能量代谢在系统性硬化症发生发展中的参与和作用
Energy Metabolism: Involvement and Role in the Pathogenesis and Progression of Systemic Sclerosis
DOI: 10.12677/pi.2025.144033, PDF, HTML, XML,   
作者: 邵伟娜, 戴 岳*:中国药科大学中药学院中药药理学与中医药学系,江苏 南京
关键词: 系统性硬化症能量代谢糖酵解脂质代谢谷氨酰胺代谢 Systemic Sclerosis Energy Metabolism Glycolysis Lipid Metabolism Glutamine Metabolism
摘要: 系统性硬化症(Systemic Sclerosis, SSc)是以皮肤和内脏纤维化为特征的自身免疫性疾病,其发病机制与能量代谢密切相关。近些年的研究表明,SSc患者真皮成纤维细胞呈现代谢异常,包括糖酵解增强、脂质代谢紊乱、谷氨酰胺依赖性代谢激活以及线粒体氧化磷酸化失调。本文综述能量代谢在SSc发生发展中的参与和重要性,为揭示SSc发病机制和开发新型治疗药物提供参考。
Abstract: Systemic Sclerosis (SSc) is an autoimmune disease characterized by skin and visceral fibrosis, and its pathogenesis is closely related to energy metabolism. Recent studies have shown that dermal fibroblasts in SSc patients exhibit metabolic abnormalities, including enhanced glycolysis, disordered lipid metabolism, activation of glutamine-dependent metabolism, and dysregulation of mitochondrial oxidative phosphorylation. This article aims to review the involvement and significance of energy metabolism in the onset and development of systemic sclerosis, providing a theoretical basis for a deeper understanding of the pathogenesis of SSc and the development of novel therapeutic drugs.
文章引用:邵伟娜, 戴岳. 能量代谢在系统性硬化症发生发展中的参与和作用[J]. 药物资讯, 2025, 14(4): 284-289. https://doi.org/10.12677/pi.2025.144033

1. 引言

系统性硬化症(Systemic Sclerosis, SSc)亦称硬皮病,是一种罕见的慢性自身免疫性结缔组织病,其特征是血管损伤、免疫异常和进行性纤维化,通常使皮肤增厚,并伴有不同程度的内脏纤维化[1]。全球约有80万人遭受SSc的影响,发展中国家的SSc发病率也在逐年攀升[2]。SSc的病因及发病机制尚未完全明确,目前认为与遗传易感性、环境、感染、药物、雌性激素以及免疫异常等因素有关[3]-[6]。SSc的临床治疗主要是采用糖皮质激素和免疫抑制剂,缺乏靶向纤维化的治疗药物。因此,深入探究SSc的发病机制,积极探寻全新的治疗靶点,对于改善患者预后、提升治疗效果具有极为重要的意义。

近年来,能量代谢在SSc发病机制中的作用逐渐受到关注。代谢改变所产生的影响,不仅局限于细胞的能量供给与生物合成过程,还深度参与细胞分化、增殖以及凋亡等关键过程的调控。单细胞测序结果显示,SSc患者病变皮肤组织中成纤维细胞亚群的代谢基因表达谱发生显著改变[7]。因此,深入研究SSc皮肤纤维化中的能量代谢,不仅有助于阐明疾病的发病机制,还可能为开发新型诊疗方法提供重要线索。

2. 能量代谢在系统性硬化症发生发展中的参与和作用

2.1. 糖酵解

糖酵解是指在无氧条件下,葡萄糖在细胞质中被分解成丙酮酸的过程,是细胞呼吸的第一阶段,为细胞提供能量和中间代谢产物。葡萄糖通过糖酵解途径在细胞质内分解为丙酮酸,并生成乳酸及ATP。血清代谢组学分析显示,与健康受试者相比,部分SSc患者血清乳酸和琥珀酸等代谢物水平显著升高。代谢途径分析表明,糖酵解和糖异生等与能量代谢相关的途径均发生改变[8]。Seahorse分析显示,SSc患者的真皮成纤维细胞表现出更高的葡萄糖摄取和乳酸产生[9]。在博来霉素诱导的SSc小鼠及体外纤维化模型中也表现为糖酵解的增加[10]

糖酵解可以通过多种机制促进纤维化,包括提供生物合成前体、调节氧化还原状态和影响细胞外基质产生等。糖酵解中间产物如磷酸烯醇式丙酮酸(PEP)被发现可以调节TGF-β信号通路,进一步促进纤维化[11]。糖酵解增加会导致乳酸产生增加,乳酸积累能够降低细胞外环境的pH值,导致细胞外酸化,进而使MMP-12表达增加,促进内皮细胞驱动血管生成重要因子uPAR切割,抑制血管生成。血管生成能力受损的内皮细胞转化为间充质样形态,并进一步转化为肌成纤维细胞[12]。乳酸还可以通过增加脯氨酸羟化酶的活性提高胶原蛋白的稳定性,从而增强胶原蛋白羟基化[13]。此外,乳酸衍生的丙酮酸通过依赖于上调丙酮酸羟化酶(PC)的方式增加成纤维细胞生成细胞外基质胶原蛋白的水平[14]。糖酵解中间体3-磷酸甘油酸是丝氨酸的前体,而丝氨酸又可转化为甘氨酸,后者对胶原蛋白螺旋的稳定至关重要[15]

上述研究表明,在SSc中,糖酵解增加,其产物能够通过不同的途径促进成纤维细胞增殖转化及细胞外基质产生,进而导致皮肤硬化。

2.2. 脂质代谢

脂质代谢包含脂肪酸合成、脂肪酸氧化、胆固醇代谢、磷脂转换和甘油三酯循环等。临床研究表明,SSc患者血清中多不饱和脂肪酸比例显著失衡,且特异性磷脂代谢物水平与疾病活动度呈正相关[16]。同时,SSc患者的皮下脂质被富含胶原蛋白的纤维化组织所取代[17]。这一现象与患者体内脂质代谢改变紧密相关[18]。同时,SSc患者皮肤组织中脂肪酸及其衍生物浓度发生改变,显示出脂质代谢受损[19]。脂肪酸在人体新陈代谢中承担多种重要功能,既是能量储存物质,也是细胞膜组成部分,还能作为促炎与抗炎分子以及其他信号分子或激素的前体[20]。在博来霉素诱导的SSc小鼠,脂肪酸氧化(Fatty Acid Oxidation, FAO)和糖酵解是控制成纤维细胞行为和细胞外基质稳态的关键代谢途径。通过针对脂质代谢的药物治疗能够有效减少小鼠皮肤纤维化[21]

脂质分子不仅作为结构组分,尚能通过调控TGF-β、PDGF等促纤维化信号通路,在SSc的血管病变与器官纤维化进程中发挥关键的作用。研究显示,SSc患者血清脂蛋白谱显著改变,其中高密度脂蛋白水平降低、低密度脂蛋白发生水平升高,载脂蛋白B比率升高[22]。值得注意的是,单核细胞高密度脂蛋白比率(MHR,单核细胞计数除以高密度脂蛋白浓度)已被证实可作为SSc的生物标志物[21]。细胞外基质的正常代谢对于维持皮肤的弹性和结构至关重要,在SSc患者,脂肪酸和肉毒碱的改变与炎症增强相关,当FAO减弱时,会降低细胞外基质的降解速率,进而促进纤维化的发生[23]。脂质组学分析进一步发现,SSc患者血浆中的磷脂(如,缩醛磷脂和鞘磷脂)水平显著升高。并且不同的磷脂代谢改变SSc的不同症状[17],例如,磷脂酰胆碱(PC)水平显著升高与SSs患者的干燥症状相关,皮肤钙质沉着症则与血浆中缩醛磷脂水平降低显著相关。鞘磷脂在SSc中参与血小板活化、树突状细胞的抗原加工以及疾病早期的纤维化过程[15]。溶血磷脂等脂质衍生物的重要靶标之一是过氧化物酶体增殖物激活受体γ (PPARγ),PPARγ是一种主要存在于脂肪组织中的转录因子,不仅对葡萄糖和脂质代谢具有强大的调节功能,还在细胞成熟和免疫应答方面发挥重要的作用[24]。SSc患者的皮肤PPARγ表达降低[25],激活PPARγ可通过抑制AKT/GSK3β信号通路减轻纤维化[26]。在博来霉素诱导的SSc小鼠,抑制成纤维细胞糖酵解和FAO分别下调胞外基质的产生和降解能力。其中,脂肪酸转运蛋白CD36被确定为Ⅰ型胶原蛋白内化和降解的关键介质。通过对CD36进行代谢重编程,并将处理后的成纤维细胞移植,能够有效减少小鼠皮肤纤维化[21]。这些研究成果为深入了解SSc的发病机制提供了新视角,也为开发针对性治疗策略提供了潜在靶标。

以上研究表明,在SSc患者,脂质代谢发生了多方面的改变,如脂肪酸比例失衡、脂蛋白谱改变等,脂质代谢异常不仅可以通过不同途径促进纤维化发生,还可以作为纤维化发生的生物标志物。

2.3. 谷氨酰胺代谢

谷氨酰胺在谷氨酰胺酶(GLS)作用下生成谷氨酸和氨,谷氨酸转化为α-酮戊二酸(α-KG)进入三羧酸循环(TCA)循环供能,或为生物合成提供碳氮源。谷氨酰胺作为体内含量最为丰富的游离氨基酸之一,广泛参与糖酵解、三羧酸循环(TCA循环)和氮代谢等多种关键代谢途径。近年来有研究报道,SSc患者谷氨酰胺代谢水平上调[27],TGF-β诱导鼠胚胎成纤维细胞(NIH-3T3)合成胶原具有谷氨酰胺依赖性[14]

谷氨酰胺代谢关键酶及谷氨酰胺代谢产物能够通过多种途径促进纤维化的发生发展。在谷氨酰胺代谢过程中,多种关键酶的表达变化对SSc的纤维化进程产生重要影响。在SSc患者,谷氨酰胺酶的表达上调,致使谷氨酰胺消耗显著增加,进而加剧了纤维化进程[27]。谷氨酸脱羧酶能够将谷氨酸转化为γ-氨基丁酸(GABA),后者在神经传导和细胞增殖中发挥重要的作用。谷氨酸脱羧酶的活性变化可能影响神经信号传递,从而对皮肤硬化的进展产生影响[28]。在SSc患者,谷氨酰胺的代谢产物可以通过影响细胞外基质的组成和结构,进一步推动纤维化的发展。谷氨酰胺代谢产物谷氨酸是脯氨酸的重要前体,脯氨酸与甘氨酸共同构成胶原蛋白的一级结构[29]α-KG能够促进mTORC1激活,诱导促纤维化介质的表达。同时,α-KG还能通过促进脯氨酸羟基化,稳定细胞内胶原蛋白[30]。此外,谷氨酰胺代谢可以通过调控线粒体功能,影响细胞能量代谢,促进SSc的病情发展[31]

以上研究表明,SSc状态下皮肤谷氨酰胺代谢增加,其产物通过促进胶原蛋白的合成与稳定等途径促进细胞外基质产生,进而导致皮肤硬化。

2.4. 氧化磷酸化

氧化磷酸化是线粒体内通过电子传递链(复合体I~IV)传递电子驱动质子泵,形成质子梯度,最终由ATP合酶利用梯度能量将ADP磷酸化为ATP的过程。它是细胞能量代谢的关键过程,主要在线粒体内进行。线粒体借助电子传递链(ETC),将葡萄糖、脂肪酸等营养物质高效转化为ATP期间会产生活性氧(ROS)作为副产物。正常情况下,ROS在细胞信号传导中发挥重要作用,但当其产生过多或清除不足时,就会导致氧化应激,而SSc患者的氧化应激水平显著升高[32]

氧化应激在SSc的发生发展进程中扮演着关键角色,通过多种机制驱动疾病进展。氧化应激能够促进纤维母细胞活化,致使皮肤纤维母细胞病理性激活,进而引发胶原蛋白的过度合成,最终造成皮肤纤维化[33] [34]。ROS作为氧化应激的关键介质,能够对多种信号通路产生影响,其中TGF-β通路尤为关键,它是纤维化过程的核心调节因子[34]。其次,研究发现,缺氧条件下细胞外ATP的释放增加,有力地推动了皮肤纤维化进程。ATP不仅能够诱导IL-6/IL-6受体转导,进而增加SSc成纤维细胞中I型胶原的产生,还能作为信号分子,通过激活特定受体,引发炎症反应与纤维化[35]。SSc患者普遍存在抗氧化剂水平降低、氧化剂(如ROS)水平升高的现象,由此导致氧化还原失衡。这种失衡状态不仅加速了纤维化进程,还可能干扰免疫系统的正常功能,引发异常免疫应答,进一步加重病情[36]。此外,氧化磷酸化主要在线粒体中进行,有研究表明,线粒体DNA (mtDNA)的氧化损伤程度与皮肤硬度评分呈正相关,进一步凸显了线粒体氧化损伤在SSc病情发展中的重要作用[37]

以上研究表明,SSc状态下氧化应激水平升高,后者通过活化纤维母细胞、影响TGF-β/SMAD等信号通路、增加ATP释放等多种途径促进纤维化的发生与发展。

3. 总结与展望

能量代谢是一个复杂且动态的过程,涉及多个代谢途径的相互作用。这些代谢改变不仅反映了细胞对纤维化刺激的适应性反应,还可能主动参与调控纤维化过程。深入研究SSc中的能量代谢的改变,不仅有助于更好地理解疾病的发病机制,还可能为开发新的诊断方法与治疗策略提供重要线索。

未来的研究需要进一步阐明能量代谢在SSc中的具体分子机制,特别是不同代谢途径之间的相互作用。同时,应探索靶向代谢途径的治疗方法,如调节糖酵解、脂质代谢或谷氨酰胺代谢的药物。此外,应重视能量代谢与免疫系统、血管系统等其他病理过程相互作用的研究,以全面理解SSc的复杂发病机制。

NOTES

*通讯作者。

参考文献

[1] Bairkdar, M., Rossides, M., Westerlind, H., Hesselstrand, R., Arkema, E.V. and Holmqvist, M. (2021) Incidence and Prevalence of Systemic Sclerosis Globally: A Comprehensive Systematic Review and Meta-Analysis. Rheumatology, 60, 3121-3133.
https://doi.org/10.1093/rheumatology/keab190
[2] Good, S.D., Lee, J.Y., Johnson, R.E. and Volkmann, E.R. (2024) A Scoping Review of the Epidemiology of Systemic Sclerosis and Its Organ Manifestations: 2018-2024. Current Opinion in Rheumatology, 37, 103-112.
https://doi.org/10.1097/bor.0000000000001063
[3] Schett, G., Mackensen, A. and Mougiakakos, D. (2023) CAR T-Cell Therapy in Autoimmune Diseases. The Lancet, 402, 2034-2044.
https://doi.org/10.1016/s0140-6736(23)01126-1
[4] Siegert, E., Uruha, A., Goebel, H., Preuße, C., Casteleyn, V., Kleefeld, F., et al. (2021) Systemic Sclerosis-Associated Myositis Features Minimal Inflammation and Characteristic Capillary Pathology. Acta Neuropathologica, 141, 917-927.
https://doi.org/10.1007/s00401-021-02305-3
[5] Adler, B.L., Boin, F., Wolters, P.J., Bingham, C.O., Shah, A.A., Greider, C., et al. (2021) Autoantibodies Targeting Telomere-Associated Proteins in Systemic Sclerosis. Annals of the Rheumatic Diseases, 80, 912-919.
https://doi.org/10.1136/annrheumdis-2020-218918
[6] Spagnolo, P., Distler, O., Ryerson, C.J., Tzouvelekis, A., Lee, J.S., Bonella, F., et al. (2021) Mechanisms of Progressive Fibrosis in Connective Tissue Disease (CTD)-Associated Interstitial Lung Diseases (ILDs). Annals of the Rheumatic Diseases, 80, 143-150.
https://doi.org/10.1136/annrheumdis-2020-217230
[7] Feng, C., Shan, M., Xia, Y., Zheng, Z., He, K., Wei, Y., et al. (2022) Single-Cell RNA Sequencing Reveals Distinct Immunology Profiles in Human Keloid. Frontiers in Immunology, 13, Article ID: 940645.
https://doi.org/10.3389/fimmu.2022.940645
[8] Murgia, F., Svegliati, S., Poddighe, S., Lussu, M., Manzin, A., Spadoni, T., et al. (2018) Metabolomic Profile of Systemic Sclerosis Patients. Scientific Reports, 8, Article No. 7626.
https://doi.org/10.1038/s41598-018-25992-7
[9] Nathan, S., Wang, Y., D’ambrosio, M., Paul, R., Lyu, H., Delic, D., et al. (2024) Comparative Transcriptomic Analysis Validates iPSC Derived In-Vitro Progressive Fibrosis Model as a Screening Tool for Drug Discovery and Development in Systemic Sclerosis. Scientific Reports, 14, Article No. 24428.
https://doi.org/10.1038/s41598-024-74610-2
[10] Surazynski, A., Miltyk, W., Prokop, I. and Palka, J. (2010) Prolidase-Dependent Regulation of TGF C and TGF Β Receptor Expressions in Human Skin Fibroblasts. European Journal of Pharmacology, 649, 115-119.
https://doi.org/10.1016/j.ejphar.2010.09.034
[11] Schwörer, S., Pavlova, N.N., Cimino, F.V., King, B., Cai, X., Sizemore, G.M., et al. (2021) Fibroblast Pyruvate Carboxylase Is Required for Collagen Production in the Tumour Microenvironment. Nature Metabolism, 3, 1484-1499.
https://doi.org/10.1038/s42255-021-00480-x
[12] Andreucci, E., Margheri, F., Peppicelli, S., Bianchini, F., Ruzzolini, J., Laurenzana, A., et al. (2021) Glycolysis-Derived Acidic Microenvironment as a Driver of Endothelial Dysfunction in Systemic Sclerosis. Rheumatology, 60, 4508-4519.
https://doi.org/10.1093/rheumatology/keab022
[13] Geroldinger-Simić, M., Bögl, T., Himmelsbach, M., Sepp, N. and Buchberger, W. (2021) Changes in Plasma Phospholipid Metabolism Are Associated with Clinical Manifestations of Systemic Sclerosis. Diagnostics, 11, Article No. 2116.
https://doi.org/10.3390/diagnostics11112116
[14] Nigdelioglu, R., Hamanaka, R.B., Meliton, A.Y., O’Leary, E., Witt, L.J., Cho, T., et al. (2016) Transforming Growth Factor (TGF)-β Promotes De Novo Serine Synthesis for Collagen Production. Journal of Biological Chemistry, 291, 27239-27251.
https://doi.org/10.1074/jbc.m116.756247
[15] Ung, C.Y., Onoufriadis, A., Parsons, M., McGrath, J.A. and Shaw, T.J. (2021) Metabolic Perturbations in Fibrosis Disease. The International Journal of Biochemistry & Cell Biology, 139, Article ID: 106073.
https://doi.org/10.1016/j.biocel.2021.106073
[16] Kasza, I., Hernando, D., Roldán-Alzate, A., Alexander, C.M. and Reeder, S.B. (2016) Thermogenic Profiling Using Magnetic Resonance Imaging of Dermal and Other Adipose Tissues. JCI Insight, 1, e87146.
https://doi.org/10.1172/jci.insight.87146
[17] Gogulska, Z., Smolenska, Z., Turyn, J., Mika, A. and Zdrojewski, Z. (2021) Lipid Alterations in Systemic Sclerosis. Frontiers in Molecular Biosciences, 8, Article ID: 761721.
https://doi.org/10.3389/fmolb.2021.761721
[18] Kim, H., Kim, A., Kim, Y., Kim, G., Ahn, E., So, M., et al. (2020) Associations of Serum Monocyte-to-High-Density Lipoprotein Cholesterol Ratio with Digital Ulcers and Skin Fibrosis in Patients with Systemic Sclerosis. Scandinavian Journal of Rheumatology, 50, 231-238.
https://doi.org/10.1080/03009742.2020.1837237
[19] Fernández-Ochoa, Á., Quirantes-Piné, R., Borrás-Linares, I., Gemperline, D., Alarcón Riquelme, M.E., Beretta, L., et al. (2019) Urinary and Plasma Metabolite Differences Detected by HPLC-ESI-QTOF-MS in Systemic Sclerosis Patients. Journal of Pharmaceutical and Biomedical Analysis, 162, 82-90.
https://doi.org/10.1016/j.jpba.2018.09.021
[20] Mika, A., Pakiet, A., Czumaj, A., Kaczynski, Z., Liakh, I., Kobiela, J., et al. (2020) Decreased Triacylglycerol Content and Elevated Contents of Cell Membrane Lipids in Colorectal Cancer Tissue: A Lipidomic Study. Journal of Clinical Medicine, 9, Article No. 1095.
https://doi.org/10.3390/jcm9041095
[21] Zhao, X., Psarianos, P., Ghoraie, L.S., Yip, K., Goldstein, D., Gilbert, R., et al. (2019) Metabolic Regulation of Dermal Fibroblasts Contributes to Skin Extracellular Matrix Homeostasis and Fibrosis. Nature Metabolism, 1, 147-157.
https://doi.org/10.1038/s42255-018-0008-5
[22] Tokumura, A., Carbone, L.D., Yoshioka, Y., Morishige, J., Kikuchi, M., Postlethwaite, A., et al. (2009) Elevated Serum Levels of Arachidonoyl-Lysophosphatidic Acid and Sphingosine 1-Phosphate in Systemic Sclerosis. International Journal of Medical Sciences, 6, 168-176.
https://doi.org/10.7150/ijms.6.168
[23] Ottria, A., Hoekstra, A.T., Zimmermann, M., van der Kroef, M., Vazirpanah, N., Cossu, M., et al. (2020) Fatty Acid and Carnitine Metabolism Are Dysregulated in Systemic Sclerosis Patients. Frontiers in Immunology, 11, Article No. 822.
https://doi.org/10.3389/fimmu.2020.00822
[24] Tsukahara, T., Matsuda, Y. and Haniu, H. (2017) Lysophospholipid-Related Diseases and PPARγ Signaling Pathway. International Journal of Molecular Sciences, 18, Article No. 2730.
https://doi.org/10.3390/ijms18122730
[25] Żółkiewicz, J., Stochmal, A., Zaremba, M., Rudnicka, L. and Czuwara, J. (2020) Circulating Peroxisome Proliferator-Activated Receptor γ Is Elevated in Systemic Sclerosis. Advances in Dermatology and Allergology, 37, 921-926.
https://doi.org/10.5114/ada.2019.84746
[26] Ma, Z., Yuan, Y., Zhang, X., Xu, S., Wang, S. and Tang, Q. (2017) Piperine Attenuates Pathological Cardiac Fibrosis via PPAR-γ/AKT Pathways. EBioMedicine, 18, 179-187.
https://doi.org/10.1016/j.ebiom.2017.03.021
[27] Henderson, J., Duffy, L., Stratton, R., Ford, D. and O’Reilly, S. (2020) Metabolic Reprogramming of Glycolysis and Glutamine Metabolism Are Key Events in Myofibroblast Transition in Systemic Sclerosis Pathogenesis. Journal of Cellular and Molecular Medicine, 24, 14026-14038.
https://doi.org/10.1111/jcmm.16013
[28] Bornstein, R., Mulholland, M.T., Sedensky, M., Morgan, P. and Johnson, S.C. (2023) Glutamine Metabolism in Diseases Associated with Mitochondrial Dysfunction. Molecular and Cellular Neuroscience, 126, Article ID: 103887.
https://doi.org/10.1016/j.mcn.2023.103887
[29] Hamanaka, R.B., O’Leary, E.M., Witt, L.J., Tian, Y., Gökalp, G.A., Meliton, A.Y., et al. (2019) Glutamine Metabolism Is Required for Collagen Protein Synthesis in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 61, 597-606.
https://doi.org/10.1165/rcmb.2019-0008oc
[30] Ge, J., Cui, H., Xie, N., Banerjee, S., Guo, S., Dubey, S., et al. (2018) Glutaminolysis Promotes Collagen Translation and Stability via Α-Ketoglutarate-Mediated mTOR Activation and Proline Hydroxylation. American Journal of Respiratory Cell and Molecular Biology, 58, 378-390.
https://doi.org/10.1165/rcmb.2017-0238oc
[31] Cai, Y., Tian, B., Deng, Y., Liu, L., Zhang, C., Peng, W., et al. (2024) Glutamine Metabolism Promotes Renal Fibrosis through Regulation of Mitochondrial Energy Generation and Mitochondrial Fission. International Journal of Biological Sciences, 20, 987-1003.
https://doi.org/10.7150/ijbs.89960
[32] Piera‐Velazquez, S., Makul, A. and Jiménez, S.A. (2015) Increased Expression of NAPDH Oxidase 4 in Systemic Sclerosis Dermal Fibroblasts: Regulation by Transforming Growth Factor Β. Arthritis & Rheumatology, 67, 2749-2758.
https://doi.org/10.1002/art.39242
[33] Grygiel-Górniak, B. and Puszczewicz, M. (2014) Oxidative Damage and Antioxidative Therapy in Systemic Sclerosis. Mediators of Inflammation, 2014, Article ID: 389582.
https://doi.org/10.1155/2014/389582
[34] Shroff, A., Mamalis, A. and Jagdeo, J. (2014) Oxidative Stress and Skin Fibrosis. Current Pathobiology Reports, 2, 257-267.
https://doi.org/10.1007/s40139-014-0062-y
[35] Perera, L.M.B., Sekiguchi, A., Uchiyama, A., Uehara, A., Fujiwara, C., Yamazaki, S., et al. (2019) The Regulation of Skin Fibrosis in Systemic Sclerosis by Extracellular ATP via P2Y2 Purinergic Receptor. Journal of Investigative Dermatology, 139, 890-899.
https://doi.org/10.1016/j.jid.2018.10.027
[36] Doridot, L., Jeljeli, M., Chêne, C. and Batteux, F. (2019) Implication of Oxidative Stress in the Pathogenesis of Systemic Sclerosis via Inflammation, Autoimmunity and Fibrosis. Redox Biology, 25, Article ID: 101122.
https://doi.org/10.1016/j.redox.2019.101122
[37] Zhou, X., Trinh‐Minh, T., Tran‐Manh, C., Gießl, A., Bergmann, C., Györfi, A., et al. (2022) Impaired Mitochondrial Transcription Factor an Expression Promotes Mitochondrial Damage to Drive Fibroblast Activation and Fibrosis in Systemic Sclerosis. Arthritis & Rheumatology, 74, 871-881.
https://doi.org/10.1002/art.42033