zhejiang University (Medical Sciences), 51, 500-506.
https://doi.org/10.3724/zdxbyxb-2022-0077
[39] Xiao, T., Qu, H., Zeng, Z., Li, C. and Wan, J. (2022) Exosomes from M2-Polarized Macrophages Relieve Oxygen/Glucose Deprivation/Normalization-Induced Neuronal Injury by Activating the Nrf2/HO-1 Signaling. Archives of Biochemistry and Biophysics, 721, Article 109193.
https://doi.org/10.1016/j.abb.2022.109193
[40] Seyedaghamiri, F., Salimi, L., Ghaznavi, D., Sokullu, E. and Rahbarghazi, R. (2022) Exosomes-Based Therapy of Stroke, an Emerging Approach toward Recovery. Cell Communication and Signaling, 20, Article No. 110.
https://doi.org/10.1186/s12964-022-00919-y
[41] Huang, R., Cheng, T. and Lai, X. (2022) Mechanism of Ischemic Brain Injury Repair by Endothelial Progenitor Cell-Derived Exosomes. Molecular Medicine Reports, 26, Article No. 269.
https://doi.org/10.3892/mmr.2022.12785
[42] Hu, H., Hu, X., Li, L., Fang, Y., Yang, Y., Gu, J., et al. (2022) Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Promote Angiogenesis in Ischemic Stroke Mice via Upregulation of MiR-21-5p. Biomolecules, 12, Article 883.
https://doi.org/10.3390/biom12070883
[43] Pan, Q., Wang, Y., Liu, J., Jin, X., Xiang, Z., Li, S., et al. (2023) MiR-17-5p Mediates the Effects of ACE2-Enriched Endothelial Progenitor Cell-Derived Exosomes on Ameliorating Cerebral Ischemic Injury in Aged Mice. Molecular Neurobiology, 60, 3534-3552.
https://doi.org/10.1007/s12035-023-03280-4
[44] Meng, S., Chen, H., Deng, C. and Meng, Z. (2023) Catalpol Mitigates Alzheimer’s Disease Progression by Promoting the Expression of Neural Stem Cell Exosomes Released MiR-138-5p. Neurotoxicity Research, 41, 41-56.
https://doi.org/10.1007/s12640-022-00626-z
[45] Liu, Z., Zhang, H., Liu, S., Hou, Y. and Chi, G. (2023) The Dual Role of Astrocyte-Derived Exosomes and Their Contents in the Process of Alzheimer’s Disease. Journal of Alzheimers Disease, 91, 33-42.
https://doi.org/10.3233/jad-220698
[46] Khan, M.I., Jeong, E.S., Khan, M.Z., Shin, J.H. and Kim, J.D. (2023) Stem Cells-Derived Exosomes Alleviate Neurodegeneration and Alzheimer’s Pathogenesis by Ameliorating Neuroinflamation, and Regulating the Associated Molecular Pathways. Scientific Reports, 13, Article No. 15731.
https://doi.org/10.1038/s41598-023-42485-4
[47] Iyaswamy, A., Thakur, A., Guan, X., Krishnamoorthi, S., Fung, T.Y., Lu, K., et al. (2023) Fe65-Engineered Neuronal Exosomes Encapsulating Corynoxine-B Ameliorate Cognition and Pathology of Alzheimer’s Disease. Signal Transduction and Targeted Therapy, 8, Article No. 404.
https://doi.org/10.1038/s41392-023-01657-4
[48] Hou, X., Jiang, H., Liu, T., Yan, J., Zhang, F., Zhang, X., et al. (2023) Depletion of Gut Microbiota Resistance in 5×FAD Mice Enhances the Therapeutic Effect of Mesenchymal Stem Cell-Derived Exosomes. Biomedicine & Pharmacotherapy, 161, Article 114455.
https://doi.org/10.1016/j.biopha.2023.114455
[49] He, A., Wang, M., Li, X., Chen, H., Lim, K., Lu, L., et al. (2023) Role of Exosomes in the Pathogenesis and Theranostic of Alzheimer’s Disease and Parkinson’s Disease. International Journal of Molecular Sciences, 24, Article 11054.
https://doi.org/10.3390/ijms241311054
[50] Chen, C., Bao, Y., Xing, L., Jiang, C., Guo, Y., Tong, S., et al. (2023) Exosomes Derived from M2 Microglial Cells Modulated by 1070-Nm Light Improve Cognition in an Alzheimer’s Disease Mouse Model. Advanced Science, 10, e2304025.
https://doi.org/10.1002/advs.202304025
[51] Cai, H., Pang, Y., Wang, Q., Qin, W., Wei, C., Li, Y., et al. (2022) Proteomic Profiling of Circulating Plasma Exosomes Reveals Novel Biomarkers of Alzheimer’s Disease. Alzheimers Research & Therapy, 14, Article No. 2304025.
https://doi.org/10.1186/s13195-022-01133-1
[52] Jin, Y., Wu, R., Li, L., Shen, L., Gu, Y. and Sun, C. (2023) Exosomes from Inflamed Macrophages Promote the Progression of Parkinson’s Disease by Inducing Neuroinflammation. Molecular Neurobiology, 60, 1914-1928.
https://doi.org/10.1007/s12035-022-03179-6
[53] Geng, X., Zou, Y., Li, J., Li, S., Qi, R., Zhong, L., et al. (2023) Mesenchymal Stem Cell Exosomes Rich in MiR-23b-3p Affect the Wnt Signaling Pathway and Promote Neuronal Autophagy to Alleviate PD Symptoms. Neuroscience Letters, 814, Article 137437.
https://doi.org/10.1016/j.neulet.2023.137437
[54] Chan, L., Hsu, W., Chen, K., Wang, W., Hung, Y. and Hong, C. (2023) Therapeutic Effect of Human Adipocyte-Derived Stem Cell-Derived Exosomes on a Transgenic Mouse Model of Parkinson’s Disease. In Vivo, 37, 2028-2038.
https://doi.org/10.21873/invivo.13300
[55] Cai, Y., Zhang, M., Wang, M., Jiang, Z. and Tan, Z. (2022) Bone Marrow-Derived Mesenchymal Stem Cell-Derived Exosomes Containing Gli1 Alleviate Microglial Activation and Neuronal Apoptosis in Vitro and in a Mouse Parkinson Disease Model by Direct Inhibition of Sp1 Signaling. Journal of Neuropathology & Experimental Neurology, 81, 522-534.
https://doi.org/10.1093/jnen/nlac037
[56] Wang, Q., Li, T., Yang, J., Zhao, Z., Tan, K., Tang, S., et al. (2022) Engineered Exosomes with Independent Module/Cascading Function for Therapy of Parkinson’s Disease by Multistep Targeting and Multistage Intervention Method. Advanced Materials, 34, Article 2201406.
https://doi.org/10.1002/adma.202201406
[57] Peng, H., Li, Y., Ji, W., Zhao, R., Lu, Z., Shen, J., et al. (2022) Intranasal Administration of Self-Oriented Nanocarriers Based on Therapeutic Exosomes for Synergistic Treatment of Parkinson’s Disease. ACS Nano, 16, 869-884.
https://doi.org/10.1021/acsnano.1c08473
[58] Abrishamdar, M., Jalali, M.S. and Yazdanfar, N. (2023) The Role of Exosomes in Pathogenesis and the Therapeutic Efficacy of Mesenchymal Stem Cell-Derived Exosomes against Parkinson’s Disease. Neurological Sciences, 44, 2277-2289.
https://doi.org/10.1007/s10072-023-06706-y
[59] Xu, X., Li, Z., Zuo, H., Chen, H. and Gui, Y. (2022) Mesenchymal Stem Cell-Derived Exosomes Altered Neuron Cholesterol Metabolism via Wnt5a-LRP1 Axis and Alleviated Cognitive Impairment in a Progressive Parkinson’s Disease Model. Neuroscience Letters, 787, Article 136810.
https://doi.org/10.1016/j.neulet.2022.136810
[60] Li, Y., Li, Z., Gu, J., Xu, X., Chen, H. and Gui, Y. (2022) Exosomes Isolated during Dopaminergic Neuron Differentiation Suppressed Neuronal Inflammation in a Rodent Model of Parkinson’s Disease. Neuroscience Letters, 771, Article 136414.
https://doi.org/10.1016/j.neulet.2021.136414
[61] Heris, R.M., Shirvaliloo, M., Abbaspour-Aghdam, S., Hazrati, A., Shariati, A., Youshanlouei, H.R., et al. (2022) The Potential Use of Mesenchymal Stem Cells and Their Exosomes in Parkinson’s Disease Treatment. Stem Cell Research & Therapy, 13, Article No. 371.
https://doi.org/10.1186/s13287-022-03050-4
[62] Wang, Y., Zhao, Y., Ye, M., Wang, L., Lan, T., Wang, Y., et al. (2023) Chimeric CNS-Targeting-Peptide Engineered Exosomes for Experimental Autoimmune Encephalomyelitis Therapy. International Immunopharmacology, 124, Article 110835.
https://doi.org/10.1016/j.intimp.2023.110835
[63] Rudy, M.J., Coughlan, C., Hixon, A.M., Clarke, P. and Tyler, K.L. (2022) Density Analysis of Enterovirus D68 Shows Viral Particles Can Associate with Exosomes. Microbiology Spectrum, 10, e02452-21.
https://doi.org/10.1128/spectrum.02452-21
[64] Mu, J., Li, L., Wu, J., Huang, T., Zhang, Y., Cao, J., et al. (2022) Hypoxia-Stimulated Mesenchymal Stem Cell-Derived Exosomes Loaded by Adhesive Hydrogel for Effective Angiogenic Treatment of Spinal Cord Injury. Biomaterials Science, 10, 1803-1811.
https://doi.org/10.1039/d1bm01722e
[65] Jia, Z., Liu, J., Li, B., Yi, L., Wu, Y., Xing, J., et al. (2022) Exosomes with FOXP3 from Gene-Modified Dendritic Cells Ameliorate the Development of EAE by Regulating the Balance of Th/Treg. International Journal of Medical Sciences, 19, 1265-1274.
https://doi.org/10.7150/ijms.72655
[66] Ding, Y., Botchway, B.O.A., Zhang, Y., Jin, T. and Liu, X. (2022) The Combination of Autologous Mesenchymal Stem Cell-Derived Exosomes and Neurotrophic Factors as an Intervention for Amyotrophic Lateral Sclerosis. Annals of Anatomy-Anatomischer Anzeiger, 242, Article 151921.
https://doi.org/10.1016/j.aanat.2022.151921
[67] Curtaz, C.J., Reifschläger, L., Strähle, L., Feldheim, J., Feldheim, J.J., Schmitt, C., et al. (2022) Analysis of MicroRNAs in Exosomes of Breast Cancer Patients in Search of Molecular Prognostic Factors in Brain Metastases. International Journal of Molecular Sciences, 23, Article 3683.
https://doi.org/10.3390/ijms23073683
[68] Mousavi, S.M., Hosseindoost, S., Mahdian, S.M.A., Vousooghi, N., Rajabi, A., Jafari, A., et al. (2023) Exosomes Released from U87 Glioma Cells Treated with Curcumin and/or Temozolomide Produce Apoptosis in Naive U87 Cells. Pathology-Research and Practice, 245, Article 154427.
https://doi.org/10.1016/j.prp.2023.154427
[69] Macedo-Pereira, A., Martins, C., Lima, J. and Sarmento, B. (2023) Digging the Intercellular Crosstalk via Extracellular Vesicles: May Exosomes Be the Drug Delivery Solution for Target Glioblastoma? Journal of Controlled Release, 358, 98-115.
https://doi.org/10.1016/j.jconrel.2023.04.038
[70] Khatami, S.H., Karami, N., Taheri-Anganeh, M., Taghvimi, S., Tondro, G., Khorsand, M., et al. (2023) Exosomes: Promising Delivery Tools for Overcoming Blood-Brain Barrier and Glioblastoma Therapy. Molecular Neurobiology, 60, 4659-4678.
https://doi.org/10.1007/s12035-023-03365-0
[71] Wang, P., Wu, Y., Chen, W., Zhang, M. and Qin, J. (2022) Malignant Melanoma-Derived Exosomes Induce Endothelial Damage and Glial Activation on a Human BBB Chip Model. Biosensors, 12, Article 89.
https://doi.org/10.3390/bios12020089
[72] Spelat, R., Jihua, N., Sánchez Triviño, C.A., Pifferi, S., Pozzi, D., Manzati, M., et al. (2022) The Dual Action of Glioma-Derived Exosomes on Neuronal Activity: Synchronization and Disruption of Synchrony. Cell Death & Disease, 13, Article No. 705.
https://doi.org/10.1038/s41419-022-05144-6
[73] Song, L., Luan, B., Xu, Q., Shi, R. and Wang, X. (2022) MicroRNA-155-3p Delivered by M2 Macrophages-Derived Exosomes Enhances the Progression of Medulloblastoma through Regulation of WDR82. Journal of Translational Medicine, 20, Article No. 13.
https://doi.org/10.1186/s12967-021-03156-y
[74] Qian, C., Wang, Y., Ji, Y., Chen, D., Wang, C., Zhang, G., et al. (2022) Neural Stem Cell-Derived Exosomes Transfer MiR-124-3p into Cells to Inhibit Glioma Growth by Targeting FLOT2. International Journal of Oncology, 61, Article No. 115.
https://doi.org/10.3892/ijo.2022.5405