[1]
|
Eckel, R.H., Alberti, K., Grundy, S.M. and Zimmet, P.Z. (2010) The Metabolic Syndrome. The Lancet, 375, 181-183. https://doi.org/10.1016/s0140-6736(09)61794-3
|
[2]
|
Zouridis, S., Nasir, A.B., Aspichueta, P. and Syn, W. (2024) The Link between Metabolic Syndrome and the Brain. Digestion, 106, 203-211. https://doi.org/10.1159/000541696
|
[3]
|
Przybycien-Gaweda, P.M., Gwee, X., Gao, Q., Chua, D.Q.L., Fam, J. and Ng, T.P. (2020) Metabolic Syndrome and Cognition: Follow-Up Study of Chinese Over-55-Year-Olds. Dementia and Geriatric Cognitive Disorders, 49, 129-137. https://doi.org/10.1159/000509124
|
[4]
|
Wang, J., Zhang, L., Liu, J., Yang, W. and Ma, L. (2021) Metabolic Syndrome, Apoe Genotype, and Cognitive Dysfunction in an Elderly Population: A Single-Center, Case-Control Study. World Journal of Clinical Cases, 9, 1005-1015. https://doi.org/10.12998/wjcc.v9.i5.1005
|
[5]
|
Lai, M.M.Y., Ames, D.J., Cox, K.L., Ellis, K.A., Sharman, M.J., Hepworth, G., et al. (2020) Association between Cognitive Function and Clustered Cardiovascular Risk of Metabolic Syndrome in Older Adults at Risk of Cognitive Decline. The Journal of Nutrition, Health and Aging, 24, 300-304. https://doi.org/10.1007/s12603-020-1333-4
|
[6]
|
Buyo, M., Takahashi, S., Iwahara, A., Tsuji, T., Yamada, S., Hattori, S., et al. (2020) Metabolic Syndrome and Cognitive Function: Cross-Sectional Study on Community-Dwelling Non-Demented Older Adults in Japan. The Journal of Nutrition, Health and Aging, 24, 878-882. https://doi.org/10.1007/s12603-020-1412-6
|
[7]
|
Bahchevanov, K.M., Dzhambov, A.M., Chompalov, K.A., Massaldjieva, R.I., Atanassova, P.A. and Mitkov, M.D. (2020) Contribution of Components of Metabolic Syndrome to Cognitive Performance in Middle-Aged Adults. Archives of Clinical Neuropsychology, 36, 498-506. https://doi.org/10.1093/arclin/acaa081
|
[8]
|
González, H.M., Tarraf, W., Vásquez, P., Sanderlin, A.H., Rosenberg, N.I., Davis, S., et al. (2018) Metabolic Syndrome and Neurocognition among Diverse Middle-Aged and Older Hispanics/Latinos: HCHS/SOL Results. Diabetes Care, 41, 1501-1509. https://doi.org/10.2337/dc17-1896
|
[9]
|
Mehra, A., Suri, V., Kumari, S., Avasthi, A. and Grover, S. (2020) Association of Mild Cognitive Impairment and Metabolic Syndrome in Patients with Hypertension. Asian Journal of Psychiatry, 53, Article ID: 102185. https://doi.org/10.1016/j.ajp.2020.102185
|
[10]
|
Ou, Y., Lee, J., Huang, S., Chen, S., Geng, J. and Su, C. (2023) Association between Menopause, Postmenopausal Hormone Therapy and Metabolic Syndrome. Journal of Clinical Medicine, 12, Article No. 4435. https://doi.org/10.3390/jcm12134435
|
[11]
|
Pathirana, M.M., Lassi, Z.S., Ali, A., Arstall, M.A., Roberts, C.T. and Andraweera, P.H. (2020) Association between Metabolic Syndrome and Gestational Diabetes Mellitus in Women and Their Children: A Systematic Review and Meta-analysis. Endocrine, 71, 310-320. https://doi.org/10.1007/s12020-020-02492-1
|
[12]
|
Kazlauskaite, R., Janssen, I., Wilson, R.S., Appelhans, B.M., Evans, D.A., Arvanitakis, Z., et al. (2020) Is Midlife Metabolic Syndrome Associated with Cognitive Function Change? The Study of Women’s Health across the Nation. The Journal of Clinical Endocrinology & Metabolism, 105, e1093-e1105. https://doi.org/10.1210/clinem/dgaa067
|
[13]
|
Lu, R., Aziz, N.A., Diers, K., Stöcker, T., Reuter, M. and Breteler, M.M.B. (2021) Insulin Resistance Accounts for Metabolic Syndrome‐Related Alterations in Brain Structure. Human Brain Mapping, 42, 2434-2444. https://doi.org/10.1002/hbm.25377
|
[14]
|
De la Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., Millan, F., Salvador-Pascual, A., García-Lucerga, C., et al. (2020) Physical Exercise in the Prevention and Treatment of Alzheimer’s Disease. Journal of Sport and Health Science, 9, 394-404. https://doi.org/10.1016/j.jshs.2020.01.004
|
[15]
|
Ali, N.H., Al‐Kuraishy, H.M., Al‐Gareeb, A.I., Alexiou, A., Papadakis, M., Bahaa, M.M., et al. (2024) New Insight on the Potential Detrimental Effect of Metabolic Syndrome on the Alzheimer Disease Neuropathology: Mechanistic Role. Journal of Cellular and Molecular Medicine, 28, e70118. https://doi.org/10.1111/jcmm.70118
|
[16]
|
Spinelli, M., Fusco, S. and Grassi, C. (2020) Brain Insulin Resistance Impairs Hippocampal Plasticity. In: Vitamins and Hormones, Elsevier, 281-306. https://doi.org/10.1016/bs.vh.2020.04.005
|
[17]
|
Pan, W., Zhao, J., Wu, J., Xu, D., Meng, X., Jiang, P., et al. (2023) Dimethyl Itaconate Ameliorates Cognitive Impairment Induced by a High-Fat Diet via the Gut-Brain Axis in Mice. Microbiome, 11, Article No. 30. https://doi.org/10.1186/s40168-023-01471-8
|
[18]
|
Park, Y.H., Shin, S.J., Kim, H.S., Hong, S.B., Kim, S., Nam, Y., et al. (2020) Omega-3 Fatty Acid-Type Docosahexaenoic Acid Protects against Aβ-Mediated Mitochondrial Deficits and Pathomechanisms in Alzheimer’s Disease-Related Animal Model. International Journal of Molecular Sciences, 21, Article No. 3879. https://doi.org/10.3390/ijms21113879
|
[19]
|
Batiha, G.E., Al-Kuraishy, H.M., Al-Gareeb, A.I. and Elekhnawy, E. (2022) SIRT1 Pathway in Parkinson’s Disease: A Faraway Snapshot but So Close. Inflammopharmacology, 31, 37-56. https://doi.org/10.1007/s10787-022-01125-5
|
[20]
|
Martemucci, G., Fracchiolla, G., Muraglia, M., Tardugno, R., Dibenedetto, R.S. and D’Alessandro, A.G. (2023) Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants, 12, Article No. 2091. https://doi.org/10.3390/antiox12122091
|
[21]
|
Więckowska-Gacek, A., Mietelska-Porowska, A., Wydrych, M. and Wojda, U. (2021) Western Diet as a Trigger of Alzheimer’s Disease: From Metabolic Syndrome and Systemic Inflammation to Neuroinflammation and Neurodegeneration. Ageing Research Reviews, 70, Article ID: 101397. https://doi.org/10.1016/j.arr.2021.101397
|
[22]
|
Watts, G.F. and Mamo, J.C.L. (2020) Hypertriglyceridemia and Alzheimer Disease: Opening the Mind to New Therapeutic Opportunities. Clinical Chemistry, 67, 6-8. https://doi.org/10.1093/clinchem/hvaa294
|
[23]
|
Nordestgaard, L.T., Christoffersen, M., Afzal, S., Nordestgaard, B.G., Tybjærg-Hansen, A. and Frikke-Schmidt, R. (2020) triglycerides as a Shared Risk Factor between Dementia and Atherosclerotic Cardiovascular Disease: A Study of 125 727 Individuals. Clinical Chemistry, 67, 245-255. https://doi.org/10.1093/clinchem/hvaa269
|
[24]
|
Lyra e Silva, N.M., Gonçalves, R.A., Pascoal, T.A., Lima-Filho, R.A.S., Resende, E.d.P.F., Vieira, E.L.M., et al. (2021) Pro-Inflammatory Interleukin-6 Signaling Links Cognitive Impairments and Peripheral Metabolic Alterations in Alzheimer’s Disease. Translational Psychiatry, 11, Article No. 251. https://doi.org/10.1038/s41398-021-01349-z
|
[25]
|
Lopez-Lopez, A., Valenzuela, R., Rodriguez-Perez, A.I., Guerra, M.J., Labandeira-Garcia, J.L. and Muñoz, A. (2023) Interactions between Angiotensin Type-1 Antagonists, Statins, and ROCK Inhibitors in a Rat Model of L-DOPA-Induced Dyskinesia. Antioxidants, 12, Article No. 1454. https://doi.org/10.3390/antiox12071454
|
[26]
|
Khan, M.H., Pathan, S., Ansari, K., Baig, S., Ghafoor, A., Minhas, M., et al. (2025) Comparative Risk Assessment in Hypertensive Patients with Metabolic Syndrome by Exploring Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. Cureus, 17, e85564. https://doi.org/10.7759/cureus.85564
|
[27]
|
Alzarea, E.A., Al-Kuraishy, H.M., Al-Gareeb, A.I., Alexiou, A., Papadakis, M., Beshay, O.N., et al. (2025) The Conceivable Role of Metabolic Syndrome in the Pathogenesis of Alzheimer’s Disease: Cellular and Subcellular Alterations in Underpinning a Tale of Two. NeuroMolecular Medicine, 27, Article No. 35. https://doi.org/10.1007/s12017-025-08832-6
|
[28]
|
Portero-Tresserra, M., Galofré-López, N., Pallares, E., Gimenez-Montes, C., Barcia, C., Granero, R., et al. (2023) Effects of Caloric Restriction on Spatial Object Recognition Memory, Hippocampal Neuron Loss and Neuroinflammation in Aged Rats. Nutrients, 15, Article No. 1572. https://doi.org/10.3390/nu15071572
|
[29]
|
Wang, J., Bai, Y., Zeng, Z., Wang, J., Wang, P., Zhao, Y., et al. (2022) Association between Life-Course Cigarette Smoking and Metabolic Syndrome: A Discovery-Replication Strategy. Diabetology & Metabolic Syndrome, 14, Article No. 11. https://doi.org/10.1186/s13098-022-00784-2
|
[30]
|
Åberg, F., Byrne, C.D., Pirola, C.J., Männistö, V. and Sookoian, S. (2023) Alcohol Consumption and Metabolic Syndrome: Clinical and Epidemiological Impact on Liver Disease. Journal of Hepatology, 78, 191-206. https://doi.org/10.1016/j.jhep.2022.08.030
|
[31]
|
Gonzalez-Cano, S.I., Flores, G., Guevara, J., Morales-Medina, J.C., Treviño, S. and Diaz, A. (2023) Polyoxidovanadates a New Therapeutic Alternative for Neurodegenerative and Aging Diseases. Neural Regeneration Research, 19, 571-577. https://doi.org/10.4103/1673-5374.380877
|
[32]
|
Du, M., Gao, Q., Liu, C., Bai, L., Li, T. and Wei, F. (2022) Exploring the Pharmacological Potential of Metformin for Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 14, Article ID: 838173. https://doi.org/10.3389/fnagi.2022.838173
|
[33]
|
Onaolapo, A.Y., Ojo, F.O., Adeleye, O.O., Falade, J. and Onaolapo, O.J. (2023) Diabetes Mellitus and Energy Dysmetabolism in Alzheimer’s Disease: Understanding the Relationships and Potential Therapeutic Targets. Current Diabetes Reviews, 19, e020123212333. https://doi.org/10.2174/1573399819666230102141154
|
[34]
|
Hölscher, C. (2024) Glucagon-Like Peptide-1 Class Drugs Show Clear Protective Effects in Parkinson’s and Alzheimer’s Disease Clinical Trials: A Revolution in the Making? Neuropharmacology, 253, Article ID: 109952. https://doi.org/10.1016/j.neuropharm.2024.109952
|
[35]
|
Siddeeque, N., Hussein, M.H., Abdelmaksoud, A., Bishop, J., Attia, A.S., Elshazli, R.M., et al. (2024) Neuroprotective Effects of GLP-1 Receptor Agonists in Neurodegenerative Disorders: A Large-Scale Propensity-Matched Cohort Study. International Immunopharmacology, 143, Article ID: 113537. https://doi.org/10.1016/j.intimp.2024.113537
|
[36]
|
Fakih, W., Zeitoun, R., AlZaim, I., Eid, A.H., Kobeissy, F., Abd‐Elrahman, K.S., et al. (2022) Early Metabolic Impairment as a Contributor to Neurodegenerative Disease: Mechanisms and Potential Pharmacological Intervention. Obesity, 30, 982-993. https://doi.org/10.1002/oby.23400
|
[37]
|
Varmazyar, R., Noori-Zadeh, A., Abbaszadeh, H.A., Hamidabadi, H.G., Rajaei, F., Darabi, S., et al. (2019) Neural Stem Cells Neuroprotection by Simvastatin via Autophagy Induction and Apoptosis Inhibition. Bratislava Medical Journal, 120, 744-751. https://doi.org/10.4149/bll_2019_124
|
[38]
|
Huang, W., Li, Z., Zhao, L. and Zhao, W. (2017) Simvastatin Ameliorate Memory Deficits and Inflammation in Clinical and Mouse Model of Alzheimer’s Disease via Modulating the Expression of miR-106b. Biomedicine & Pharmacotherapy, 92, 46-57. https://doi.org/10.1016/j.biopha.2017.05.060
|
[39]
|
Torrandell‐Haro, G., Branigan, G.L., Vitali, F., Geifman, N., Zissimopoulos, J.M. and Brinton, R.D. (2020) Statin Therapy and Risk of Alzheimer’s and Age‐Related Neurodegenerative Diseases. Alzheimer’s & Dementia, 6, e12108. https://doi.org/10.1002/trc2.12108
|
[40]
|
Rodriguez‐Ortiz, C.J., Thorwald, M.A., Rodriguez, R., Mejias‐Ortega, M., Kieu, Z., Maitra, N., et al. (2022) Angiotensin Receptor Blockade with Olmesartan Alleviates Brain Pathology in Obese OLETF Rats. Clinical and Experimental Pharmacology and Physiology, 50, 228-237. https://doi.org/10.1111/1440-1681.13738
|
[41]
|
Crespo, M.C., Tomé‐Carneiro, J., Pintado, C., Dávalos, A., Visioli, F. and Burgos‐Ramos, E. (2017) Hydroxytyrosol Restores Proper Insulin Signaling in an Astrocytic Model of Alzheimer’s Disease. BioFactors, 43, 540-548. https://doi.org/10.1002/biof.1356
|
[42]
|
Kokkeler, K.J.E., Marijnissen, R.M., Wardenaar, K.J., Rhebergen, D., van den Brink, R.H.S., van der Mast, R.C., et al. (2020) Subtyping Late-Life Depression According to Inflammatory and Metabolic Dysregulation: A Prospective Study. Psychological Medicine, 52, 515-525. https://doi.org/10.1017/s0033291720002159
|
[43]
|
Alrefaie, Z., Ali, S.S. and Hamed, E.A. (2022) Elevated Hippocampal Mglut2 Receptors in Rats with Metabolic Syndrome-Induced-Memory Impairment, Possible Protection by Vitamin D. Brain Research Bulletin, 180, 108-117. https://doi.org/10.1016/j.brainresbull.2022.01.002
|
[44]
|
Hajjeh, O., Rajab, I., Bdair, M., Saife, S., Zahran, A., Nazzal, I., et al. (2025) Enteric Nervous System Dysfunction as a Driver of Central Nervous System Disorders: The Forgotten Brain in Neurological Disease. Neuroscience, 572, 232-247. https://doi.org/10.1016/j.neuroscience.2025.03.015
|