[1]
|
Bairkdar, M., Rossides, M., Westerlind, H., Hesselstrand, R., Arkema, E.V. and Holmqvist, M. (2021) Incidence and Prevalence of Systemic Sclerosis Globally: A Comprehensive Systematic Review and Meta-Analysis. Rheumatology, 60, 3121-3133. https://doi.org/10.1093/rheumatology/keab190
|
[2]
|
Good, S.D., Lee, J.Y., Johnson, R.E. and Volkmann, E.R. (2024) A Scoping Review of the Epidemiology of Systemic Sclerosis and Its Organ Manifestations: 2018-2024. Current Opinion in Rheumatology, 37, 103-112. https://doi.org/10.1097/bor.0000000000001063
|
[3]
|
Schett, G., Mackensen, A. and Mougiakakos, D. (2023) CAR T-Cell Therapy in Autoimmune Diseases. The Lancet, 402, 2034-2044. https://doi.org/10.1016/s0140-6736(23)01126-1
|
[4]
|
Siegert, E., Uruha, A., Goebel, H., Preuße, C., Casteleyn, V., Kleefeld, F., et al. (2021) Systemic Sclerosis-Associated Myositis Features Minimal Inflammation and Characteristic Capillary Pathology. Acta Neuropathologica, 141, 917-927. https://doi.org/10.1007/s00401-021-02305-3
|
[5]
|
Adler, B.L., Boin, F., Wolters, P.J., Bingham, C.O., Shah, A.A., Greider, C., et al. (2021) Autoantibodies Targeting Telomere-Associated Proteins in Systemic Sclerosis. Annals of the Rheumatic Diseases, 80, 912-919. https://doi.org/10.1136/annrheumdis-2020-218918
|
[6]
|
Spagnolo, P., Distler, O., Ryerson, C.J., Tzouvelekis, A., Lee, J.S., Bonella, F., et al. (2021) Mechanisms of Progressive Fibrosis in Connective Tissue Disease (CTD)-Associated Interstitial Lung Diseases (ILDs). Annals of the Rheumatic Diseases, 80, 143-150. https://doi.org/10.1136/annrheumdis-2020-217230
|
[7]
|
Feng, C., Shan, M., Xia, Y., Zheng, Z., He, K., Wei, Y., et al. (2022) Single-Cell RNA Sequencing Reveals Distinct Immunology Profiles in Human Keloid. Frontiers in Immunology, 13, Article ID: 940645. https://doi.org/10.3389/fimmu.2022.940645
|
[8]
|
Murgia, F., Svegliati, S., Poddighe, S., Lussu, M., Manzin, A., Spadoni, T., et al. (2018) Metabolomic Profile of Systemic Sclerosis Patients. Scientific Reports, 8, Article No. 7626. https://doi.org/10.1038/s41598-018-25992-7
|
[9]
|
Nathan, S., Wang, Y., D’ambrosio, M., Paul, R., Lyu, H., Delic, D., et al. (2024) Comparative Transcriptomic Analysis Validates iPSC Derived In-Vitro Progressive Fibrosis Model as a Screening Tool for Drug Discovery and Development in Systemic Sclerosis. Scientific Reports, 14, Article No. 24428. https://doi.org/10.1038/s41598-024-74610-2
|
[10]
|
Surazynski, A., Miltyk, W., Prokop, I. and Palka, J. (2010) Prolidase-Dependent Regulation of TGF C and TGF Β Receptor Expressions in Human Skin Fibroblasts. European Journal of Pharmacology, 649, 115-119. https://doi.org/10.1016/j.ejphar.2010.09.034
|
[11]
|
Schwörer, S., Pavlova, N.N., Cimino, F.V., King, B., Cai, X., Sizemore, G.M., et al. (2021) Fibroblast Pyruvate Carboxylase Is Required for Collagen Production in the Tumour Microenvironment. Nature Metabolism, 3, 1484-1499. https://doi.org/10.1038/s42255-021-00480-x
|
[12]
|
Andreucci, E., Margheri, F., Peppicelli, S., Bianchini, F., Ruzzolini, J., Laurenzana, A., et al. (2021) Glycolysis-Derived Acidic Microenvironment as a Driver of Endothelial Dysfunction in Systemic Sclerosis. Rheumatology, 60, 4508-4519. https://doi.org/10.1093/rheumatology/keab022
|
[13]
|
Geroldinger-Simić, M., Bögl, T., Himmelsbach, M., Sepp, N. and Buchberger, W. (2021) Changes in Plasma Phospholipid Metabolism Are Associated with Clinical Manifestations of Systemic Sclerosis. Diagnostics, 11, Article No. 2116. https://doi.org/10.3390/diagnostics11112116
|
[14]
|
Nigdelioglu, R., Hamanaka, R.B., Meliton, A.Y., O’Leary, E., Witt, L.J., Cho, T., et al. (2016) Transforming Growth Factor (TGF)-β Promotes De Novo Serine Synthesis for Collagen Production. Journal of Biological Chemistry, 291, 27239-27251. https://doi.org/10.1074/jbc.m116.756247
|
[15]
|
Ung, C.Y., Onoufriadis, A., Parsons, M., McGrath, J.A. and Shaw, T.J. (2021) Metabolic Perturbations in Fibrosis Disease. The International Journal of Biochemistry & Cell Biology, 139, Article ID: 106073. https://doi.org/10.1016/j.biocel.2021.106073
|
[16]
|
Kasza, I., Hernando, D., Roldán-Alzate, A., Alexander, C.M. and Reeder, S.B. (2016) Thermogenic Profiling Using Magnetic Resonance Imaging of Dermal and Other Adipose Tissues. JCI Insight, 1, e87146. https://doi.org/10.1172/jci.insight.87146
|
[17]
|
Gogulska, Z., Smolenska, Z., Turyn, J., Mika, A. and Zdrojewski, Z. (2021) Lipid Alterations in Systemic Sclerosis. Frontiers in Molecular Biosciences, 8, Article ID: 761721. https://doi.org/10.3389/fmolb.2021.761721
|
[18]
|
Kim, H., Kim, A., Kim, Y., Kim, G., Ahn, E., So, M., et al. (2020) Associations of Serum Monocyte-to-High-Density Lipoprotein Cholesterol Ratio with Digital Ulcers and Skin Fibrosis in Patients with Systemic Sclerosis. Scandinavian Journal of Rheumatology, 50, 231-238. https://doi.org/10.1080/03009742.2020.1837237
|
[19]
|
Fernández-Ochoa, Á., Quirantes-Piné, R., Borrás-Linares, I., Gemperline, D., Alarcón Riquelme, M.E., Beretta, L., et al. (2019) Urinary and Plasma Metabolite Differences Detected by HPLC-ESI-QTOF-MS in Systemic Sclerosis Patients. Journal of Pharmaceutical and Biomedical Analysis, 162, 82-90. https://doi.org/10.1016/j.jpba.2018.09.021
|
[20]
|
Mika, A., Pakiet, A., Czumaj, A., Kaczynski, Z., Liakh, I., Kobiela, J., et al. (2020) Decreased Triacylglycerol Content and Elevated Contents of Cell Membrane Lipids in Colorectal Cancer Tissue: A Lipidomic Study. Journal of Clinical Medicine, 9, Article No. 1095. https://doi.org/10.3390/jcm9041095
|
[21]
|
Zhao, X., Psarianos, P., Ghoraie, L.S., Yip, K., Goldstein, D., Gilbert, R., et al. (2019) Metabolic Regulation of Dermal Fibroblasts Contributes to Skin Extracellular Matrix Homeostasis and Fibrosis. Nature Metabolism, 1, 147-157. https://doi.org/10.1038/s42255-018-0008-5
|
[22]
|
Tokumura, A., Carbone, L.D., Yoshioka, Y., Morishige, J., Kikuchi, M., Postlethwaite, A., et al. (2009) Elevated Serum Levels of Arachidonoyl-Lysophosphatidic Acid and Sphingosine 1-Phosphate in Systemic Sclerosis. International Journal of Medical Sciences, 6, 168-176. https://doi.org/10.7150/ijms.6.168
|
[23]
|
Ottria, A., Hoekstra, A.T., Zimmermann, M., van der Kroef, M., Vazirpanah, N., Cossu, M., et al. (2020) Fatty Acid and Carnitine Metabolism Are Dysregulated in Systemic Sclerosis Patients. Frontiers in Immunology, 11, Article No. 822. https://doi.org/10.3389/fimmu.2020.00822
|
[24]
|
Tsukahara, T., Matsuda, Y. and Haniu, H. (2017) Lysophospholipid-Related Diseases and PPARγ Signaling Pathway. International Journal of Molecular Sciences, 18, Article No. 2730. https://doi.org/10.3390/ijms18122730
|
[25]
|
Żółkiewicz, J., Stochmal, A., Zaremba, M., Rudnicka, L. and Czuwara, J. (2020) Circulating Peroxisome Proliferator-Activated Receptor γ Is Elevated in Systemic Sclerosis. Advances in Dermatology and Allergology, 37, 921-926. https://doi.org/10.5114/ada.2019.84746
|
[26]
|
Ma, Z., Yuan, Y., Zhang, X., Xu, S., Wang, S. and Tang, Q. (2017) Piperine Attenuates Pathological Cardiac Fibrosis via PPAR-γ/AKT Pathways. EBioMedicine, 18, 179-187. https://doi.org/10.1016/j.ebiom.2017.03.021
|
[27]
|
Henderson, J., Duffy, L., Stratton, R., Ford, D. and O’Reilly, S. (2020) Metabolic Reprogramming of Glycolysis and Glutamine Metabolism Are Key Events in Myofibroblast Transition in Systemic Sclerosis Pathogenesis. Journal of Cellular and Molecular Medicine, 24, 14026-14038. https://doi.org/10.1111/jcmm.16013
|
[28]
|
Bornstein, R., Mulholland, M.T., Sedensky, M., Morgan, P. and Johnson, S.C. (2023) Glutamine Metabolism in Diseases Associated with Mitochondrial Dysfunction. Molecular and Cellular Neuroscience, 126, Article ID: 103887. https://doi.org/10.1016/j.mcn.2023.103887
|
[29]
|
Hamanaka, R.B., O’Leary, E.M., Witt, L.J., Tian, Y., Gökalp, G.A., Meliton, A.Y., et al. (2019) Glutamine Metabolism Is Required for Collagen Protein Synthesis in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 61, 597-606. https://doi.org/10.1165/rcmb.2019-0008oc
|
[30]
|
Ge, J., Cui, H., Xie, N., Banerjee, S., Guo, S., Dubey, S., et al. (2018) Glutaminolysis Promotes Collagen Translation and Stability via Α-Ketoglutarate-Mediated mTOR Activation and Proline Hydroxylation. American Journal of Respiratory Cell and Molecular Biology, 58, 378-390. https://doi.org/10.1165/rcmb.2017-0238oc
|
[31]
|
Cai, Y., Tian, B., Deng, Y., Liu, L., Zhang, C., Peng, W., et al. (2024) Glutamine Metabolism Promotes Renal Fibrosis through Regulation of Mitochondrial Energy Generation and Mitochondrial Fission. International Journal of Biological Sciences, 20, 987-1003. https://doi.org/10.7150/ijbs.89960
|
[32]
|
Piera‐Velazquez, S., Makul, A. and Jiménez, S.A. (2015) Increased Expression of NAPDH Oxidase 4 in Systemic Sclerosis Dermal Fibroblasts: Regulation by Transforming Growth Factor Β. Arthritis & Rheumatology, 67, 2749-2758. https://doi.org/10.1002/art.39242
|
[33]
|
Grygiel-Górniak, B. and Puszczewicz, M. (2014) Oxidative Damage and Antioxidative Therapy in Systemic Sclerosis. Mediators of Inflammation, 2014, Article ID: 389582. https://doi.org/10.1155/2014/389582
|
[34]
|
Shroff, A., Mamalis, A. and Jagdeo, J. (2014) Oxidative Stress and Skin Fibrosis. Current Pathobiology Reports, 2, 257-267. https://doi.org/10.1007/s40139-014-0062-y
|
[35]
|
Perera, L.M.B., Sekiguchi, A., Uchiyama, A., Uehara, A., Fujiwara, C., Yamazaki, S., et al. (2019) The Regulation of Skin Fibrosis in Systemic Sclerosis by Extracellular ATP via P2Y2 Purinergic Receptor. Journal of Investigative Dermatology, 139, 890-899. https://doi.org/10.1016/j.jid.2018.10.027
|
[36]
|
Doridot, L., Jeljeli, M., Chêne, C. and Batteux, F. (2019) Implication of Oxidative Stress in the Pathogenesis of Systemic Sclerosis via Inflammation, Autoimmunity and Fibrosis. Redox Biology, 25, Article ID: 101122. https://doi.org/10.1016/j.redox.2019.101122
|
[37]
|
Zhou, X., Trinh‐Minh, T., Tran‐Manh, C., Gießl, A., Bergmann, C., Györfi, A., et al. (2022) Impaired Mitochondrial Transcription Factor an Expression Promotes Mitochondrial Damage to Drive Fibroblast Activation and Fibrosis in Systemic Sclerosis. Arthritis & Rheumatology, 74, 871-881. https://doi.org/10.1002/art.42033
|