[1]
|
Halling, J.F. and Pilegaard, H. (2020) PGC-1α-Mediated Regulation of Mitochondrial Function and Physiological Implications. Applied Physiology, Nutrition, and Metabolism, 45, 927-936. https://doi.org/10.1139/apnm-2020-0005
|
[2]
|
Jannig, P.R., Dumesic, P.A., Spiegelman, B.M. and Ruas, J.L. (2022) SnapShot: Regulation and Biology of PGC-1α. Cell, 185, 1444-1444.E1. https://doi.org/10.1016/j.cell.2022.03.027
|
[3]
|
Islam, M.T. (2016) Oxidative Stress and Mitochondrial Dysfunction-Linked Neurodegenerative Disorders. Neurological Research, 39, 73-82. https://doi.org/10.1080/01616412.2016.1251711
|
[4]
|
D’Egidio, F., et al. (2025) Antioxidant and Anti-Inflammatory Defenses in Huntington’s Disease: Roles of NRF2 and PGC-1α, and Therapeutic Strategies. Life, 15, Article 577. https://doi.org/10.3390/life15040577
|
[5]
|
Johri, A. (2021) Disentangling Mitochondria in Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article 11520. https://doi.org/10.3390/ijms222111520
|
[6]
|
Li, P.A., Hou, X. and Hao, S. (2017) Mitochondrial Biogenesis in Neurodegeneration. Journal of Neuroscience Research, 95, 2025-2029. https://doi.org/10.1002/jnr.24042
|
[7]
|
McMeekin, L.J., Bartley, A.F., Bohannon, A.S., Adlaf, E.W., van Groen, T., Boas, S.M., et al. (2020) A Role for PGC-1α in Transcription and Excitability of Neocortical and Hippocampal Excitatory Neurons. Neuroscience, 435, 73-94. https://doi.org/10.1016/j.neuroscience.2020.03.036
|
[8]
|
Fuentealba, J., Panes, J., Wendt, A., Ramirez-Molina, O. and Castro, P. (2022) Deciphering the Role of PGC-1α in Neurological Disorders: From Mitochondrial Dysfunction to Synaptic Failure. Neural Regeneration Research, 17, 237-245. https://doi.org/10.4103/1673-5374.317957
|
[9]
|
Austin, S. and St-Pierre, J. (2012) Pgc1α and Mitochondrial Metabolism—Emerging Concepts and Relevance in Ageing and Neurodegenerative Disorders. Journal of Cell Science, 125, 4963-4971. https://doi.org/10.1242/jcs.113662
|
[10]
|
Liang, H. and Ward, W.F. (2006) PGC-1α: A Key Regulator of Energy Metabolism. Advances in Physiology Education, 30, 145-151. https://doi.org/10.1152/advan.00052.2006
|
[11]
|
Tan, Z., Luo, X., Xiao, L., Tang, M., Bode, A.M., Dong, Z., et al. (2016) The Role of PGC1α in Cancer Metabolism and Its Therapeutic Implications. Molecular Cancer Therapeutics, 15, 774-782. https://doi.org/10.1158/1535-7163.mct-15-0621
|
[12]
|
Abu Shelbayeh, O., Arroum, T., Morris, S. and Busch, K.B. (2023) PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants, 12, Article 1075. https://doi.org/10.3390/antiox12051075
|
[13]
|
Mudò, G., Mäkelä, J., Liberto, V.D., Tselykh, T.V., Olivieri, M., Piepponen, P., et al. (2011) Transgenic Expression and Activation of PGC-1α Protect Dopaminergic Neurons in the MPTP Mouse Model of Parkinson’s Disease. Cellular and Molecular Life Sciences, 69, 1153-1165. https://doi.org/10.1007/s00018-011-0850-z
|
[14]
|
Ciron, C., Lengacher, S., Dusonchet, J., Aebischer, P. and Schneider, B.L. (2012) Sustained Expression of PGC-1 in the Rat Nigrostriatal System Selectively Impairs Dopaminergic Function. Human Molecular Genetics, 21, 1861-1876. https://doi.org/10.1093/hmg/ddr618
|
[15]
|
Rao, T., Li, J. and Gong, Y.M. (2025) Effect of Electroacupuncture at “Baihui” (GV20) and “Shenting” (GV24) on Cognitive Impairment and Mitochondrial Energy Metabolism in Vascular Dementia Rats. Acupuncture Research, 50, 22-31.
|
[16]
|
Li, T., Pang, S., Yu, Y., Wu, X., Guo, J. and Zhang, S. (2013) Proliferation of Parenchymal Microglia Is the Main Source of Microgliosis after Ischaemic Stroke. Brain, 136, 3578-3588. https://doi.org/10.1093/brain/awt287
|
[17]
|
Madry, C., Kyrargyri, V., Arancibia-Cárcamo, I.L., Jolivet, R., Kohsaka, S., Bryan, R.M., et al. (2018) Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron, 97, 299-312.e6. https://doi.org/10.1016/j.neuron.2017.12.002
|
[18]
|
Stratoulias, V., Venero, J.L., Tremblay, M. and Joseph, B. (2019) Microglial Subtypes: Diversity within the Microglial Community. The EMBO Journal, 38, e101997. https://doi.org/10.15252/embj.2019101997
|
[19]
|
Orihuela, R., McPherson, C.A. and Harry, G.J. (2015) Microglial M1/M2 Polarization and Metabolic States. British Journal of Pharmacology, 173, 649-665. https://doi.org/10.1111/bph.13139
|
[20]
|
张钟圆. PGC-1α通过调控线粒体TOM70/MICU1通路在脑出血中的神经保护作用研究[D]: [博士学位论文]. 杭州: 浙江大学, 2020.
|
[21]
|
Yang, X., Xu, S., Qian, Y. and Xiao, Q. (2017) Resveratrol Regulates Microglia M1/M2 Polarization via PGC-1α in Conditions of Neuroinflammatory Injury. Brain, Behavior, and Immunity, 64, 162-172. https://doi.org/10.1016/j.bbi.2017.03.003
|
[22]
|
Han, B., Jiang, W., Cui, P., Zheng, K., Dang, C., Wang, J., et al. (2021) Microglial PGC-1α Protects against Ischemic Brain Injury by Suppressing Neuroinflammation. Genome Medicine, 13, Article No. 47. https://doi.org/10.1186/s13073-021-00863-5
|
[23]
|
Zhao, Y., Zhang, J., Zheng, Y., Zhang, Y., Zhang, X.J., Wang, H., et al. (2021) NAD+ Improves Cognitive Function and Reduces Neuroinflammation by Ameliorating Mitochondrial Damage and Decreasing ROS Production in Chronic Cerebral Hypoperfusion Models through Sirt1/PGC-1α Pathway. Journal of Neuroinflammation, 18, Article No. 207. https://doi.org/10.1186/s12974-021-02250-8
|
[24]
|
Siracusa, R., Fusco, R. and Cuzzocrea, S. (2019) Astrocytes: Role and Functions in Brain Pathologies. Frontiers in Pharmacology, 10, Article 1114. https://doi.org/10.3389/fphar.2019.01114
|
[25]
|
Chung, W., Baldwin, K.T. and Allen, N.J. (2024) Astrocyte Regulation of Synapse Formation, Maturation, and Elimination. Cold Spring Harbor Perspectives in Biology, 16, a041352. https://doi.org/10.1101/cshperspect.a041352
|
[26]
|
Boisvert, M.M., Erikson, G.A., Shokhirev, M.N. and Allen, N.J. (2018) The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain. Cell Reports, 22, 269-285. https://doi.org/10.1016/j.celrep.2017.12.039
|
[27]
|
Augustyniak, J., Lenart, J., Gaj, P., Kolanowska, M., Jazdzewski, K., Stepien, P.P., et al. (2018) Bezafibrate Upregulates Mitochondrial Biogenesis and Influence Neural Differentiation of Human-Induced Pluripotent Stem Cells. Molecular Neurobiology, 56, 4346-4363. https://doi.org/10.1007/s12035-018-1368-2
|
[28]
|
Hwang, S., Lee, Y. and Jun, S.B. (2022) Co-Culture Platform for Neuron-Astrocyte Interaction Using Optogenetic Modulation. Biomedical Engineering Letters, 12, 401-411. https://doi.org/10.1007/s13534-022-00243-x
|
[29]
|
McMeekin, L.J., Fox, S.N., Boas, S.M. and Cowell, R.M. (2021) Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells, 10, Article 352. https://doi.org/10.3390/cells10020352
|
[30]
|
Nijland, P.G., Witte, M.E., van het Hof, B., van der Pol, S., Bauer, J., Lassmann, H., et al. (2014) Astroglial PGC-1α Increases Mitochondrial Antioxidant Capacity and Suppresses Inflammation: Implications for Multiple Sclerosis. Acta Neuropathologica Communications, 2, Article No. 170. https://doi.org/10.1186/s40478-014-0170-2
|
[31]
|
Domingues, H.S., Portugal, C.C., Socodato, R. and Relvas, J.B. (2016) Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Frontiers in Cell and Developmental Biology, 4, Article 71. https://doi.org/10.3389/fcell.2016.00071
|
[32]
|
Cowell, R.M., Blake, K.R. and Russell, J.W. (2007) Localization of the Transcriptional Coactivator PGC‐1α to Gabaergic Neurons during Maturation of the Rat Brain. Journal of Comparative Neurology, 502, 1-18. https://doi.org/10.1002/cne.21211
|
[33]
|
Xiang, Z., Valenza, M., Cui, L., Leoni, V., Jeong, H., Brilli, E., et al. (2011) Peroxisome-Proliferator-Activated Receptor Gamma Coactivator 1 Contributes to Dysmyelination in Experimental Models of Huntington’s Disease. Journal of Neuroscience, 31, 9544-9553. https://doi.org/10.1523/jneurosci.1291-11.2011
|
[34]
|
Xiang, Z. and Krainc, D. (2013) Pharmacological Upregulation of PGC1α in Oligodendrocytes: Implications for Huntington’s Disease. Journal of Huntington’s Disease, 2, 101-105. https://doi.org/10.3233/jhd-130046
|
[35]
|
Dang, C., Han, B., Li, Q., Han, R. and Hao, J. (2019) Up‐Regulation of PGC‐1α in Neurons Protects against Experimental Autoimmune Encephalomyelitis. The FASEB Journal, 33, 14811-14824. https://doi.org/10.1096/fj.201901149rr
|