PGC-1α在中枢神经胶质细胞中的作用研究进展
Research Progress on the Role of PGC-1α in Central Nervous System Glial Cells
DOI: 10.12677/acm.2025.1582192, PDF, HTML, XML,   
作者: 王姜琦:青岛大学医学部,山东 青岛;宋玉强*:青岛大学附属医院神经内科,山东 青岛
关键词: PGC-1α神经胶质细胞小胶质细胞星形胶质细胞少突胶质细胞PGC-1α Nervous System Glial Cells Microglia Astrocytes Oligodendrocytes
摘要: 过氧化物酶体增殖物激活受体γ共激活因子-1α (PGC-1α)作为一种关键的转录共激活因子,在中枢神经系统神经胶质细胞中发挥着不可或缺的作用,和诸多神经疾病发生发展进程紧密相连。本文全面阐述了PGC-1α在小胶质细胞、星形胶质细胞、少突胶质细胞等中枢神经胶质细胞中的表达、功能、调控机制以及其与中枢神经系统疾病关联的研究进展,旨在为神经系统疾病新的治疗方向带来启发。
Abstract: The peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α), as a crucial transcriptional co-activator, plays an indispensable role in the central nervous system glial cells and is closely associated with the occurrence and development of various neurological diseases. This article comprehensively reviews the expression, function, and regulatory mechanisms of PGC-1α in central nervous system glial cells such as microglia, astrocytes, and oligodendrocytes, as well as the research progress on its association with various central nervous system diseases. The aim is to provide insights into new treatment directions for neurological diseases.
文章引用:王姜琦, 宋玉强. PGC-1α在中枢神经胶质细胞中的作用研究进展[J]. 临床医学进展, 2025, 15(8): 13-18. https://doi.org/10.12677/acm.2025.1582192

1. 引言

过氧化物酶体增殖物激活受体γ共激活因子-1α (PPARγ co-activator 1α, PGC-1α)作为一种重要的转录共激活因子,是线粒体生物发生的强有力激动剂[1] [2]。在神经系统中,细胞正常运转所需的大量能量使得线粒体变得至关重要,PGC-1α作为线粒体途径中最重要的转录因子一直处于研究的热点,大量的研究证据表明,线粒体功能障碍和氧化应激显著促进神经系统疾病的发生发展[3],PGC-1α在帕金森病、阿尔茨海默病、亨廷顿病、肌萎缩侧索硬化症等神经疾病中均扮演着重要角色[4]-[8]。近年来研究表明,PGC-1α在神经胶质细胞中广泛表达并参与调控多种生理和病理过程。因此,深入研究PGC-1α在中枢神经胶质细胞中的作用和机制,可能对揭示相关神经系统疾病的发病机制和寻找新的治疗靶点具有重要意义。

2. PGC-1α概述

过氧化物酶体增殖物激活受体γ共激活因子-1α (PPARγ co-activator 1α, PGC-1α)是转录辅激活因子家族中的一员,最初被发现与能量代谢和线粒体生物合成密切相关[9],在哺乳动物的脂肪组织、骨骼肌、心脏肾脏和脑中高度表达,与多种转录因子(包括核呼吸因子1和2、雌激素相关受体α)相互作用,共同调控线粒体生物合成相关基因的表达,在参与氧化磷酸化和线粒体生物合成,诱导细胞凋亡、炎症反应、糖代谢、脂质代谢和肿瘤代谢中发挥着不可忽视的作用[10]-[12]

3. PGC-1α在神经系统中的双重作用

PGC-1α在神经系统等疾病中,尤其在不同病理阶段和不同细胞亚型中表现出典型的双重作用。研究表明,在帕金森细胞模型中诱导PGC-1α过表达会使大脑黑质纹状体中多巴胺能神经元免受变性和损伤,阻止多巴胺能神经元的缺失,但PGC-1α非生理性持续高表达可加速多巴胺能神经元变性[13] [14]。正常情况下,PGC-1α可诱导星形胶质细胞表达谷氨酸转运体,加速突触间隙谷氨酸清除,避免兴奋性毒性损伤。然而,在脊髓损伤等慢性病理状态下,PGC-1α可能驱动星形胶质细胞过度增殖并分泌纤维化相关蛋白,形成致密的胶质瘢痕阻碍神经轴突再生,减少神经营养因子释放,阻碍神经修复[15]。这说明PGC-1α过表达既有保护作用又有潜在损伤作用,PGC-1α的表达水平需要被严格控制。

PGC-1α表现出的双重作用受细胞微环境、信号通路及翻译后修饰等多重因素动态调控。炎症因子、氧化应激水平及代谢产物可通过改变PGC-1α与转录因子的结合特异性,使其选择性激活不同信号通路。例如,AMPK/SIRT1通路的激活可增强PGC-1α的转录活性,偏向保护功能;而MAPK通路过度激活可能导致PGC-1α磷酸化异常,使其功能向损伤性转变。PGC-1α的乙酰化、磷酸化及泛素化等修饰可直接影响其稳定性及与靶基因结合的能力。

4. PGC-1α在不同中枢神经胶质细胞中的研究

4.1. PGC-1α与小胶质细胞

在中枢神经系统中小胶质细胞作为核心免疫细胞,在维持中枢神经稳态、免疫监视与应答和神经修复等方面发挥着关键作用,在诸如免疫监测和对脑损伤的反应等病理事件中,小胶质细胞作为早期的免疫响应者会被激活,表型和功能发生改变释放大量促炎因子而引发神经炎症和损伤[16] [17]。小胶质细胞能够根据微环境的变化改变自身的表型和功能,具有功能可塑性和双重表型——经典激活表型M1 (促炎型)和替代激活表型M2 (抗炎型) [18] [19]。在张钟圆的研究中,脑出血发生后的72小时,PGC-1α表达显著升高,PGC-1α可通过调控TOM70/MICU1线粒体通路改善线粒体功能,从而减轻脑出血后的炎症反应,促进小胶质细胞向M2极化[20]。Yang等人证明,白藜芦醇促进了小胶质细胞向M2表型的极化,这导致了小胶质细胞激活的抑制以及脂多糖(LPS)诱导的炎症损伤的减轻。PGC-1α的敲低阻碍了M2极化,并抑制了NF-κB和STAT-3/6信号通路,这表明PGC-1α在白藜芦醇诱导的小胶质细胞M2极化中起作用[21]。Han等人的研究发现,缺血型性卒中的小鼠模型和人类患者中,小胶质细胞中过表达PGC-1α会导致缺血损伤后神经功能障碍的抑制,这种神经保护作用是由小胶质细胞中的线粒体自噬诱导的。PGC-1α诱导的自噬和线粒体自噬通过抑制NLRP3炎性小体而发挥作用,NLRP3在许多炎症性疾病中起着至关重要的作用[22]。PGC-1α可通过调节多种信号通路来影响小胶质细胞的功能。例如,PGC-1α可激活PI3K/Akt信号通路,抑制小胶质细胞的凋亡和炎症反应,PGC-1α还可调节MAPK信号通路,如p38 MAPK、ERK1/2等,这些信号通路在小胶质细胞的炎症反应和极化过程中发挥重要作用[23]。综上,PGC-1α在小胶质细胞中发挥着重要的调控作用,通过抑制炎症反应、促进自噬和改善线粒体功能等,对神经系统起到保护作用。

4.2. PGC-1α与星形胶质细胞

星形胶质细胞是哺乳动物大脑中数量最多的神经胶质细胞类型。线粒体生成在调节星形胶质细胞成熟和突触形成方面起着重要作用[24] [25]。最新研究表明,在星形胶质细胞的发育过程中,从增殖状态向成熟状态的转变需要PGC-1α的活性。通过删除PGC-1α导致线粒体生成过程中的基因沉默,从而导致星形胶质细胞的过度增殖以及形态发育和成熟过程的受阻,进而影响大脑皮层的发育[26]。在Augustyniak等人的研究中,人类诱导多能干细胞分化为神经元时,线粒体生成的激活与PPARGC1A基因(编码PGC-1α)的表达上调有关[27]。既往的研究表明,与过表达PGC-1α的星形胶质细胞共培养的神经元存活率明显提高,轴突和树突的生长更加旺盛,这可能与PGC-1α上调星形胶质细胞中神经营养因子的表达增强对神经元的支持和保护作用有关[28]。在神经系统疾病中,星形胶质细胞的炎症反应常常被激活,其释放促炎因子进一步加剧神经炎症和神经损伤。在LPS诱导的星形胶质细胞炎症模型中,过表达PGC-1α能够明显降低如白细胞介素-1β、白细胞介素-6、肿瘤坏死因子-α等促炎因子的mRNA和蛋白表达水平,其作用机制可能与抑制核因子-κB (NF-κB)信号通路的激活有关。另一方面,PGC-1α可显著增强星形胶质细胞中抗氧化酶的表达,提高细胞的抗氧化应激能力,促进ROS的清除,其作用机制可能与PGC-1α与转录因子核因子E2相关因子2(Nrf2)的相互作用有关[29]。除此之外,在多发性硬化(MS)患者的脑组织中发现PGC-1α在活化的星形胶质细胞中表达明显增强,显著地抑制了促炎因子的分泌,减轻了氧化应激损伤和神经炎症反应,改善了脑内的微环境[30]。总的来说,PGC-1α是星形胶质细胞生成成熟和神经系统损伤修复所必需的。

4.3. PGC-1α与少突胶质细胞

中枢神经系统中少突胶质细胞的主要功能是通过髓鞘化来为神经元提供支持,轴突的髓鞘化能够维持轴突的完整性,并促进神经信号的快速传导[31]。PCG-1α参与髓鞘化的现象最早由Cowell等人发现。他们的研究表明,在髓鞘形成过程中,大鼠大脑中的PGC-1α水平会有显著提高,在少突胶质细胞的分化过程中,PGC-1α会转移到细胞核中,在那里它与核复合物共定位,随后迅速降解[32]。而PGC-1α基因敲除小鼠则表现出髓鞘形成障碍,髓鞘结构异常,神经传导速度减慢。在少突胶质细胞中PGC-1α的表达水平与神经系统疾病联系密切,一项研究表明,在少突胶质细胞中PGC-1α活性不足可能会导致亨廷顿病(HD)中的髓鞘形成异常[33]。Xiang等人证明了亨廷顿病(HD)中髓鞘形成缺陷的潜在治疗靶点,他们发现在表达突变型亨廷顿蛋白的少突胶质细胞中,过表达SIRT1或用白藜芦醇(RSV)处理可上调PGC-1α表达,进而恢复少突胶质细胞的分化进程与髓鞘形成能力[34]。在多发性硬化症患者的大脑组织中及多发性硬化症小鼠模型(EAE)中,也观察到PGC-1α的表达显著降低,上调PGC-1α的表达可以减轻EAE小鼠的神经症状,减少髓鞘脱失和炎症细胞浸润[35]。最近研究表明,在这几种神经退行性疾病中,少突胶质细胞是脱髓鞘病变的主要攻击对象,干扰神经冲动的正常传导最终导致神经功能障碍。

5. 小结

目前,关于PGC-1α在神经胶质细胞中的作用及与神经系统疾病关系的研究取得了一定进展,但仍存在许多问题有待解决。在作用机制方面,虽然已经明确PGC-1α参与胶质细胞的增殖、分化、修复损伤等过程,但具体的分子调控尤其是PGC-1α与其他信号通路之间的交互作用仍不完全清楚,还需要进一步深入研究,例如恢复神经胶质细胞中PGC-1α的活性的同时,是否需要干预PGC-1α相关通路等。在神经系统疾病的治疗应用方面,因PGC-1α在全身多个组织中均有表达,非特异性激活可能引发代谢紊乱等副作用。所以特异性靶向胶质细胞中的PGC-1α以达到治疗疾病目的的同时,避免不良反应是一个巨大的挑战。PGC-1α的持续过表达也会导致神经细胞代谢活动的改变,因此PGC-1α的表达量需要被严格控制在合理范围内。目前药理学诱导PGC-1α表达被视作一种颇具潜力的神经保护策略,但其临床应用前景目前仍受限于相关候选药物血脑屏障穿透能力不足这一关键问题。开发能通过血脑屏障且仅在胶质细胞中发挥作用的小分子调节剂,或利用基因编辑技术实现靶向精准调控是未来研究的重要方向,将为神经系统疾病的治疗带来新的突破和希望。

NOTES

*通讯作者。

参考文献

[1] Halling, J.F. and Pilegaard, H. (2020) PGC-1α-Mediated Regulation of Mitochondrial Function and Physiological Implications. Applied Physiology, Nutrition, and Metabolism, 45, 927-936.
https://doi.org/10.1139/apnm-2020-0005
[2] Jannig, P.R., Dumesic, P.A., Spiegelman, B.M. and Ruas, J.L. (2022) SnapShot: Regulation and Biology of PGC-1α. Cell, 185, 1444-1444.E1.
https://doi.org/10.1016/j.cell.2022.03.027
[3] Islam, M.T. (2016) Oxidative Stress and Mitochondrial Dysfunction-Linked Neurodegenerative Disorders. Neurological Research, 39, 73-82.
https://doi.org/10.1080/01616412.2016.1251711
[4] D’Egidio, F., et al. (2025) Antioxidant and Anti-Inflammatory Defenses in Huntington’s Disease: Roles of NRF2 and PGC-1α, and Therapeutic Strategies. Life, 15, Article 577.
https://doi.org/10.3390/life15040577
[5] Johri, A. (2021) Disentangling Mitochondria in Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article 11520.
https://doi.org/10.3390/ijms222111520
[6] Li, P.A., Hou, X. and Hao, S. (2017) Mitochondrial Biogenesis in Neurodegeneration. Journal of Neuroscience Research, 95, 2025-2029.
https://doi.org/10.1002/jnr.24042
[7] McMeekin, L.J., Bartley, A.F., Bohannon, A.S., Adlaf, E.W., van Groen, T., Boas, S.M., et al. (2020) A Role for PGC-1α in Transcription and Excitability of Neocortical and Hippocampal Excitatory Neurons. Neuroscience, 435, 73-94.
https://doi.org/10.1016/j.neuroscience.2020.03.036
[8] Fuentealba, J., Panes, J., Wendt, A., Ramirez-Molina, O. and Castro, P. (2022) Deciphering the Role of PGC-1α in Neurological Disorders: From Mitochondrial Dysfunction to Synaptic Failure. Neural Regeneration Research, 17, 237-245.
https://doi.org/10.4103/1673-5374.317957
[9] Austin, S. and St-Pierre, J. (2012) Pgc1α and Mitochondrial Metabolism—Emerging Concepts and Relevance in Ageing and Neurodegenerative Disorders. Journal of Cell Science, 125, 4963-4971.
https://doi.org/10.1242/jcs.113662
[10] Liang, H. and Ward, W.F. (2006) PGC-1α: A Key Regulator of Energy Metabolism. Advances in Physiology Education, 30, 145-151.
https://doi.org/10.1152/advan.00052.2006
[11] Tan, Z., Luo, X., Xiao, L., Tang, M., Bode, A.M., Dong, Z., et al. (2016) The Role of PGC1α in Cancer Metabolism and Its Therapeutic Implications. Molecular Cancer Therapeutics, 15, 774-782.
https://doi.org/10.1158/1535-7163.mct-15-0621
[12] Abu Shelbayeh, O., Arroum, T., Morris, S. and Busch, K.B. (2023) PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants, 12, Article 1075.
https://doi.org/10.3390/antiox12051075
[13] Mudò, G., Mäkelä, J., Liberto, V.D., Tselykh, T.V., Olivieri, M., Piepponen, P., et al. (2011) Transgenic Expression and Activation of PGC-1α Protect Dopaminergic Neurons in the MPTP Mouse Model of Parkinson’s Disease. Cellular and Molecular Life Sciences, 69, 1153-1165.
https://doi.org/10.1007/s00018-011-0850-z
[14] Ciron, C., Lengacher, S., Dusonchet, J., Aebischer, P. and Schneider, B.L. (2012) Sustained Expression of PGC-1 in the Rat Nigrostriatal System Selectively Impairs Dopaminergic Function. Human Molecular Genetics, 21, 1861-1876.
https://doi.org/10.1093/hmg/ddr618
[15] Rao, T., Li, J. and Gong, Y.M. (2025) Effect of Electroacupuncture at “Baihui” (GV20) and “Shenting” (GV24) on Cognitive Impairment and Mitochondrial Energy Metabolism in Vascular Dementia Rats. Acupuncture Research, 50, 22-31.
[16] Li, T., Pang, S., Yu, Y., Wu, X., Guo, J. and Zhang, S. (2013) Proliferation of Parenchymal Microglia Is the Main Source of Microgliosis after Ischaemic Stroke. Brain, 136, 3578-3588.
https://doi.org/10.1093/brain/awt287
[17] Madry, C., Kyrargyri, V., Arancibia-Cárcamo, I.L., Jolivet, R., Kohsaka, S., Bryan, R.M., et al. (2018) Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron, 97, 299-312.e6.
https://doi.org/10.1016/j.neuron.2017.12.002
[18] Stratoulias, V., Venero, J.L., Tremblay, M. and Joseph, B. (2019) Microglial Subtypes: Diversity within the Microglial Community. The EMBO Journal, 38, e101997.
https://doi.org/10.15252/embj.2019101997
[19] Orihuela, R., McPherson, C.A. and Harry, G.J. (2015) Microglial M1/M2 Polarization and Metabolic States. British Journal of Pharmacology, 173, 649-665.
https://doi.org/10.1111/bph.13139
[20] 张钟圆. PGC-1α通过调控线粒体TOM70/MICU1通路在脑出血中的神经保护作用研究[D]: [博士学位论文]. 杭州: 浙江大学, 2020.
[21] Yang, X., Xu, S., Qian, Y. and Xiao, Q. (2017) Resveratrol Regulates Microglia M1/M2 Polarization via PGC-1α in Conditions of Neuroinflammatory Injury. Brain, Behavior, and Immunity, 64, 162-172.
https://doi.org/10.1016/j.bbi.2017.03.003
[22] Han, B., Jiang, W., Cui, P., Zheng, K., Dang, C., Wang, J., et al. (2021) Microglial PGC-1α Protects against Ischemic Brain Injury by Suppressing Neuroinflammation. Genome Medicine, 13, Article No. 47.
https://doi.org/10.1186/s13073-021-00863-5
[23] Zhao, Y., Zhang, J., Zheng, Y., Zhang, Y., Zhang, X.J., Wang, H., et al. (2021) NAD+ Improves Cognitive Function and Reduces Neuroinflammation by Ameliorating Mitochondrial Damage and Decreasing ROS Production in Chronic Cerebral Hypoperfusion Models through Sirt1/PGC-1α Pathway. Journal of Neuroinflammation, 18, Article No. 207.
https://doi.org/10.1186/s12974-021-02250-8
[24] Siracusa, R., Fusco, R. and Cuzzocrea, S. (2019) Astrocytes: Role and Functions in Brain Pathologies. Frontiers in Pharmacology, 10, Article 1114.
https://doi.org/10.3389/fphar.2019.01114
[25] Chung, W., Baldwin, K.T. and Allen, N.J. (2024) Astrocyte Regulation of Synapse Formation, Maturation, and Elimination. Cold Spring Harbor Perspectives in Biology, 16, a041352.
https://doi.org/10.1101/cshperspect.a041352
[26] Boisvert, M.M., Erikson, G.A., Shokhirev, M.N. and Allen, N.J. (2018) The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain. Cell Reports, 22, 269-285.
https://doi.org/10.1016/j.celrep.2017.12.039
[27] Augustyniak, J., Lenart, J., Gaj, P., Kolanowska, M., Jazdzewski, K., Stepien, P.P., et al. (2018) Bezafibrate Upregulates Mitochondrial Biogenesis and Influence Neural Differentiation of Human-Induced Pluripotent Stem Cells. Molecular Neurobiology, 56, 4346-4363.
https://doi.org/10.1007/s12035-018-1368-2
[28] Hwang, S., Lee, Y. and Jun, S.B. (2022) Co-Culture Platform for Neuron-Astrocyte Interaction Using Optogenetic Modulation. Biomedical Engineering Letters, 12, 401-411.
https://doi.org/10.1007/s13534-022-00243-x
[29] McMeekin, L.J., Fox, S.N., Boas, S.M. and Cowell, R.M. (2021) Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells, 10, Article 352.
https://doi.org/10.3390/cells10020352
[30] Nijland, P.G., Witte, M.E., van het Hof, B., van der Pol, S., Bauer, J., Lassmann, H., et al. (2014) Astroglial PGC-1α Increases Mitochondrial Antioxidant Capacity and Suppresses Inflammation: Implications for Multiple Sclerosis. Acta Neuropathologica Communications, 2, Article No. 170.
https://doi.org/10.1186/s40478-014-0170-2
[31] Domingues, H.S., Portugal, C.C., Socodato, R. and Relvas, J.B. (2016) Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Frontiers in Cell and Developmental Biology, 4, Article 71.
https://doi.org/10.3389/fcell.2016.00071
[32] Cowell, R.M., Blake, K.R. and Russell, J.W. (2007) Localization of the Transcriptional Coactivator PGC‐1α to Gabaergic Neurons during Maturation of the Rat Brain. Journal of Comparative Neurology, 502, 1-18.
https://doi.org/10.1002/cne.21211
[33] Xiang, Z., Valenza, M., Cui, L., Leoni, V., Jeong, H., Brilli, E., et al. (2011) Peroxisome-Proliferator-Activated Receptor Gamma Coactivator 1 Contributes to Dysmyelination in Experimental Models of Huntington’s Disease. Journal of Neuroscience, 31, 9544-9553.
https://doi.org/10.1523/jneurosci.1291-11.2011
[34] Xiang, Z. and Krainc, D. (2013) Pharmacological Upregulation of PGC1α in Oligodendrocytes: Implications for Huntington’s Disease. Journal of Huntingtons Disease, 2, 101-105.
https://doi.org/10.3233/jhd-130046
[35] Dang, C., Han, B., Li, Q., Han, R. and Hao, J. (2019) Up‐Regulation of PGC‐1α in Neurons Protects against Experimental Autoimmune Encephalomyelitis. The FASEB Journal, 33, 14811-14824.
https://doi.org/10.1096/fj.201901149rr