[1]
|
Ji, A.X., Chu, A., Nielsen, T.K., Benlekbir, S., Rubinstein, J.L. and Privé, G.G. (2016) Structural Insights into KCTD Protein Assembly and Cullin3 Recognition. Journal of Molecular Biology, 428, 92-107. https://doi.org/10.1016/j.jmb.2015.08.019
|
[2]
|
Teng, X., Aouacheria, A., Lionnard, L., Metz, K.A., Soane, L., Kamiya, A., et al. (2019) KCTD: A New Gene Family Involved in Neurodevelopmental and Neuropsychiatric Disorders. CNS Neuroscience & Therapeutics, 25, 887-902. https://doi.org/10.1111/cns.13156
|
[3]
|
Angrisani, A., Di Fiore, A., De Smaele, E. and Moretti, M. (2021) The Emerging Role of the KCTD Proteins in Cancer. Cell Communication and Signaling, 19, Article No. 56. https://doi.org/10.1186/s12964-021-00737-8
|
[4]
|
Pinkas, D.M., Sanvitale, C.E., Bufton, J.C., Sorrell, F.J., Solcan, N., Chalk, R., et al. (2017) Structural Complexity in the KCTD Family of Cullin3-Dependent E3 Ubiquitin Ligases. Biochemical Journal, 474, 3747-3761. https://doi.org/10.1042/bcj20170527
|
[5]
|
Smaldone, G., Pirone, L., Pedone, E., Marlovits, T., Vitagliano, L. and Ciccarelli, L. (2016) The BTB Domains of the Potassium Channel Tetramerization Domain Proteins Prevalently Assume Pentameric States. FEBS Letters, 590, 1663-1671. https://doi.org/10.1002/1873-3468.12203
|
[6]
|
Esposito, L., Balasco, N. and Vitagliano, L. (2022) Alphafold Predictions Provide Insights into the Structural Features of the Functional Oligomers of All Members of the KCTD Family. International Journal of Molecular Sciences, 23, Article 13346. https://doi.org/10.3390/ijms232113346
|
[7]
|
Zhang, X., Wang, P., Chen, T., Yan, W., Guan, X., Shen, G., et al. (2019) KCTD9 Deficiency Impairs Natural Killer Cell Development and Effector Function. Frontiers in Immunology, 10, Article ID: 744. https://doi.org/10.3389/fimmu.2019.00744
|
[8]
|
Zhou, Y.Y., Pi, B., Liu, X.J., Zhang, R., Deng, G.H., Chen, T., Wang, H.W., Han, M.F., Yan, W.M., Xi, D., Huang, J.Q., Wang, Y.M., Luo, X.P. and Ning, Q. (2008) Increased Expression of KCTD9, a Novel Potassium Channel Related Gene, Correlates with Disease Severity in Patients with Viral Hepatitis B. Chinese Journal of Hepatology, 16, 835-839.
|
[9]
|
Zhou, Y.Y., Zou, Y., Chen, T., Wang, H.W., Han, M.F., Pi, B., Yan, W.M., Xi, D., Huang, J.Q., Luo, X.P. and Ning, Q. (2011) KCTD9, a Novel Potassium Channel Related Gene, Was Highly Expressed in Hepatic NK Cells and T Cells of Fulminant Hepatitis Mice Induced by MHV-3. Chinese Journal of Hepatology, 19, 833-837.
|
[10]
|
Hsu, Y., Huang, D.Q. and Nguyen, M.H. (2023) Global Burden of Hepatitis B Virus: Current Status, Missed Opportunities and a Call for Action. Nature Reviews Gastroenterology & Hepatology, 20, 524-537. https://doi.org/10.1038/s41575-023-00760-9
|
[11]
|
Liang, J.T. (2009) Hepatitis B: The Virus and Disease. Hepatology, 49, S13-S21. https://doi.org/10.1002/hep.22881
|
[12]
|
Zhang, X., Zhu, L., Zhou, Y., Shi, A., Wang, H., Han, M., et al. (2018) Interference with KCTD9 Inhibits NK Cell Activation and Ameliorates Fulminant Liver Failure in Mice. BMC Immunology, 19, Article No. 20. https://doi.org/10.1186/s12865-018-0256-x
|
[13]
|
Moreau, R., Gao, B., Papp, M., Bañares, R. and Kamath, P.S. (2021) Acute-on-Chronic Liver Failure: A Distinct Clinical Syndrome. Journal of Hepatology, 75, S27-S35. https://doi.org/10.1016/j.jhep.2020.11.047
|
[14]
|
Chen, T., Zhu, L., Zhou, Y., Pi, B., Liu, X., Deng, G., et al. (2013) KCTD9 Contributes to Liver Injury through NK Cell Activation during Hepatitis B Virus-Induced Acute-on-Chronic Liver Failure. Clinical Immunology, 146, 207-216. https://doi.org/10.1016/j.clim.2012.12.013
|
[15]
|
Huang, J., Xiao, F., Yu, H., Huang, T., Huang, H. and Ning, Q. (2007) Differential Gene Expression Profiles in Acute Hepatic Failure Model in Mice Infected with MHV-3 Virus Intervened by Anti-Hepatic Failure Compound. Journal of Huazhong University of Science and Technology, 27, 538-542. https://doi.org/10.1007/s11596-007-0516-0
|
[16]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708
|
[17]
|
Huang, J., Deng, Y., Tin, M.S., Lok, V., Ngai, C.H., Zhang, L., et al. (2022) Distribution, Risk Factors, and Temporal Trends for Lung Cancer Incidence and Mortality. Chest, 161, 1101-1111.
|
[18]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[19]
|
Lu, C., Wu, S., Ke, L., Liu, F., Shang, W., Deng, X., et al. (2022) Kanglaite (Coix Seed Extract) as Adjunctive Therapy in Cancer: Evidence Mapping Overview Based on Systematic Reviews with Meta-Analyses. Frontiers in Pharmacology, 13, Article ID: 901875. https://doi.org/10.3389/fphar.2022.901875
|
[20]
|
Kong, F., Wang, C., Li, X. and Jia, Y. (2021) Kanglaite Combined with Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Therapy for Stage III/IV Non-Small Cell Lung Cancer: A Prisma-Compliant Meta-Analysis. Frontiers in Pharmacology, 12, Article ID: 739843. https://doi.org/10.3389/fphar.2021.739843
|
[21]
|
Huang, X., Wang, J., Lin, W., Zhang, N., Du, J., Long, Z., et al. (2020) Kanglaite Injection Plus Platinum-Based Chemotherapy for Stage III/IV Non-Small Cell Lung Cancer: A Meta-Analysis of 27 RCTs. Phytomedicine, 67, Article 153154. https://doi.org/10.1016/j.phymed.2019.153154
|
[22]
|
Jiang, J., Li, X., Zhang, C., Wang, J. and Li, J. (2024) Anti-Cancer Effects of Coix Seed Extract through KCTD9-Mediated Ubiquitination of TOP2A in Lung Adenocarcinoma. Cell Division, 19, Article No. 6. https://doi.org/10.1186/s13008-024-00112-2
|
[23]
|
Herbst, R.S., Morgensztern, D. and Boshoff, C. (2018) The Biology and Management of Non-Small Cell Lung Cancer. Nature, 553, 446-454. https://doi.org/10.1038/nature25183
|
[24]
|
Shi, Y., Zhang, W., Dai, P., Deng, J. and Tan, L. (2022) Comprehensive Analysis of KCTD Family Genes Associated with Hypoxic Microenvironment and Immune Infiltration in Lung Adenocarcinoma. Scientific Reports, 12, Article No. 9938. https://doi.org/10.1038/s41598-022-14250-6
|
[25]
|
Zhu, Y. and Li, X. (2023) Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells, 12, Article 447. https://doi.org/10.3390/cells12030447
|
[26]
|
Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., et al. (2022) Wnt Signaling in Colorectal Cancer: Pathogenic Role and Therapeutic Target. Molecular Cancer, 21, Article No. 144. https://doi.org/10.1186/s12943-022-01616-7
|
[27]
|
Nusse, R. and Clevers, H. (2017) Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169, 985-999. https://doi.org/10.1016/j.cell.2017.05.016
|
[28]
|
Majidinia, M., Aghazadeh, J., Jahanban‐Esfahlani, R. and Yousefi, B. (2018) The Roles of Wnt/β‐Catenin Pathway in Tissue Development and Regenerative Medicine. Journal of Cellular Physiology, 233, 5598-5612. https://doi.org/10.1002/jcp.26265
|
[29]
|
Clevers, H., Loh, K.M. and Nusse, R. (2014) An Integral Program for Tissue Renewal and Regeneration: Wnt Signaling and Stem Cell Control. Science, 346, Article 1248012. https://doi.org/10.1126/science.1248012
|
[30]
|
Yao, H., Ren, D., Wang, Y., Wu, L., Wu, Y., Wang, W., et al. (2022) KCTD9 Inhibits the Wnt/β-Catenin Pathway by Decreasing the Level of β-Catenin in Colorectal Cancer. Cell Death & Disease, 13, Article No. 761. https://doi.org/10.1038/s41419-022-05200-1
|
[31]
|
Bian, J., Dannappel, M., Wan, C. and Firestein, R. (2020) Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells, 9, Article 2125. https://doi.org/10.3390/cells9092125
|
[32]
|
Flores-Hernández, E., Velázquez, D.M., Castañeda-Patlán, M.C., Fuentes-García, G., Fonseca-Camarillo, G., Yamamoto-Furusho, J.K., et al. (2020) Canonical and Non-Canonical Wnt Signaling Are Simultaneously Activated by Wnts in Colon Cancer Cells. Cellular Signalling, 72, Article 109636. https://doi.org/10.1016/j.cellsig.2020.109636
|
[33]
|
Ai, L., Li, G., Chen, G., Sun, Z., Zhang, J. and Liu, M. (2024) Molecular Subtyping and the Construction of a Predictive Model of Colorectal Cancer Based on Ion Channel Genes. European Journal of Medical Research, 29, Article No. 219. https://doi.org/10.1186/s40001-024-01819-2
|
[34]
|
Jiang, W., Dong, J., Zhang, W., et al. (2024) Development and Validation of a Prognostic Model Based on 11 E3-Related Genes for Colon Cancer Patients. Current Pharmaceutical Design, 30, 935-951.
|
[35]
|
Hu, B., Chen, Z., Yao, F. and Li, B. (2023) Construction of a Risk Model for Colon Cancer Prognosis Based on Ubiquitin-Related Genes. The Turkish Journal of Gastroenterology, 34, 449-456. https://doi.org/10.5152/tjg.2023.22465
|
[36]
|
Marneros, A.G., Beck, A.E., Turner, E.H., McMillin, M.J., Edwards, M.J., Field, M., et al. (2013) Mutations in KCTD1 Cause Scalp-Ear-Nipple Syndrome. The American Journal of Human Genetics, 92, 621-626. https://doi.org/10.1016/j.ajhg.2013.03.002
|
[37]
|
Kim, E., Kim, S., Jin, X., Jin, X. and Kim, H. (2017) KCTD2, an Adaptor of Cullin3 E3 Ubiquitin Ligase, Suppresses Gliomagenesis by Destabilizing c-Myc. Cell Death & Differentiation, 24, 649-659. https://doi.org/10.1038/cdd.2016.151
|
[38]
|
Faqeih, E.A., Almannai, M., Saleh, M.M., AlWadei, A.H., Samman, M.M. and Alkuraya, F.S. (2018) Phenotypic Characterization of KCTD3‐Related Developmental Epileptic Encephalopathy. Clinical Genetics, 93, 1081-1086. https://doi.org/10.1111/cge.13227
|
[39]
|
Zheng, C., Yu, X., Xu, T., Liu, Z., Jiang, Z., Xu, J., et al. (2023) KCTD4 Interacts with CLIC1 to Disrupt Calcium Homeostasis and Promote Metastasis in Esophageal Cancer. Acta Pharmaceutica Sinica B, 13, 4217-4233. https://doi.org/10.1016/j.apsb.2023.07.013
|
[40]
|
Li, J. and Yao, J. (2024) Cd8+ T Cell-Related KCTD5 Contributes to Malignant Progression and Unfavorable Clinical Outcome of Patients with Triple-Negative Breast Cancer. Molecular Medicine Reports, 30, Article No. 166. https://doi.org/10.3892/mmr.2024.13290
|
[41]
|
De Smaele, E., Di Marcotullio, L., Moretti, M., Pelloni, M., Occhione, M.A., Infante, P., et al. (2011) Identification and Characterization of KCASH2 and KCASH3, 2 Novel Cullin3 Adaptors Suppressing Histone Deacetylase and Hedgehog Activity in Medulloblastoma. Neoplasia, 13, 374-385. https://doi.org/10.1593/neo.101630
|
[42]
|
Di Marcotullio, L., Ferretti, E., De Smaele, E., Argenti, B., Mincione, C., Zazzeroni, F., et al. (2004) RENkctd11 Is a Suppressor of Hedgehog Signaling and Is Deleted in Human Medulloblastoma. Proceedings of the National Academy of Sciences, 101, 10833-10838. https://doi.org/10.1073/pnas.0400690101
|
[43]
|
Zhou, J., Zhang, M., Gao, A., Herman, J.G. and Guo, M. (2024) Epigenetic Silencing of KCTD8 Promotes Hepatocellular Carcinoma Growth by Activating PI3K/AKT Signaling. Epigenomics, 16, 929-944. https://doi.org/10.1080/17501911.2024.2370590
|
[44]
|
Ren, K., Yuan, J., Yang, M., Gao, X., Ding, X., Zhou, J., et al. (2014) KCTD10 Is Involved in the Cardiovascular System and Notch Signaling during Early Embryonic Development. PLOS ONE, 9, e112275. https://doi.org/10.1371/journal.pone.0112275
|
[45]
|
Ma, T., Wang, D., Wu, J., et al. (2023) KCTD10 Functions as a Tumor Suppressor in Hepatocellular Carcinoma by Triggering the Notch Signaling Pathway. American Journal of Translational Research, 15, 125-137.
|
[46]
|
Cheng, J., Wang, Z., Tang, M., Zhang, W., Li, G., Tan, S., et al. (2024) KCTD10 Regulates Brain Development by Destabilizing Brain Disorder-Associated Protein KCTD13. Proceedings of the National Academy of Sciences, 121, e2315707121. https://doi.org/10.1073/pnas.2315707121
|
[47]
|
Yang, M., Han, Y.M., Han, Q., Rong, X.Z., Liu, X.F. and Ln, X.Y. (2021) KCTD11 Inhibits Progression of Lung Cancer by Binding to β-Catenin to Regulate the Activity of the Wnt and Hippo Pathways. Journal of Cellular and Molecular Medicine, 25, 9411-9426. https://doi.org/10.1111/jcmm.16883
|
[48]
|
Tong, R., Yang, B., Xiao, H., Peng, C., Hu, W., Weng, X., et al. (2017) KCTD11 Inhibits Growth and Metastasis of Hepatocellular Carcinoma through Activating Hippo Signaling. Oncotarget, 8, 37717-37729. https://doi.org/10.18632/oncotarget.17145
|
[49]
|
Zazzeroni, F., Nicosia, D., Tessitore, A., Gallo, R., Verzella, D., Fischietti, M., et al. (2014) KCTD11 Tumor Suppressor Gene Expression Is Reduced in Prostate Adenocarcinoma. BioMed Research International, 2014, Article ID: 380398. https://doi.org/10.1155/2014/380398
|
[50]
|
Li, M., Milligan, C.J., Wang, H., Walker, A., Churilov, L., Lawrence, A.J., et al. (2017) KCTD12 Modulation of GABA(B) Receptor Function. Pharmacology Research & Perspectives, 5, e00319. https://doi.org/10.1002/prp2.319
|
[51]
|
Cathomas, F., Stegen, M., Sigrist, H., Schmid, L., Seifritz, E., Gassmann, M., et al. (2015) Altered Emotionality and Neuronal Excitability in Mice Lacking KCTD12, an Auxiliary Subunit of GABAB Receptors Associated with Mood Disorders. Translational Psychiatry, 5, e510. https://doi.org/10.1038/tp.2015.8
|
[52]
|
Li, L., Duan, T., Wang, X., Zhang, R., Zhang, M., Wang, S., et al. (2016) KCTD12 Regulates Colorectal Cancer Cell Stemness through the ERK Pathway. Scientific Reports, 6, Article No. 20460. https://doi.org/10.1038/srep20460
|
[53]
|
Shen, W., Li, Y., Li, B., et al. (2019) Downregulation of KCTD12 Contributes to Melanoma Stemness by Modulating CD271. Cancer Biology & Medicine, 16, 498-513. https://doi.org/10.20892/j.issn.2095-3941.2019.0073
|
[54]
|
Wang, Z., Wu, D., Dong, M., Xia, Y. and Xu, T. (2021) KCTD12 Is a Prognostic Marker of Breast Cancer and Correlates with Tumor Immune Cell Infiltration. Translational Cancer Research, 10, 261-272. https://doi.org/10.21037/tcr-20-2099
|
[55]
|
Ye, R., Kuang, X., Zeng, H., Shao, N., Lin, Y. and Wang, S. (2020) KCTD12 Promotes G1/S Transition of Breast Cancer Cell through Activating the AKT/FOXO1 Signaling. Journal of Clinical Laboratory Analysis, 34, e23315. https://doi.org/10.1002/jcla.23315
|
[56]
|
Dutta, S. and Dawid, I.B. (2010) KCTD15 Inhibits Neural Crest Formation by Attenuating Wnt/β-Catenin Signaling Output. Development, 137, 3013-3018. https://doi.org/10.1242/dev.047548
|
[57]
|
Zhang, F., Wu, L., Zhang, T. and Chen, H. (2024) KCTD15 Acts as an Anti-Tumor Factor in Colorectal Cancer Cells Downstream of the Demethylase FTO and the M6a Reader YTHDF2. Communications Biology, 7, Article No. 262. https://doi.org/10.1038/s42003-024-05880-9
|
[58]
|
Spiombi, E., Angrisani, A., Fonte, S., De Feudis, G., Fabretti, F., Cucchi, D., et al. (2019) KCTD15 Inhibits the Hedgehog Pathway in Medulloblastoma Cells by Increasing Protein Levels of the Oncosuppressor KCASH2. Oncogenesis, 8, Article No. 64. https://doi.org/10.1038/s41389-019-0175-6
|
[59]
|
Coppola, L., Baselice, S., Messina, F., Giannatiempo, R., Farina, A., Vitagliano, L., et al. (2022) KCTD15 Is Overexpressed in Her2+ Positive Breast Cancer Patients and Its Silencing Attenuates Proliferation in SKBR3 CELL LINE. Diagnostics, 12, Article 591. https://doi.org/10.3390/diagnostics12030591
|
[60]
|
Smaldone, G., Beneduce, G., Incoronato, M., Pane, K., Franzese, M., Coppola, L., et al. (2019) KCTD15 Is Overexpressed in Human Childhood B-Cell Acute Lymphoid Leukemia. Scientific Reports, 9, Article No. 20108. https://doi.org/10.1038/s41598-019-56701-7
|
[61]
|
Smaldone, G., Coppola, L., Incoronato, M., Parasole, R., Ripaldi, M., Vitagliano, L., et al. (2020) KCTD15 Protein Expression in Peripheral Blood and Acute Myeloid Leukemia. Diagnostics, 10, Article 371. https://doi.org/10.3390/diagnostics10060371
|
[62]
|
Graziola, F., Stregapede, F., Travaglini, L., Garone, G., Verardo, M., Bosco, L., et al. (2019) A Novel KCTD17 Mutation Is Associated with Childhood Early-Onset Hyperkinetic Movement Disorder. Parkinsonism & Related Disorders, 61, 4-6. https://doi.org/10.1016/j.parkreldis.2018.12.001
|
[63]
|
Jung, Y.H., Lee, Y.J., Dao, T., Jung, K.H., Yu, J., Oh, A., et al. (2024) KCTD17-Mediated Ras Stabilization Promotes Hepatocellular Carcinoma Progression. Clinical and Molecular Hepatology, 30, 895-913. https://doi.org/10.3350/cmh.2024.0364
|
[64]
|
Liu, J., Rahim, F., Zhou, J., Fan, S., Jiang, H., Yu, C., et al. (2023) Loss-of-Function Variants in KCTD19 Cause Non-Obstructive Azoospermia in Humans. iScience, 26, Article 107193. https://doi.org/10.1016/j.isci.2023.107193
|
[65]
|
Wang, W., Su, L., Meng, L., He, J., Tan, C., Yi, D., et al. (2023) Biallelic Variants in KCTD19 Associated with Male Factor Infertility and Oligoasthenoteratozoospermia. Human Reproduction, 38, 1399-1411. https://doi.org/10.1093/humrep/dead095
|
[66]
|
Zhang, X., Zhou, H., Cai, L., Fan, C., Liu, Y., Wang, L., et al. (2017) KCTD20 Promotes the Development of Non‐Small Cell Lung Cancer through Activating Fak/AKT Pathway and Predicts Poor Overall Survival of Patients. Molecular Carcinogenesis, 56, 2058-2065. https://doi.org/10.1002/mc.22660
|
[67]
|
Generous, A., Thorson, M., Barcus, J., Jacher, J., Busch, M. and Sleister, H. (2014) Identification of Putative Interactions between Swine and Human Influenza a Virus Nucleoprotein and Human Host Proteins. Virology Journal, 11, Article No. 228. https://doi.org/10.1186/s12985-014-0228-6
|
[68]
|
Gadwal, A., Purohit, P., Khokhar, M., Vishnoi, J.R., Pareek, P., Choudhary, R., et al. (2023) In Silico Analysis of Differentially Expressed-Aberrantly Methylated Genes in Breast Cancer for Prognostic and Therapeutic Targets. Clinical and Experimental Medicine, 23, 3847-3866. https://doi.org/10.1007/s10238-023-01060-x
|