甘油三酯–葡萄糖指数与血浆致动脉硬化指数对心血管疾病的综合影响
Combined Effect of Triglyceride-Glucose Index and Atherogenic Index of Plasma on Cardiovascular Disease
DOI: 10.12677/acm.2025.1582194, PDF, HTML, XML,   
作者: 曹柳柳:华北理工大学附属医院急诊科,河北 唐山;华北理工大学研究生学院,河北 唐山;武朝辉:山西医科大学研究生院,山西 太原;李 曼:暨南大学第一附属医院重症医学科,广东 广州;李佳澎, 孙丽霞*:华北理工大学附属医院急诊科,河北 唐山;吴寿岭:开滦总医院心血管内科,河北 唐山
关键词: 甘油三酯–葡萄糖指数血浆致动脉粥样硬化指数心血管疾病缺血性心脏病卒中Triglyceride-Glucose Index Atherogenic Index of Plasma Cardiovascular Disease Ischemic Heart Disease Storke
摘要: 目的:探讨甘油三酯–葡萄糖指数(triglyceride-glucose index, TyG)与血浆致动脉硬化指数(atherogenic index of plasma, AIP)对新发心血管疾病(cardiovascular disease, CVD)的综合影响。方法:应用前瞻性队列研究,选取参加2006年度体检的开滦研究人群(n = 96,391)作为研究对象,将参与者按TyG和AIP中位数进行分组,分为低TyG &低AIP组,低TyG &高AIP组,高TyG &低AIP组,高TyG &高AIP组,每两年进行一次随访,以发生CVD (包括缺血性心脏病、卒中)、死亡或随访结束(2022年12月31日)为随访终点,分析TyG联合AIP与CVD发生风险的关联。结果:96,391名观察对象在平均随访14.17 ± 3.81年后,发生CVD者共11,378名。校正混杂因素后,与低TyG &低AIP组相比,高TyG &高AIP组发生CVD的HR (95%CI)为1.213 (1.156~1.272),Ptrend < 0.05。结论:高TyG联合高AIP能促进CVD的发生。
Abstract: Objective: To investigate the combined effects of the triglyceride glucose index (TyG) and atherogenic index of plasma (AIP) on new-onset cardiovascular disease (CVD). Methods: This prospective cohort study used data from the Kailuan study population (n = 96,391), which included participants who underwent a physical examination in 2006. Based on median TyG and AIP values, participants were categorized into four groups: low TyG & low AIP, low TyG & high AIP, high TyG & low AIP, and high TyG & high AIP. Follow-up was conducted every two years. The study endpoints included incident CVD (ischemic heart disease or stroke), death, or the end of follow-up (December 31, 2022). The association between TyG combined with AIP and CVD risk was then analyzed. Results: After a mean follow-up period of 14.17 ± 3.81 years, 11,378 participants developed CVD. After multivariable adjustment, compared with the low TyG and low AIP group, the high TyG and high AIP group showed significantly increased CVD risk (HR = 1.213, 95%CI: 1.156~1.272); P for trend <0.05. Conclusion: High TyG combined with high AIP can promote the occurrence of CVD.
文章引用:曹柳柳, 武朝辉, 李曼, 李佳澎, 吴寿岭, 孙丽霞. 甘油三酯–葡萄糖指数与血浆致动脉硬化指数对心血管疾病的综合影响[J]. 临床医学进展, 2025, 15(8): 28-38. https://doi.org/10.12677/acm.2025.1582194

1. 引言

心血管疾病(cardiovascular disease, CVD)是全球死亡和致残的主要原因[1]。CVD的总体患病率由1990年的2.71亿例达到了2019年的5.23亿例,而CVD死亡人数从1990年的1210万达到了2019年的1.86亿[2]。全球疾病负担数据显示,2021年CVD导致的寿命损失高达1.84亿年[3]。尽管近年来药物治疗和介入治疗方面取得了重大进展,但CVD死亡人数仍然很高,因此,早期识别CVD的危险因素并制定有效的预防和治疗策略至关重要。

甘油三酯–葡萄糖指数(triglyceride-glucose index, TyG)是由空腹甘油三酯(triglyceride, TG)和空腹血糖(fasting blood glucose, FBG)水平组成的复合指标[4]。多数研究表明,TyG与CVD的发生密切相关[5]。Laura等利用大型临床队列研究发现,较高水平的TyG能更好地预测心血管疾病的发生(AUC: 0.708, 95%CI: 0.68~0.73) [6]。一项来自NHANES数据库的研究也表明,较高的TyG使心血管风险增加1.3倍[7]。血浆动脉粥样硬化指数(atherogenic index of plasma, AIP)是一种反映脂质代谢异常并评估动脉粥样硬化风险的新指标,与单一血脂指标相比,AIP能更有效地预测血浆致动脉粥样硬化的严重程度。郑等研究发现,AIP使急性冠脉综合征的发生风险增加1.5倍[8]。鉴于TyG和AIP均能独立反映心血管代谢风险的不同方面,且两者在病理生理机制上存在关联,因此,本研究将二者联合,基于开滦大型队列研究,探讨TyG与AIP联合暴露对CVD及其亚型的发生风险。

2. 研究方法与对象

2.1. 研究对象

本研究选取参加2006年度的开滦健康体检者和问卷调查者(n = 101,510)为研究对象,同意并签署知情同意书。排除标准:(1) 高密度脂蛋白胆固醇(High density lipoprotein cholesterol, HDL-C)、TG (Triglyceride)、FBG数据缺失者(n = 1342);(2) 既往CVD、癌症、心衰病史者(n = 1893),最终纳入96,391名观察对象。本研究遵照赫尔辛基宣言,并获得开滦总医院伦理委员会批准(批号:[2006]医伦字5号)。

2.2. 资料收集

2.2.1. 一般资料收集

研究人群的人口学特征、一般资料、实验室检查及研究设计的详细信息参照本课题组已发表的文献[9] [10]。体检者于体检当日需空腹8小时,由专业人员抽取肘静脉血5 ml于EDTA 真空管内,在室温下经3000 r/min离心10 min后取上层血清进行生化指标检测,TG、HDL-C和FBG采用酶比色法进行测定,AIP和TyG根据公式AIP = log(TG/HDL-C)。TyG = ln[TG (mg/dl) × FBG (mg/dl)/2]计算。

2.2.2. 相关指标定义

吸烟定义为近1年平均每天至少吸1支烟,连续吸烟1年以上。饮酒定义为近1年平均每日饮酒(酒精含量50%以上) 100 ml,连续饮酒1年以上。高血压定义为收缩压 ≥ 140 mmHg和(或)舒张压 ≥ 90 mmHg,或收缩压 < 140 mmHg和舒张压 < 90 mmHg但有高血压病史或正在服用降压药[11];糖尿病定义为FBG ≥ 7.0 mmol/L或FBG < 7.0 mmol/L但有糖尿病病史或正在服用降糖药[12];高脂血症定义为TC ≥ 6.2 mmol/L或HDL-C < 1.0 mmol/L或LDL-C ≥ 4.1 mmol/L或TG ≥ 2.3 mmol/L或有高血脂病史或正在服用降脂药[13]。体育锻炼定义为每周锻炼 ≥ 3次,每次持续时间至少30 min。肾小球滤过率(estimated glomerular filtration rate, eGFR)采用慢性肾脏病学流行病学合作研究公式法计算(CKD-EPI) [14]

2.2.3. 随访和终点事件

以完成2006年度体检的时间为随访起点,以发生CVD (缺血性心脏病、卒中)、死亡或随访结束(2022年12月31日)为随访终点,共计96,391名观察对象完成了平均14.17 ± 3.81年的随访。诊断标准采用世界卫生组织制定的相关标准。每年由经过培训的医务人员查阅开滦总医院与其附属的11家医院及市医保定点医院的疾病诊断记录,记录终点事件的发生情况,所有诊断均由专业医师根据住院病历进行确认。

2.3. 统计学方法

采用SAS 9.4 (SAS Institute, Cary, North Carolina)软件进行统计分析。符合正态分布的计量资料采用均值 ± 标准差( X ¯ ± S)表示,组间比较采用方差分析;非正态分布的计量资料采用中位数(P25~P75)表示,组间比较采用非参数秩和检验(Kruskal-Wallis);计数资料用频数和百分比来表示,组间比较采用χ2检验;以事件数除以随访总人年(1000/人年)分别计算不同组别发生CVD的发病密度,采用多因素Cox比例风险回归模型分别分析不同组别对终点事件的发生风险及95%可信区间。模型1校正年龄、性别;模型2在模型1的基础上校正吸烟、饮酒、体力活动、BMI、eGFR、高血压、糖尿病、高脂血症、打鼾;模型3在模型2的基础上校正降压药、降糖药、降脂药。为保证结果的稳健性,进行敏感性分析:1. 排除随访1年内即发生CVD的人群。2. 排除服用降糖药和降脂药的人群。3. 使用Fine-Gray模型进行死亡竞争风险分析。同时对性别(男,女)、年龄(<60岁,≥60岁)进行分层分析,以P < 0.05 (双侧检验)为差异有统计学意义。

3. 结果

3.1. 研究对象的一般资料比较

在该项研究中,男性76,731名(占79.6%),女性19,660名(占20.4%),年龄(51.5 ± 12.6)岁。参与者的基线特征见表1,与Q1组相比,Q4组研究对象的年龄、FBG、TG、体质指数(Body Mass Index, BMI)较高,吸烟、饮酒、打鼾的人较多,且患高血压、糖尿病、高血脂的人数较多,服用降压药、降糖药、降脂药的人数也较多。

Table 1. Baseline characteristics of the study population grouped

1. 研究对象的基线特征

总人群(n = 96,391)

Q1组(n = 40,951)

Q2组(n = 7243)

Q3 组(n = 7239)

Q4组(n = 40,958)

P

年龄(岁)

51.5 ± 12.6

50.9 ± 13.3

50.6 ± 13.3

54.3 ± 11.6

51.7 ± 11.8

<0.001

男性[例(%)]

76,731 (79.6)

31,044 (75.8)

5804 (80.1)

5799 (80.1)

34,084 (83.2)

<0.001

FBG (mg/mL)

5.5 ± 1.7

5.0 ± 0.7

4.7 ± 0.6

6.8 ± 2.6

5.8 ± 2.0

<0.001

TG (mmol/L)*

1.3 (0.9~1.9)

0.8 (0.7~1.0)

1.2 (1.1~1.3)

1.3 (1.2~1.5)

2.1 (1.7~3.0)

<0.001

HDL-C (mmol/L)*

1.5 (1.3~1.8)

1.6 (1.4~1.8)

1.2 (1.0~1.3)

1.9 (1.7~2.1)

1.4 (1.2~1.7)

<0.001

eGFR [mL/(min∙1.73m2)]

82.1 ± 22.6

83.4 ± 21.7

83.4 ± 21.7

79.1 ± 22.4

81.1 ± 23.5

<0.001

TyG

8.7 ± 0.7

8.1 ± 0.3

8.4 ± 0.2

8.8 ± 0.3

9.3 ± 0.5

<0.001

AIP

−0.1 ± 0.7

−0.7 ± 0.4

0.0 ± 0.2

−0.4 ± 0.2

0.5 ± 0.5

<0.001

吸烟[例(%)]

32,671 (33.9)

13,052 (31.9)

2487 (34.3)

2165 (29.9)

14,967 (36.5)

<0.001

饮酒[例(%)]

35,594 (36.9)

14,618 (35.7)

2520 (34.8)

2347 (32.4)

16,109 (39.3)

<0.001

体育锻炼[例(%)]

14,602 (15.1)

6196 (15.1)

1133 (15.6)

991 (13.7)

6282 (15.3)

0.442

打鼾[例(%)]

34,910 (36.2)

13,863 (33.9)

2616 (36.1)

2264 (31.3)

16,167 (39.5)

<0.001

BMI (kg/m2)

<0.001

正常/低体重(<24 kg/m2)

38,362 (39.8)

22,337 (54.5)

2941 (40.6)

2768 (38.2)

10,316 (25.2)

超重(24~28 kg/m2)

40,268 (41.8)

14,452 (35.3)

3108 (42.9)

3186 (44.0)

19,522 (47.7)

肥胖(≥28 kg/m2)

17,761 (18.4)

4162 (10.2)

1194 (16.5)

1285 (17.8)

11,120 (27.1)

高血压病史[例(%)]

41,864 (43.4)

14,117 (34.5)

2718 (37.5)

3990 (55.1)

21,039 (51.4)

<0.001

糖尿病病史[例(%)]

8712 (9.0)

820 (2.0)

49 (0.7)

2092 (28.9)

5751 (14.0)

<0.001

高血脂病史[例(%)]

33,403 (34.7)

5355 (13.1)

2483 (34.3)

1744 (24.1)

23,821 (58.2)

<0.001

服用降压药[例(%)]

9536 (9.9)

2750 (6.7)

645 (8.9)

785 (10.8)

5356 (13.1)

<0.001

服用降糖药[例(%)]

2060 (2.1)

309 (0.8)

27 (0.4)

436 (6.0)

1288 (3.1)

<0.001

服用降脂药[例(%)]

715 (0.7)

182 (0.4)

32 (0.4)

54 (0.7)

447 (1.1)

<0.001

新发CVD

11,378 (11.8)

3700 (9.0)

770 (10.6)

1099 (15.2)

5809 (14.2)

<0.001

注:*:以M (P25, P75)表示。1 mmHg = 0.133 kPa。

3.2. TyG和AIP对CVD及其亚型的多因素Cox比例风险回归分析

以TyG四分位分组,与Q1组相比,较高的TyG能增加CVD及其亚型的发生风险。校正相关协变量后,Q4组发生CVD的HR值为1.330 (95%CI: 1.245~1.421),Ptrend < 0.05;发生缺血性心脏病的HR值为1.641 (95%CI: 1.467~1.835),Ptrend < 0.05;发生卒中的HR值为1.225 (95%CI: 1.133~1.325),Ptrend < 0.05;见表2。以AIP四分位分组,与Q1组相比,较高的AIP能增加CVD及其亚型的发生风险。校正相关协变量后,Q4组发生CVD的HR值为1.196 (95%CI: 1.122~1.275),Ptrend < 0.05;发生缺血性心脏病的HR值为1.417 (95%CI: 1.273~1.578),Ptrend < 0.05;发生卒中的HR值为1.118 (95%CI: 1.037~1.205),Ptrend < 0.05;见表3。将参与者按TyG和AIP中位数进行分组,分为低TyG &低AIP组,低TyG &高AIP组,高TyG &低AIP组,高TyG &高AIP组,与Q1组相比,高TyG &高AIP能增加CVD及其亚型的发生风险。校正相关协变量后,Q4组发生CVD的HR值为1.213 (95%CI: 1.156~1.272),Ptrend < 0.05;发生缺血性心脏病的HR值为1.421 (95%CI: 1.312~1.538),Ptrend < 0.05;发生卒中的HR值为1.128 (95%CI: 1.067~1.193),Ptrend < 0.05;见表4

Table 2. Cox proportional regression analysis of the risk of TYG and CVD and its subtypes

2. TYG与CVD及其亚型发病风险的Cox比例回归分析

分组

发病人数/总人数

发病密度*

HR (95%CI)

模型1

模型2

模型3

CVD

Q1

1950/24,097

5.57

Ref.

Ref.

Ref.

Q2

2520/24,097

7.31

1.255 (1.183~1.331)

1.142 (1.076~1.212)

1.143 (1.077~1.214)

Q3

3091/24,098

9.11

1.543 (1.458~1.633)

1.276 (1.204~1.353)

1.278 (1.205~1.355)

Q4

3817/24,099

11.49

1.981 (1.875~2.092)

1.315 (1.231~1.405)

1.330 (1.245~1.421)

Ptrend

<0.001

<0.001

<0.001

缺血性心脏病

Q1

606/24,097

1.68

Ref.

Ref.

Ref.

Q2

863/24,097

2.42

1.374 (1.238~1.524)

1.239 (1.116~1.376)

1.241 (1.117~1.378)

Q3

1168/24,098

3.30

1.843 (1.671~2.033)

1.497 (1.353~1.656)

1.500 (1.356~1.660)

Q4

1591/24,099

4.57

2.585 (2.353~2.838)

1.615 (1.444~1.806)

1.641 (1.467~1.835)

Ptrend

<0.001

<0.001

<0.001

卒中

Q1

1477/24,097

4.15

Ref.

Ref.

Ref.

Q2

1856/24,097

5.27

1.215 (1.135~1.301)

1.111 (1.037~1.190)

1.112 (1.038~1.191)

Q3

2183/24,098

6.25

1.419 (1.328~1.516)

1.183 (1.105~1.267)

1.184 (1.106~1.268)

Q4

2614/24,099

7.59

1.758 (1.649~1.874)

1.214 (1.123~1.313)

1.225 (1.133~1.325)

Ptrend

<0.001

<0.001

<0.001

模型一校正年龄、性别;模型二在模型一的基础上校正吸烟、饮酒、BMI、体育锻炼、高血压、糖尿病、高血脂、eGFR、打鼾;模型三在模型二的基础上校正降压药、降糖药、降脂药。*:每千人年。

Table 3. Cox proportional regression analysis of the risk of AIP and CVD and its subtypes

3. AIP与CVD及其亚型发病风险的Cox比例回归分析

分组

发病人数/总人数

发病密度*

HR (95%CI)

模型1

模型2

模型3

CVD

Q1

2178/24,056

6.30

Ref.

Ref.

Ref.

Q2

2621/24,134

7.62

1.213 (1.146~1.284)

1.103 (1.042~1.168)

1.102 (1.040~1.167)

Q3

3063/24,101

9.05

1.422 (1.346~1.503)

1.190 (1.125~1.260)

1.188 (1.122~1.257)

Q4

3516/24,100

10.40

1.679 (1.592~1.772)

1.190 (1.116~1.268)

1.196 (1.122~1.275)

Ptrend

<0.001

<0.001

<0.001

缺血性心脏病

Q1

678/24,056

1.90

Ref.

Ref.

Ref.

Q2

902/24,134

2.53

1.329 (1.203~1.469)

1.185 (1.072~1.311)

1.184 (1.071~1.309)

Q3

1201/24,101

3.40

1.763 (1.605~1.938)

1.424 (1.293~1.570)

1.421 (1.290~1.566)

Q4

1447/24,100

4.09

2.168 (1.979~2.376)

1.406 (1.263~1.565)

1.417 (1.273~1.578)

Ptrend

<0.001

<0.001

<0.001

卒中

Q1

1656/24,056

4.71

Ref.

Ref.

Ref.

Q2

1923/24,134

5.47

1.164 (1.090~1.244)

1.067 (0.998~1.140)

1.066 (0.997~1.139)

Q3

2146/24,101

6.16

1.294 (1.213~1.379)

1.100 (1.029~1.175)

1.098 (1.028~1.173)

Q4

2405/24,100

6.88

1.491 (1.400~1.588)

1.114 (1.033~1.200)

1.118 (1.037~1.205)

Ptrend

<0.001

0.003

0.002

模型一校正年龄、性别;模型二在模型一的基础上校正吸烟、饮酒、BMI、体育锻炼、高血压、糖尿病、高血脂、eGFR、打鼾;模型三在模型二的基础上校正降压药、降糖药、降脂药。*:每千人年。

Table 4. Cox proportional regression analysis of the risk of TyG combined with AIP and CVD and its subtypes

4. TyG联合AIP与CVD及其亚型发病风险的Cox比例回归分析

分组

发病人数/总人数

发病密度*

HR (95% CI)

模型1

模型2

模型3

CVD

Q1

3700/40,951

6.26

Ref.

Ref.

Ref.

Q2

770/7243

7.44

1.194 (1.105~1.291)

1.103 (1.020~1.193)

1.102 (1.019~1.191)

Q3

1099/7239

11.18

1.628 (1.522~1.742)

1.254 (1.169~1.345)

1.261 (1.176~1.353)

Q4

5809/40,958

10.13

1.596 (1.531~1.663)

1.209 (1.152~1.268)

1.213 (1.156~1.272)

Ptrend

<0.001

<0.001

<0.001

缺血性心脏病

Q1

1207/40,951

1.98

Ref.

Ref.

Ref.

Q2

262/7243

2.44

1.233 (1.079~1.409)

1.105 (0.966~1.265)

1.104 (0.964~1.263)

Q3

373/7239

3.60

1.659 (1.477~1.863)

1.256 (1.113~1.417)

1.267 (1.123~1.430)

Q4

2386/40,958

3.98

1.969 (1.837~2.110)

1.413 (1.305~1.530)

1.421 (1.312~1.538)

Ptrend

<0.001

<0.001

<0.001

卒中

Q1

2764/40,951

4.59

Ref.

Ref.

Ref.

Q2

569/7243

5.38

1.174 (1.073~1.285)

1.104 (1.008~1.209)

1.103 (1.007~1.208)

Q3

815/7239

8.04

1.588 (1.469~1.718)

1.229 (1.133~1.334)

1.235 (1.138~1.340)

Q4

3982/40,958

6.73

1.443 (1.375~1.515)

1.125 (1.064~1.190)

1.128 (1.067~1.193)

Ptrend

<0.001

<0.001

<0.001

模型一校正年龄、性别;模型二在模型一的基础上校正吸烟、饮酒、BMI、体育锻炼、高血压、糖尿病、高血脂、eGFR、打鼾;模型三在模型二的基础上校正降压药、降糖药、降脂药。*:每千人年。

3.3. 敏感性分析

为保证结果的稳健性,进行了敏感性分析:1. 排除随访1年内即发生CVD的人群(n = 797),校正相关协变量后,高TyG &高AIP组发生CVD的HR值为1.228 (95%CI: 1.169~1.289),发生缺血性心脏病的HR值为1.433 (95%CI: 1.321~1.554),发生卒中的HR值为1.144 (95%CI: 1.080~1.212)。2. 排除使用降脂药和降糖药的人群(n = 9810),校正相关协变量后,高TyG &高AIP组发生CVD的HR值为1.239 (95%CI: 1.176~1.306),发生缺血性心脏病的HR值为1.414 (95%CI: 1.295~1.544),发生卒中的HR值为1.155 (95%CI: 1.086~1.229)。此外,使用Fine-Gray模型进行死亡竞争风险分析与主要结果分析类似;见表5

Table 5. Sensitivity analysis of TYG combined with AIP and the risk of CVD and its subtypes

5. TYG联合AIP与CVD及其亚型发病风险的敏感性分析

分组

HR (95% CI)

Q1

Q2

Q3

Q4

Ptrend

排除1年内发生CVD的人群(n = 95,594)

CVD

Ref.

1.094 (1.009~1.186)

1.275 (1.187~1.370)

1.228 (1.169~1.289)

<0.001

缺血性心脏病

Ref.

1.104 (0.962~1.267)

1.289 (1.140~1.458)

1.433 (1.321~1.554)

<0.001

卒中

Ref.

1.088 (0.990~1.196)

1.241 (1.141~1.350)

1.144 (1.080~1.212)

<0.001

排除服用降糖药和降脂药的人群(n = 86,581)

CVD

Ref.

1.119 (1.027~1.218)

1.286 (1.191~1.389)

1.239 (1.176~1.306)

<0.001

缺血性心脏病

Ref.

1.084 (0.934~1.257)

1.290 (1.131~1.472)

1.414 (1.295~1.544)

<0.001

卒中

Ref.

1.123 (1.017~1.241)

1.275 (1.167~1.394)

1.155 (1.086~1.229)

<0.001

死亡竞争风险分析(n = 96,391)

CVD

Ref.

1.102 (1.019~1.191)

1.261 (1.176~1.353)

1.213 (1.156~1.272)

<0.001

缺血性心脏病

Ref.

1.104 (0.964~1.263)

1.267 (1.123~1.430)

1.421 (1.312~1.538)

<0.001

卒中

Ref.

1.103 (1.007~1.208)

1.235 (1.138~1.340)

1.128 (1.067~1.193)

<0.001

模型校正年龄、性别、吸烟、饮酒、BMI、体育锻炼、高血压、糖尿病、高血脂、eGFR、打鼾、降压药、降糖药、降脂药。

3.4. 分层分析

同时,我们分别以年龄(<60岁,≥60岁)、性别(男,女)进行了分层分析,校正相关协变量后,TyG联合AIP对CVD及其亚型的影响在年龄、性别中存在显著交互作用(Pinteraction < 0.01),但在年龄 < 60岁、女性中关联更显著;见表6

Table 6. Stratified analysis of the risk of TYG combined with AIP and CVD and its subtypes

6. TYG联合AIP与CVD及其亚型发病风险的分层分析

交互P

HR (95% CI)

Q1

Q2

Q3

Q4

CVD

年龄 < 60

<0.01

Ref.

1.111 (0.993~1.243)

1.438 (1.301~1.590)

1.237 (1.155~1.325)

年龄 ≥ 60

Ref.

1.083 (0.971~1.209)

1.107 (1.003~1.222)

1.141 (1.067~1.220)

女性

<0.01

Ref.

1.218 (0.954~1.556)

1.344 (1.104~1.637)

1.371 (1.188~1.582)

男性

Ref.

1.086 (1.000~1.180)

1.242 (1.151~1.339)

1.186 (1.128~1.248)

缺血性心脏病

年龄 < 60

<0.01

Ref.

1.075 (0.886~1.303)

1.296 (1.086~1.547)

1.440 (1.285~1.613)

年龄 ≥ 60

Ref.

1.129 (0.934~1.363)

1.217 (1.031~1.437)

1.343 (1.200~1.503)

女性

<0.01

Ref.

1.137 (0.718~1.801)

1.471 (1.050~2.061)

1.527 (1.184~1.969)

男性

Ref.

1.096 (0.952~1.262)

1.227 (1.078~1.398)

1.398 (1.285~1.521)

卒中

年龄 < 60

<0.01

Ref.

1.110 (0.972~1.268)

1.462 (1.300~1.643)

1.152 (1.061~1.251)

年龄 ≥ 60

Ref.

1.085 (0.958~1.230)

1.055 (0.940~1.183)

1.062 (0.983~1.148)

女性

<0.01

Ref.

1.256 (0.952~1.658)

1.305 (1.036~1.643)

1.319 (1.116~1.559)

男性

Ref.

1.083 (0.983~1.192)

1.221 (1.119~1.333)

1.101 (1.037~1.168)

模型校正年龄、性别、吸烟、饮酒、BMI、体育锻炼、糖尿病、高血压、高脂血症、eGFR、打鼾、降压药、降糖药、降脂药。

4. 讨论

在这项研究中,我们发现,随着TyG指数的增加,CVD及其亚型的发生风险也随之增加,随着AIP指数的增加,CVD及其亚型的发生风险也随之增加,且高TyG联合高AIP能增加CVD及其亚型的发生风险。

脂代谢异常,胰岛素抵抗在CVD的发生发展中起着至关重要的作用[15] [16]。在既往研究中,Zeng等基于CHARLS数据库发现了类似的结论,即较高的TyG联合较高的AIP使CVD的发生风险增加1.23倍,且将二者联合对CVD的预测价值单独的TyG和单独的AIP [17],我们的研究采用大样本临床数据,纳入96,391名观察对象,进行长达14年的随访,采用Cox比例风险回归模型探讨TyG联合AIP对CVD的发生风险的关联,研究结果表明,无论是否校正协变量,高TyG联合高AIP能增加CVD的发生风险。

胰岛素抵抗(Insulin Resistance, IR)是一种对胰岛素的敏感性和反应性降低的状态,越来越多的证据表明,IR与心血管疾病的发生发展密切相关[18]。TyG是通过FBG和TG水平计算出来的指标,能够有效评估IR程度[19] [20]。Li等纳入6078名观察对象,随访6年后,校正相关协变量后,与较低的TyG组相比,较高的TyG组使CVD的发生风险增加1.72倍[21]。Barzegar等发现TyG每增加1个标准差,CVD的发生风险增加1.16倍[22]。也有研究表明,在CKD患者中,TyG每增加一个单位,不良心血管事件的发生增加1.95倍[23]。既往开滦研究进一步探讨了TyG的累积暴露与CVD的关联,在平均随访6年后,高累积TyG组使CVD的发生风险增加1.39倍[24]。这些研究充分证明TyG可以独立于传统危险因素,预测CVD的发生。

AIP是一种基于TG/HDL-C比值的综合血脂指标,与胆固醇酯化异常、小而密低密度脂蛋白胆固醇(small dense Low-Density Lipoprotein, sdLDL)颗粒增多及残余脂蛋白蓄积密切相关,其升高反映致动脉粥样硬化性脂蛋白代谢紊乱,已被多项研究证实为预测动脉粥样硬化性心血管疾病(ASCVD)的独立生物标志物[25] [26]。sdLDL粒径相对更小,更容易侵入动脉壁,且具有更高的氧化性,促使巨噬细胞分化为泡沫细胞,加速动脉粥样硬化的发展进程[27] [28]。Won等发现较高的AIP能使冠状动脉疾病发生风险增加1.05倍[29]。Si等发现,较高的TyG水平使冠状动脉疾病的发生风险增加2.01倍,较高的AIP水平使冠状动脉疾病的发生风险增加2.53倍[30]。因此,早期识别高AIP个体对于预防CVD的发生至关重要。

IR和脂质代谢异常是CVD发生的重要病理生理机制,IR会导致胰岛素信号通路受损,如胰岛素受体底物家族成员的酪氨酸残基磷酸化异常,影响PI3K/Akt信号通路的激活,该通路受损会导致脂肪分解增加,使游离脂肪酸(FFA)释放增多,影响肝脏和外周组织的脂质代谢[31]。此外,IR和脂代谢异常还会引发炎症反应,促进动脉粥样硬化斑块的不稳定[32]。本研究将TyG与AIP联合,进一步探讨其与CVD发生的综合作用,可同时捕捉脂质代谢异常和IR,更全面预测CVD的发生风险。单独分析时,AIP可能遗漏糖代谢异常的影响,而TyG无法直接评估脂蛋白颗粒的致动脉粥样硬化特性,将二者联合则能更好的评估脂质代谢异常和IR的协同危害,从而更好的预测CVD的发生风险。

局限性:作为一项观察性研究,我们无法直接推断TyG与AIP对CVD的因果关系,需要进一步研究。此外,尽管已经校正了可能存在的混杂因素,但仍然无法完全排除其他的混杂因素的影响。其次,我们的研究主要基于基线数据进行分析,未能充分考虑TyG和AIP随时间的变化对CVD风险的长期影响。

5. 结论

基于开滦队列研究,我们发现高TyG联合高AIP能促进CVD的发生。

NOTES

*通讯作者。

参考文献

[1] Martin, S.S., Aday, A.W., Almarzooq, Z.I., Anderson, C.A.M., Arora, P., Avery, C.L., et al. (2024) 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation, 149, e347-e913.
https://doi.org/10.1161/cir.0000000000001209
[2] Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology, 76, 2982-3021.
[3] Ferrari, A.J., Santomauro, D.F., Aali, A., et al. (2024) Global Incidence, Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204 Countries and Territories and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 403, 2133-2161.
[4] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[5] Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68.
https://doi.org/10.1186/s12933-022-01511-x
[6] Sánchez‐Íñigo, L., Navarro‐González, D., Fernández‐Montero, A., Pastrana‐Delgado, J. and Martínez, J.A. (2016) The Tyg Index May Predict the Development of Cardiovascular Events. European Journal of Clinical Investigation, 46, 189-197.
https://doi.org/10.1111/eci.12583
[7] Liang, D., Liu, C. and Wang, Y. (2024) The Association between Triglyceride-Glucose Index and the Likelihood of Cardiovascular Disease in the U.S. Population of Older Adults Aged ≥ 60 Years: A Population-Based Study. Cardiovascular Diabetology, 23, Article No. 151.
https://doi.org/10.1186/s12933-024-02248-5
[8] Qin, Z., Zhou, K., Li, Y., Cheng, W., Wang, Z., Wang, J., et al. (2020) The Atherogenic Index of Plasma Plays an Important Role in Predicting the Prognosis of Type 2 Diabetic Subjects Undergoing Percutaneous Coronary Intervention: Results from an Observational Cohort Study in China. Cardiovascular Diabetology, 19, Article No. 23.
https://doi.org/10.1186/s12933-020-0989-8
[9] Zhao, M., Song, L., Sun, L., Wang, M., Wang, C., Yao, S., et al. (2021) Associations of Type 2 Diabetes Onset Age with Cardiovascular Disease and Mortality: The Kailuan Study. Diabetes Care, 44, 1426-1432.
https://doi.org/10.2337/dc20-2375
[10] Zhang, N., Wei, Z., Zhang, Y., Zhang, Q., Chen, Z., Tse, G., et al. (2023) Association of Life’s Essential 8 with Incident Atherosclerotic Cardiovascular Disease in Cancer Patients: The Kailuan Prospective Cohort Study. European Journal of Preventive Cardiology, 30, e78-e80.
https://doi.org/10.1093/eurjpc/zwad256
[11] 中国高血压防治指南修订委员会,高血压联盟(中国), 中国医疗保健国际交流促进会高血压病学分会, 等. 中国高血压防治指南(2024年修订版) [J]. 中华高血压杂志(中英文), 2024, 32(7): 603-700.
[12] 刘烨, 王海宁. 2021年ADA/EASD《糖尿病缓解专家共识》与《2022年ADA糖尿病指南: 2型糖尿病的预防和治疗中肥胖与体重管理》解读——糖尿病缓解的定义与治疗策略[J]. 临床内科杂志, 2022, 39(5): 299-302.
[13] 李建军. 《中国血脂管理指南(2023年)》核心要点解读[J]. 临床心血管病杂志, 2023, 39(7): 491-494.
[14] Levey, A.S., Stevens, L.A., Schmid, C.H., Zhang, Y., Castro, A.F., Feldman, H.I., et al. (2009) A New Equation to Estimate Glomerular Filtration Rate. Annals of Internal Medicine, 150, 604-612.
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
[15] Stein, R., Ferrari, F. and Scolari, F. (2019) Genetics, Dyslipidemia, and Cardiovascular Disease: New Insights. Current Cardiology Reports, 21, Article No. 68.
https://doi.org/10.1007/s11886-019-1161-5
[16] Xiao, S., Wang, X., Zhang, G., Tong, M., Chen, J., Zhou, Y., et al. (2023) Association of Systemic Immune Inflammation Index with Estimated Pulse Wave Velocity, Atherogenic Index of Plasma, Triglyceride-Glucose Index, and Cardiovascular Disease: A Large Cross-Sectional Study. Mediators of Inflammation, 2023, Article ID: 1966680.
https://doi.org/10.1155/2023/1966680
[17] Zeng, Q., Zhong, Q., Zhao, L., An, Z. and Li, S. (2024) Combined Effect of Triglyceride-Glucose Index and Atherogenic Index of Plasma on Cardiovascular Disease: A National Cohort Study. Scientific Reports, 14, Article No. 31092.
https://doi.org/10.1038/s41598-024-82305-x
[18] Mancusi, C., de Simone, G., Best, L.G., Wang, W., Zhang, Y., Roman, M.J., et al. (2019) Myocardial Mechano-Energetic Efficiency and Insulin Resistance in Non-Diabetic Members of the Strong Heart Study Cohort. Cardiovascular Diabetology, 18, Article No. 56.
https://doi.org/10.1186/s12933-019-0862-9
[19] Selvi, N.M.K., Nandhini, S., Sakthivadivel, V., Lokesh, S., Srinivasan, A.R. and Sumathi, S. (2021) Association of Triglyceride-Glucose Index (TyG Index) with Hba1c and Insulin Resistance in Type 2 Diabetes Mellitus. MaedicaA Journal of Clinical Medicine, 16, 375-381.
https://doi.org/10.26574/maedica.2021.16.3.375
[20] Che, B., Zhong, C., Zhang, R., Pu, L., Zhao, T., Zhang, Y., et al. (2023) Triglyceride-glucose Index and Triglyceride to High-Density Lipoprotein Cholesterol Ratio as Potential Cardiovascular Disease Risk Factors: An Analysis of UK Biobank Data. Cardiovascular Diabetology, 22, Article No. 34.
https://doi.org/10.1186/s12933-023-01762-2
[21] Li, S., Guo, B., Chen, H., Shi, Z., Li, Y., Tian, Q., et al. (2019) The Role of the Triglyceride (Triacylglycerol) Glucose Index in the Development of Cardiovascular Events: A Retrospective Cohort Analysis. Scientific Reports, 9, Article No. 7320.
https://doi.org/10.1038/s41598-019-43776-5
[22] Barzegar, N., Tohidi, M., Hasheminia, M., Azizi, F. and Hadaegh, F. (2020) The Impact of Triglyceride-Glucose Index on Incident Cardiovascular Events during 16 Years of Follow-Up: Tehran Lipid and Glucose Study. Cardiovascular Diabetology, 19, Article No. 155.
https://doi.org/10.1186/s12933-020-01121-5
[23] Quiroga, B., Muñoz Ramos, P., Sánchez Horrillo, A., Ortiz, A., Valdivielso, J.M. and Carrero, J.J. (2022) Triglycerides-Glucose Index and the Risk of Cardiovascular Events in Persons with Non-Diabetic Chronic Kidney Disease. Clinical Kidney Journal, 15, 1705-1712.
https://doi.org/10.1093/ckj/sfac073
[24] Cui, H., Liu, Q., Wu, Y. and Cao, L. (2022) Cumulative Triglyceride-Glucose Index Is a Risk for CVD: A Prospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 22.
https://doi.org/10.1186/s12933-022-01456-1
[25] Dobiásová, M. (2006) [AIP—Atherogenic Index of Plasma as a Significant Predictor of Cardiovascular Risk: From Research to Practice]. Vnitrni Lekarstvi, 52, 64-71.
[26] Quispe, R., Manalac, R.J., Faridi, K.F., Blaha, M.J., Toth, P.P., Kulkarni, K.R., et al. (2015) Relationship of the Triglyceride to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio to the Remainder of the Lipid Profile: The Very Large Database of Lipids-4 (VLDL-4) Study. Atherosclerosis, 242, 243-250.
https://doi.org/10.1016/j.atherosclerosis.2015.06.057
[27] Dobiás̆ová, M. and Frohlich, J. (2001) The Plasma Parameter Log (TG/HDL-C) as an Atherogenic Index: Correlation with Lipoprotein Particle Size and Esterification Rate in apoB-Lipoprotein-Depleted Plasma (FERHDL). Clinical Biochemistry, 34, 583-588.
https://doi.org/10.1016/s0009-9120(01)00263-6
[28] Anber, V., Griffin, B.A., McConnell, M., Packard, C.J. and Shepherd, J. (1996) Influence of Plasma Lipid and LDL-Subfraction Profile on the Interaction between Low Density Lipoprotein with Human Arterial Wall Proteoglycans. Atherosclerosis, 124, 261-271.
https://doi.org/10.1016/0021-9150(96)05842-x
[29] Won, K., Jang, M., Park, E.J., Park, H., Heo, R., Han, D., et al. (2020) Atherogenic Index of Plasma and the Risk of Advanced Subclinical Coronary Artery Disease Beyond Traditional Risk Factors: An Observational Cohort Study. Clinical Cardiology, 43, 1398-1404.
https://doi.org/10.1002/clc.23450
[30] Si, Y., Fan, W., Han, C., Liu, J. and Sun, L. (2021) Atherogenic Index of Plasma, Triglyceride-Glucose Index and Monocyte-To-Lymphocyte Ratio for Predicting Subclinical Coronary Artery Disease. The American Journal of the Medical Sciences, 362, 285-290.
https://doi.org/10.1016/j.amjms.2021.05.001
[31] Boucher, J., Kleinridders, A. and Kahn, C.R. (2014) Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harbor Perspectives in Biology, 6, a009191.
https://doi.org/10.1101/cshperspect.a009191
[32] Elkanawati, R., Sumiwi, S. and Levita, J. (2024) Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Design, Development and Therapy, 18, 3337-3360.
https://doi.org/10.2147/dddt.s468147