KCTD9的结构、功能及在人类疾病中起到的作用
Structure, Function, and Role of KCTD9 in Human Diseases
DOI: 10.12677/jcpm.2025.44413, PDF, HTML, XML,   
作者: 刘宗军*:济宁医学院临床医学院(附属医院),山东 济宁;张志新#:济宁医学院附属医院胃肠外科,山东 济宁;沈文志#:济宁医学院精准医学研究院,山东 济宁
关键词: KCTD家族KCTD9CUL3肺癌结直肠癌ACLF人类疾病KCTD Family KCTD9 CUL3 Lung Cancer Colorectal Cancer ACLF Human Diseases
摘要: KCTD9 (新型钾通道相关基因),是钾通道四聚化结构域(KCTD)基因家族的成员之一;因其N端保守的BTB结构域与电压门控钾通道具有序列相似性而得名,可以与CUL3相互作用介导靶蛋白的泛素化,并在NK细胞生长发育和功能发挥过程中发挥重要作用。起初的研究始于发现它在重型乙型肝炎中呈高表达,后续发现他还在几种恶性肿瘤中如肺癌、结直肠癌、乳腺癌发挥着重要的抗肿瘤作用。近年来关于KCTD9的研究报道逐渐增多,但对它的综述表述几乎没有,基于此我们对KCTD9的结构、功能以及在人类疾病中发挥的作用作了综述,并介绍了其所属KCTD家族的结构、功能及家族内成员在人类疾病中发挥的作用。
Abstract: KCTD9 (novel potassium channel-related gene) is a member of the potassium channel tetradomain (KCTD) gene family. It is named for its N-terminal conserved BTB domain, which shares sequence similarity with voltage-gated potassium channels. KCTD9 can interact with CUL3 to mediate the ubiquitination of target proteins and plays an important role in the growth, development, and function of NK cells. Initial studies began with the discovery of its high expression in severe hepatitis B, followed by findings of its important antitumor effects in several malignant tumors, such as lung cancer, colorectal cancer, and breast cancer. In recent years, reports on KCTD9 have increased, but there are almost no comprehensive reviews of it. Based on this, we provide a review of KCTD9’s structure, function, and role in human diseases, and introduce the structure, function, and role of its family members in human diseases.
文章引用:刘宗军, 张志新, 沈文志. KCTD9的结构、功能及在人类疾病中起到的作用[J]. 临床个性化医学, 2025, 4(4): 33-40. https://doi.org/10.12677/jcpm.2025.44413

1. KCTD家族

人类基因组编码183个包含BTB结构域的蛋白质,并根据结构域共同特征划分为四个大家族:ZBTB家族(BTB-锌指蛋白;43个成员)、KLHL家族(BTB-BACK Kelch-pro蛋白;49个成员)、T1/Kv家族(T1 K+通道整联膜蛋白;27个成员)和KCTD家族(钾通道四聚化结构域蛋白;25个成员) [1]。KCTD家族由单个短形式n端BTB结构域和可变性较强的c端序列组成,因其保守n端序列含有的brick-a-brack,Tram-track,Broad复合体(BTB/POZ)结构域与可以介导电压门控钾通道亚基四聚化的T1/BTB结构域相似而得名[1]-[3],家族成员们基于BTB结构域多数表现为五聚体形式少数为四聚体形式[2] [4],通过氨基酸序列将他们划分为8组,广泛分布于细胞质、细胞核中而且参与很多不同的生物功能过程,比如蛋白质的降解、增殖或转录的抑制、人类遗传疾病风险、睡眠稳态和G蛋白偶联受体的调节[2] [5]

2. KCTD9的结构特点及功能

KCTD9 (新型钾通道相关基因),是钾通道四聚化结构域(KCTD)基因家族的一名成员,其结构由N端的保守BTB结构域介导形成了与传统BTB蛋白的二聚体不同的独特对称五聚化结构,并且可以与CUL3 (E3连接酶)相互作用形成稳定的5:5复合物,介导相应靶蛋白泛素化[1] [4] [6] [7]。对KCTD9的初步深入研究源于其被发现在病毒性暴发性肝炎小鼠模型肝NK细胞、CD8+ T细胞、CD4+ T细胞和重型乙型肝炎患者PBMC(外周血单核细胞)中表达上调且与肝损害程度正相关,其高表达主要作用为活化NK细胞产生更多的INF-γ等细胞因子、增加细胞毒性来介导免疫相关炎症反应[8] [9]。后续通过建立KCTD9缺陷小鼠模型研究发现:KCTD9免疫缺陷小鼠体内介导NK细胞发育成熟的转录因子如Ets1、Nfil3、Eomes和Id2表达受阻从而引起了NK细胞的成熟受损,同时NK细胞的效应功能也受到损害表现为IFN-γ、脱颗粒和颗粒酶B产生下降以及体外实验中对肿瘤细胞的毒性减弱[7],说明KCTD9通过影响上述转录因子表达以及相应细胞因子分泌在介导NK细胞发育成熟和效应功能表达过程中不可或缺,具体详尽的分子靶点调控需尚需进一步研究,但KCTD9在NK细胞成熟过程中的作用是确定的,推测可能与KCTD9独特的五聚化结构有关。

3. KCTD9与人类疾病

3.1. KCTD9与ACLF

慢性乙型肝炎(CHB)是一种由乙型肝炎病毒(HBV)感染引起的全球危害性疾病,据WHO数据统计显示:2019年全球感染慢性乙型肝炎患者人数高达2.96亿人次[10],ACLF(急性慢性肝衰竭/慢加急性肝衰竭/爆发性肝衰竭)是CHB慢性期发生的急性肝脏衰竭,死亡率高达50%~70% [11]-[13]。而在HBV感染引起的ACLF患者的外周血和肝脏NK细胞中发现KCTD9的表达水平上调,体外细胞实验发现KCTD9通过抑制NKG2A受体的产生促进NK细胞活化提高细胞毒性与杀伤力,从而介导炎症反应加重肝衰竭[14]。相关的小鼠体内实验也证明,KCTD9在爆发性肝衰竭小鼠模型中表达上调,且加重肝脏损伤,降低KCTD9表达后可以抑制NK细胞活化降低细胞毒性来改善小鼠的肝功能,提高存活率[12],且通过抗肝衰竭化合物(AHFC)处理爆发性肝衰竭小鼠模型后,KCTD9基因表达下降,相关免疫损伤得到控制[15]。由此说明KCTD9通过活化NK细胞介导炎症反应的方式在ACLF中产生重要的作用,以此为研究方向可提供新的治疗策略,降低ACLF的死亡风险。

3.2. KCTD9与肺癌

肺癌是全球范围内危害性极高且防治困难的恶性肿瘤之首,根据国际癌症研究机构(IARC)最新的2022年全球癌症统计数据显示:肺癌是目前世界范围内生存率(12.4%)和死亡率(18.7%)排名均第一的癌症,且死亡率是排名第二位的结直肠癌(9.3%)的三倍,其五年生存率明显低于其他类型的癌症[16]-[18]。在肺癌治疗相关研究中,一种中药制剂康莱特(薏苡仁提取物/CSE)被广泛用于肺癌的辅助治疗中,可以起到缓解病症,提高患者生活质量,延长生存时间以及减少化疗毒副反应的作用,而且安全性得到肯定[19]-[21]。通过相关体外细胞实验也发现,CSE可以抑制肺腺癌细胞如A549和HCC827细胞的侵袭能力[22]。研究发现这种抗肿瘤作用与本文所述基因KCTD9密切相关,相比于正常组织而言,KCTD9在肺腺癌中的mRNA和蛋白表达水平明显下降,而用CSE处理之后KCTD9表达水平明显提高,且KCTD9是CSE减少PD-L1 (T细胞活性的负调节因子) [23]的产生来增强人CD8+ T细胞增殖能力和杀伤作用的靶点,具体而言CSE通过KCTD9介导的TOP2A蛋白泛素化修饰过程降低PD-L1的产生在肺癌发生发展中发挥抑制肿瘤增值、侵袭等恶性行为和免疫逃逸的抗肿瘤作用,且敲低肺癌细胞中KCTD9表达之后可以逆转上述抗肿瘤效应,促进了肿瘤免疫逃逸[22] [24]。所以KCTD9在肺癌中的抗肿瘤效应是确定的,上述提到KCTD9与CUL3相互作用可介导相应靶蛋白泛素化,推测KCTD9介导的TOP2A泛素化与其密切相关,以此为切入点研究CUL3、KCTD9、TOP2A的相互作用及对下游相关分子靶点的调控在未来有望作为肺癌新的治疗靶点。

3.3. KCTD9与结直肠癌

结直肠癌是全球范围内严重危害人类健康安全的恶性肿瘤之一,根据IARC报道的最新数据显示,其发病率为9.6%,仅次于肺癌(12.4%)和女性乳腺癌(11.6%)排名第三;死亡率(9.3%)更是高居第二位,仅次于肺癌(18.7%),是消化道肿瘤中发病率和死亡率排名第一的癌症[18]。结直肠癌的发生发展过程与Wnt信号传导通路有密切的关系[25],Wnt信号传导通路是正常细胞生长发育,增殖分化不可或缺的一部分,由经典的Wnt/β-catenin信号传导通路以及非经典的Wnt-PCP (平面细胞极性)通路、Wnt-Ca 2+信号通路组成,形成复杂的细胞间信号传导网络[26],在胚胎孕育、组织与器官的发育和再生、干细胞的维持与分化的精准调控等正常生理过程中发挥着不可或缺的作用[27]-[29];但是该通路的异常激活也是造成结直肠癌细胞的产生、增殖和转移促进其发生发展的关键因素之一[26] [30] [31]。而且在以往经典Wnt通路促进结直肠癌结论的基础上,近期有研究发现Wnt配体可以通过协同激活经典和非经典通路形成复杂的信号通路网促进结直肠癌的进展[32]。Yao等人的研究发现KCTD9的蛋白表达水平在结直肠癌中呈下调趋势,并探究了KCTD9抑制结直肠癌进展的具体分子机制:首先他们证实ZNT9(锌转运蛋白9)是Wnt/β-catenin信号传导、EMT的正调节因子,而KCTD9可以与其相互作用,一方面竞争性抑制了ZNT9与β-catenin的相互作用降低了Wnt通路激活成分如:c-Myc、cyclin D1、MMP-7蛋白的表达从而抑制了经典的Wnt/β-catenin通路的传导;另一方面抑制了上皮标记物N-cadherin、SNAIL和vimentin的表达来抑制结直肠癌细胞的EMT过程,这两种效果共同发挥抑制结直肠癌增殖和转移的作用[30]。相关的体外细胞实验以及裸鼠皮下成瘤实验也证明了KCTD9基因抑制结直肠癌的进展[30] [33]此外还有不同的预后模型分析均显示KCTD9作为一种保护因子与结直肠癌患者的预后呈正相关[33]-[35],在以上基础上围绕KCTD9这一基因研究有望研发出新型有效的临床药物,为治疗结直肠癌提供了新的研究方向。

4. KCTD家族相关疾病

随着对KCTD家族的广泛深入研究,发现他们与很多人类疾病的发生发展有着密切的联系并且作用不尽相同。在此对与他们相关性较强的疾病做了简要总结概括:KCTD1突变引起头皮–耳–乳头(SEN)综合征[36];KCTD2可抑制神经胶质瘤的发生[37];KCTD3介导发育性癫痫性脑病[38];KCTD4促进食管癌转移[39];KCTD5促进三阴性乳腺癌的恶性进展以及不良预后[40];KCTD6 [41]、KCTD11 [42]、KCTD21抑制髓母细胞瘤的发生;KCTD7可引起神经发育障碍的进行性肌阵挛性癫痫(PME3/EPM3);KCTD8抑制肝细胞癌进展[43];KCTD9抑制结直肠癌与肺癌的进展以及介导暴发性肝炎引起的肝损害,见下文详述;KCTD10通过抑制Notch信号通路对胚胎血管生成和心脏发育起关键作用[44],是肝细胞癌肿瘤抑制因子[45];还可以通过介导KCTD13泛素化抑制神经发育障碍疾病的发生[46];KCTD11抑制肺癌[47]、肝细胞癌[48]、前列腺癌[49]、随母细胞瘤等多种癌症的发生发展;KCTD12的经典报道为调节 GABA(B)受体的功能[50],后来发现它与神经障碍性疾病如双相情感障碍、抑郁症等相关[51],并且在结直肠癌[52]、黑色素瘤[53]、乳腺癌[54] [55]中的下调促进了他们的进展,可能作为未来开展治疗新靶点。KCTD13主要因其基因定位(16p11.2)与癫痫、自闭症以及精神分裂症密切相关[2];早期关于KCTD15的报道主要涉及抑制神经嵴的形成[56],近期报道其还在几种恶性肿瘤中发挥不同的作用:抑制结直肠癌[57]以及髓母细胞瘤[58]的进展,在her2+阳性乳腺癌[59]以及儿童B细胞急性淋巴细胞白血病[60]、外周血和急性髓性白血病[61]中高表达;KCTD17近期报道与运动障碍相关[62]并且可以促进肝细胞癌的进展[63];KCTD19基因突变可导致男性不育[64] [65];KCTD20可促进非小细胞肺癌进展[66]。对于KCTD家族成员功能的探究以及与人类疾病尤其是恶性肿瘤的相关机制研究对未来这些疾病的治疗、预防提供了新的依据。

5. 讨论与总结

KCTD家族是根据人类基因组编码的183个包含BTB结构域蛋白质的共同特征划分的四个大家族之一,广泛分布于细胞质与细胞核中并发挥不同的生理功能,KCTD9是KCTD家族的成员之一,他在人类重型乙型肝炎患者组织样本中高表达,后通过暴发性肝炎等相关小鼠体内模型探讨发现,其高表达主要通过促进NK细胞的活化介导TNF-γ等细胞因子的产生及细胞毒性的提高引起了免疫系统相关性炎症引起了与其表达水平呈正相关的肝损伤。而且KCTD9还可以在甲型流感病毒(IAV)复制过程中作为宿主蛋白参加多种生理过程,很有可能协助NP (IAV核蛋白)转移到细胞核,用于病毒RNA的复制和转录促进甲型流感的发展[67]。后续通过对KCTD9的深入研究发现它可以通过抑制经典的Wnt/β-catenin通路的传导以及介导TOP2A蛋白泛素化修饰过程分别在结直肠癌和肺癌中发挥抗肿瘤效应。还有研究通过筛选异常甲基化基因的差异表达并利用公开数据库验证筛选出KCTD9在乳腺癌中呈低表达状态并与不良的临床结果相关[68]。本文还总结了KCTD家族成员在密切相关的人类疾病中发挥的作用或饰演的角色,希望能对KCTD9和它所在KCTD家族的深入研究以及多种临床相关疾病的诊疗有所助益。

6. 挑战与展望

基于对KCTD9与KCTD家族的了解,虽然KCTD9已经被发现可以作为肿瘤抑制因子在几种恶性肿瘤包括结直肠癌、肺癌、乳腺癌中发挥抗肿瘤作用,但是以KCTD9为作用靶点、有效且安全的临床药物尚未被研发出来,并且相关研究较少,想要实现从基础实验研究到临床药物研发阶段的转换存在一定的挑战性,尚有几个关键性问题需要解决比如:KCTD9是否可作为治疗性靶点?其在癌症中的功能是否具有成药性?KCTD9调控的下游通路中哪些节点可被小分子干预以进一步深入研究?以KCTD9为靶点药物开发的临床前安全性与毒性评价又如何?但是通过相关成熟的实验技术我们相信可以逐步攻克相关的关键问题,比如类器官模型或PDX (人源肿瘤异种移植)评估KCTD9敲除/过表达对治疗响应的影响;磷酸化蛋白质组学(phospho-proteomics)技术筛选KCTD9依赖的信号网络;通过体外毒性筛选、体内动物毒理学研究评估药物的安全性与毒性。相信不久的未来有望开发出新型有效的抗肿瘤药物。不仅如此,KCTD9在重型乙型肝炎及暴发性肝炎介导肝损伤的机制也是基于活化NK细胞并且药物实验方面已经以小鼠为模型逐步开展,并有一定的研究支持,相对于肿瘤拮抗作用药物研发具有一定挑战性而言,以KCTD09为作用靶点开发出有效降低肝炎患者肝损伤来降低重型肝炎特别是爆发性肝炎的死亡率较为可观,但仍需要继续努力以研发出有效且安全的临床药物,并且相信在未来KCTD9有望成为新兴的热门研发药物靶点。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ji, A.X., Chu, A., Nielsen, T.K., Benlekbir, S., Rubinstein, J.L. and Privé, G.G. (2016) Structural Insights into KCTD Protein Assembly and Cullin3 Recognition. Journal of Molecular Biology, 428, 92-107.
https://doi.org/10.1016/j.jmb.2015.08.019
[2] Teng, X., Aouacheria, A., Lionnard, L., Metz, K.A., Soane, L., Kamiya, A., et al. (2019) KCTD: A New Gene Family Involved in Neurodevelopmental and Neuropsychiatric Disorders. CNS Neuroscience & Therapeutics, 25, 887-902.
https://doi.org/10.1111/cns.13156
[3] Angrisani, A., Di Fiore, A., De Smaele, E. and Moretti, M. (2021) The Emerging Role of the KCTD Proteins in Cancer. Cell Communication and Signaling, 19, Article No. 56.
https://doi.org/10.1186/s12964-021-00737-8
[4] Pinkas, D.M., Sanvitale, C.E., Bufton, J.C., Sorrell, F.J., Solcan, N., Chalk, R., et al. (2017) Structural Complexity in the KCTD Family of Cullin3-Dependent E3 Ubiquitin Ligases. Biochemical Journal, 474, 3747-3761.
https://doi.org/10.1042/bcj20170527
[5] Smaldone, G., Pirone, L., Pedone, E., Marlovits, T., Vitagliano, L. and Ciccarelli, L. (2016) The BTB Domains of the Potassium Channel Tetramerization Domain Proteins Prevalently Assume Pentameric States. FEBS Letters, 590, 1663-1671.
https://doi.org/10.1002/1873-3468.12203
[6] Esposito, L., Balasco, N. and Vitagliano, L. (2022) Alphafold Predictions Provide Insights into the Structural Features of the Functional Oligomers of All Members of the KCTD Family. International Journal of Molecular Sciences, 23, Article 13346.
https://doi.org/10.3390/ijms232113346
[7] Zhang, X., Wang, P., Chen, T., Yan, W., Guan, X., Shen, G., et al. (2019) KCTD9 Deficiency Impairs Natural Killer Cell Development and Effector Function. Frontiers in Immunology, 10, Article ID: 744.
https://doi.org/10.3389/fimmu.2019.00744
[8] Zhou, Y.Y., Pi, B., Liu, X.J., Zhang, R., Deng, G.H., Chen, T., Wang, H.W., Han, M.F., Yan, W.M., Xi, D., Huang, J.Q., Wang, Y.M., Luo, X.P. and Ning, Q. (2008) Increased Expression of KCTD9, a Novel Potassium Channel Related Gene, Correlates with Disease Severity in Patients with Viral Hepatitis B. Chinese Journal of Hepatology, 16, 835-839.
[9] Zhou, Y.Y., Zou, Y., Chen, T., Wang, H.W., Han, M.F., Pi, B., Yan, W.M., Xi, D., Huang, J.Q., Luo, X.P. and Ning, Q. (2011) KCTD9, a Novel Potassium Channel Related Gene, Was Highly Expressed in Hepatic NK Cells and T Cells of Fulminant Hepatitis Mice Induced by MHV-3. Chinese Journal of Hepatology, 19, 833-837.
[10] Hsu, Y., Huang, D.Q. and Nguyen, M.H. (2023) Global Burden of Hepatitis B Virus: Current Status, Missed Opportunities and a Call for Action. Nature Reviews Gastroenterology & Hepatology, 20, 524-537.
https://doi.org/10.1038/s41575-023-00760-9
[11] Liang, J.T. (2009) Hepatitis B: The Virus and Disease. Hepatology, 49, S13-S21.
https://doi.org/10.1002/hep.22881
[12] Zhang, X., Zhu, L., Zhou, Y., Shi, A., Wang, H., Han, M., et al. (2018) Interference with KCTD9 Inhibits NK Cell Activation and Ameliorates Fulminant Liver Failure in Mice. BMC Immunology, 19, Article No. 20.
https://doi.org/10.1186/s12865-018-0256-x
[13] Moreau, R., Gao, B., Papp, M., Bañares, R. and Kamath, P.S. (2021) Acute-on-Chronic Liver Failure: A Distinct Clinical Syndrome. Journal of Hepatology, 75, S27-S35.
https://doi.org/10.1016/j.jhep.2020.11.047
[14] Chen, T., Zhu, L., Zhou, Y., Pi, B., Liu, X., Deng, G., et al. (2013) KCTD9 Contributes to Liver Injury through NK Cell Activation during Hepatitis B Virus-Induced Acute-on-Chronic Liver Failure. Clinical Immunology, 146, 207-216.
https://doi.org/10.1016/j.clim.2012.12.013
[15] Huang, J., Xiao, F., Yu, H., Huang, T., Huang, H. and Ning, Q. (2007) Differential Gene Expression Profiles in Acute Hepatic Failure Model in Mice Infected with MHV-3 Virus Intervened by Anti-Hepatic Failure Compound. Journal of Huazhong University of Science and Technology, 27, 538-542.
https://doi.org/10.1007/s11596-007-0516-0
[16] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[17] Huang, J., Deng, Y., Tin, M.S., Lok, V., Ngai, C.H., Zhang, L., et al. (2022) Distribution, Risk Factors, and Temporal Trends for Lung Cancer Incidence and Mortality. Chest, 161, 1101-1111.
[18] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[19] Lu, C., Wu, S., Ke, L., Liu, F., Shang, W., Deng, X., et al. (2022) Kanglaite (Coix Seed Extract) as Adjunctive Therapy in Cancer: Evidence Mapping Overview Based on Systematic Reviews with Meta-Analyses. Frontiers in Pharmacology, 13, Article ID: 901875.
https://doi.org/10.3389/fphar.2022.901875
[20] Kong, F., Wang, C., Li, X. and Jia, Y. (2021) Kanglaite Combined with Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Therapy for Stage III/IV Non-Small Cell Lung Cancer: A Prisma-Compliant Meta-Analysis. Frontiers in Pharmacology, 12, Article ID: 739843.
https://doi.org/10.3389/fphar.2021.739843
[21] Huang, X., Wang, J., Lin, W., Zhang, N., Du, J., Long, Z., et al. (2020) Kanglaite Injection Plus Platinum-Based Chemotherapy for Stage III/IV Non-Small Cell Lung Cancer: A Meta-Analysis of 27 RCTs. Phytomedicine, 67, Article 153154.
https://doi.org/10.1016/j.phymed.2019.153154
[22] Jiang, J., Li, X., Zhang, C., Wang, J. and Li, J. (2024) Anti-Cancer Effects of Coix Seed Extract through KCTD9-Mediated Ubiquitination of TOP2A in Lung Adenocarcinoma. Cell Division, 19, Article No. 6.
https://doi.org/10.1186/s13008-024-00112-2
[23] Herbst, R.S., Morgensztern, D. and Boshoff, C. (2018) The Biology and Management of Non-Small Cell Lung Cancer. Nature, 553, 446-454.
https://doi.org/10.1038/nature25183
[24] Shi, Y., Zhang, W., Dai, P., Deng, J. and Tan, L. (2022) Comprehensive Analysis of KCTD Family Genes Associated with Hypoxic Microenvironment and Immune Infiltration in Lung Adenocarcinoma. Scientific Reports, 12, Article No. 9938.
https://doi.org/10.1038/s41598-022-14250-6
[25] Zhu, Y. and Li, X. (2023) Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells, 12, Article 447.
https://doi.org/10.3390/cells12030447
[26] Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., et al. (2022) Wnt Signaling in Colorectal Cancer: Pathogenic Role and Therapeutic Target. Molecular Cancer, 21, Article No. 144.
https://doi.org/10.1186/s12943-022-01616-7
[27] Nusse, R. and Clevers, H. (2017) Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169, 985-999.
https://doi.org/10.1016/j.cell.2017.05.016
[28] Majidinia, M., Aghazadeh, J., Jahanban‐Esfahlani, R. and Yousefi, B. (2018) The Roles of Wnt/β‐Catenin Pathway in Tissue Development and Regenerative Medicine. Journal of Cellular Physiology, 233, 5598-5612.
https://doi.org/10.1002/jcp.26265
[29] Clevers, H., Loh, K.M. and Nusse, R. (2014) An Integral Program for Tissue Renewal and Regeneration: Wnt Signaling and Stem Cell Control. Science, 346, Article 1248012.
https://doi.org/10.1126/science.1248012
[30] Yao, H., Ren, D., Wang, Y., Wu, L., Wu, Y., Wang, W., et al. (2022) KCTD9 Inhibits the Wnt/β-Catenin Pathway by Decreasing the Level of β-Catenin in Colorectal Cancer. Cell Death & Disease, 13, Article No. 761.
https://doi.org/10.1038/s41419-022-05200-1
[31] Bian, J., Dannappel, M., Wan, C. and Firestein, R. (2020) Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells, 9, Article 2125.
https://doi.org/10.3390/cells9092125
[32] Flores-Hernández, E., Velázquez, D.M., Castañeda-Patlán, M.C., Fuentes-García, G., Fonseca-Camarillo, G., Yamamoto-Furusho, J.K., et al. (2020) Canonical and Non-Canonical Wnt Signaling Are Simultaneously Activated by Wnts in Colon Cancer Cells. Cellular Signalling, 72, Article 109636.
https://doi.org/10.1016/j.cellsig.2020.109636
[33] Ai, L., Li, G., Chen, G., Sun, Z., Zhang, J. and Liu, M. (2024) Molecular Subtyping and the Construction of a Predictive Model of Colorectal Cancer Based on Ion Channel Genes. European Journal of Medical Research, 29, Article No. 219.
https://doi.org/10.1186/s40001-024-01819-2
[34] Jiang, W., Dong, J., Zhang, W., et al. (2024) Development and Validation of a Prognostic Model Based on 11 E3-Related Genes for Colon Cancer Patients. Current Pharmaceutical Design, 30, 935-951.
[35] Hu, B., Chen, Z., Yao, F. and Li, B. (2023) Construction of a Risk Model for Colon Cancer Prognosis Based on Ubiquitin-Related Genes. The Turkish Journal of Gastroenterology, 34, 449-456.
https://doi.org/10.5152/tjg.2023.22465
[36] Marneros, A.G., Beck, A.E., Turner, E.H., McMillin, M.J., Edwards, M.J., Field, M., et al. (2013) Mutations in KCTD1 Cause Scalp-Ear-Nipple Syndrome. The American Journal of Human Genetics, 92, 621-626.
https://doi.org/10.1016/j.ajhg.2013.03.002
[37] Kim, E., Kim, S., Jin, X., Jin, X. and Kim, H. (2017) KCTD2, an Adaptor of Cullin3 E3 Ubiquitin Ligase, Suppresses Gliomagenesis by Destabilizing c-Myc. Cell Death & Differentiation, 24, 649-659.
https://doi.org/10.1038/cdd.2016.151
[38] Faqeih, E.A., Almannai, M., Saleh, M.M., AlWadei, A.H., Samman, M.M. and Alkuraya, F.S. (2018) Phenotypic Characterization of KCTD3‐Related Developmental Epileptic Encephalopathy. Clinical Genetics, 93, 1081-1086.
https://doi.org/10.1111/cge.13227
[39] Zheng, C., Yu, X., Xu, T., Liu, Z., Jiang, Z., Xu, J., et al. (2023) KCTD4 Interacts with CLIC1 to Disrupt Calcium Homeostasis and Promote Metastasis in Esophageal Cancer. Acta Pharmaceutica Sinica B, 13, 4217-4233.
https://doi.org/10.1016/j.apsb.2023.07.013
[40] Li, J. and Yao, J. (2024) Cd8+ T Cell-Related KCTD5 Contributes to Malignant Progression and Unfavorable Clinical Outcome of Patients with Triple-Negative Breast Cancer. Molecular Medicine Reports, 30, Article No. 166.
https://doi.org/10.3892/mmr.2024.13290
[41] De Smaele, E., Di Marcotullio, L., Moretti, M., Pelloni, M., Occhione, M.A., Infante, P., et al. (2011) Identification and Characterization of KCASH2 and KCASH3, 2 Novel Cullin3 Adaptors Suppressing Histone Deacetylase and Hedgehog Activity in Medulloblastoma. Neoplasia, 13, 374-385.
https://doi.org/10.1593/neo.101630
[42] Di Marcotullio, L., Ferretti, E., De Smaele, E., Argenti, B., Mincione, C., Zazzeroni, F., et al. (2004) RENkctd11 Is a Suppressor of Hedgehog Signaling and Is Deleted in Human Medulloblastoma. Proceedings of the National Academy of Sciences, 101, 10833-10838.
https://doi.org/10.1073/pnas.0400690101
[43] Zhou, J., Zhang, M., Gao, A., Herman, J.G. and Guo, M. (2024) Epigenetic Silencing of KCTD8 Promotes Hepatocellular Carcinoma Growth by Activating PI3K/AKT Signaling. Epigenomics, 16, 929-944.
https://doi.org/10.1080/17501911.2024.2370590
[44] Ren, K., Yuan, J., Yang, M., Gao, X., Ding, X., Zhou, J., et al. (2014) KCTD10 Is Involved in the Cardiovascular System and Notch Signaling during Early Embryonic Development. PLOS ONE, 9, e112275.
https://doi.org/10.1371/journal.pone.0112275
[45] Ma, T., Wang, D., Wu, J., et al. (2023) KCTD10 Functions as a Tumor Suppressor in Hepatocellular Carcinoma by Triggering the Notch Signaling Pathway. American Journal of Translational Research, 15, 125-137.
[46] Cheng, J., Wang, Z., Tang, M., Zhang, W., Li, G., Tan, S., et al. (2024) KCTD10 Regulates Brain Development by Destabilizing Brain Disorder-Associated Protein KCTD13. Proceedings of the National Academy of Sciences, 121, e2315707121.
https://doi.org/10.1073/pnas.2315707121
[47] Yang, M., Han, Y.M., Han, Q., Rong, X.Z., Liu, X.F. and Ln, X.Y. (2021) KCTD11 Inhibits Progression of Lung Cancer by Binding to β-Catenin to Regulate the Activity of the Wnt and Hippo Pathways. Journal of Cellular and Molecular Medicine, 25, 9411-9426.
https://doi.org/10.1111/jcmm.16883
[48] Tong, R., Yang, B., Xiao, H., Peng, C., Hu, W., Weng, X., et al. (2017) KCTD11 Inhibits Growth and Metastasis of Hepatocellular Carcinoma through Activating Hippo Signaling. Oncotarget, 8, 37717-37729.
https://doi.org/10.18632/oncotarget.17145
[49] Zazzeroni, F., Nicosia, D., Tessitore, A., Gallo, R., Verzella, D., Fischietti, M., et al. (2014) KCTD11 Tumor Suppressor Gene Expression Is Reduced in Prostate Adenocarcinoma. BioMed Research International, 2014, Article ID: 380398.
https://doi.org/10.1155/2014/380398
[50] Li, M., Milligan, C.J., Wang, H., Walker, A., Churilov, L., Lawrence, A.J., et al. (2017) KCTD12 Modulation of GABA(B) Receptor Function. Pharmacology Research & Perspectives, 5, e00319.
https://doi.org/10.1002/prp2.319
[51] Cathomas, F., Stegen, M., Sigrist, H., Schmid, L., Seifritz, E., Gassmann, M., et al. (2015) Altered Emotionality and Neuronal Excitability in Mice Lacking KCTD12, an Auxiliary Subunit of GABAB Receptors Associated with Mood Disorders. Translational Psychiatry, 5, e510.
https://doi.org/10.1038/tp.2015.8
[52] Li, L., Duan, T., Wang, X., Zhang, R., Zhang, M., Wang, S., et al. (2016) KCTD12 Regulates Colorectal Cancer Cell Stemness through the ERK Pathway. Scientific Reports, 6, Article No. 20460.
https://doi.org/10.1038/srep20460
[53] Shen, W., Li, Y., Li, B., et al. (2019) Downregulation of KCTD12 Contributes to Melanoma Stemness by Modulating CD271. Cancer Biology & Medicine, 16, 498-513.
https://doi.org/10.20892/j.issn.2095-3941.2019.0073
[54] Wang, Z., Wu, D., Dong, M., Xia, Y. and Xu, T. (2021) KCTD12 Is a Prognostic Marker of Breast Cancer and Correlates with Tumor Immune Cell Infiltration. Translational Cancer Research, 10, 261-272.
https://doi.org/10.21037/tcr-20-2099
[55] Ye, R., Kuang, X., Zeng, H., Shao, N., Lin, Y. and Wang, S. (2020) KCTD12 Promotes G1/S Transition of Breast Cancer Cell through Activating the AKT/FOXO1 Signaling. Journal of Clinical Laboratory Analysis, 34, e23315.
https://doi.org/10.1002/jcla.23315
[56] Dutta, S. and Dawid, I.B. (2010) KCTD15 Inhibits Neural Crest Formation by Attenuating Wnt/β-Catenin Signaling Output. Development, 137, 3013-3018.
https://doi.org/10.1242/dev.047548
[57] Zhang, F., Wu, L., Zhang, T. and Chen, H. (2024) KCTD15 Acts as an Anti-Tumor Factor in Colorectal Cancer Cells Downstream of the Demethylase FTO and the M6a Reader YTHDF2. Communications Biology, 7, Article No. 262.
https://doi.org/10.1038/s42003-024-05880-9
[58] Spiombi, E., Angrisani, A., Fonte, S., De Feudis, G., Fabretti, F., Cucchi, D., et al. (2019) KCTD15 Inhibits the Hedgehog Pathway in Medulloblastoma Cells by Increasing Protein Levels of the Oncosuppressor KCASH2. Oncogenesis, 8, Article No. 64.
https://doi.org/10.1038/s41389-019-0175-6
[59] Coppola, L., Baselice, S., Messina, F., Giannatiempo, R., Farina, A., Vitagliano, L., et al. (2022) KCTD15 Is Overexpressed in Her2+ Positive Breast Cancer Patients and Its Silencing Attenuates Proliferation in SKBR3 CELL LINE. Diagnostics, 12, Article 591.
https://doi.org/10.3390/diagnostics12030591
[60] Smaldone, G., Beneduce, G., Incoronato, M., Pane, K., Franzese, M., Coppola, L., et al. (2019) KCTD15 Is Overexpressed in Human Childhood B-Cell Acute Lymphoid Leukemia. Scientific Reports, 9, Article No. 20108.
https://doi.org/10.1038/s41598-019-56701-7
[61] Smaldone, G., Coppola, L., Incoronato, M., Parasole, R., Ripaldi, M., Vitagliano, L., et al. (2020) KCTD15 Protein Expression in Peripheral Blood and Acute Myeloid Leukemia. Diagnostics, 10, Article 371.
https://doi.org/10.3390/diagnostics10060371
[62] Graziola, F., Stregapede, F., Travaglini, L., Garone, G., Verardo, M., Bosco, L., et al. (2019) A Novel KCTD17 Mutation Is Associated with Childhood Early-Onset Hyperkinetic Movement Disorder. Parkinsonism & Related Disorders, 61, 4-6.
https://doi.org/10.1016/j.parkreldis.2018.12.001
[63] Jung, Y.H., Lee, Y.J., Dao, T., Jung, K.H., Yu, J., Oh, A., et al. (2024) KCTD17-Mediated Ras Stabilization Promotes Hepatocellular Carcinoma Progression. Clinical and Molecular Hepatology, 30, 895-913.
https://doi.org/10.3350/cmh.2024.0364
[64] Liu, J., Rahim, F., Zhou, J., Fan, S., Jiang, H., Yu, C., et al. (2023) Loss-of-Function Variants in KCTD19 Cause Non-Obstructive Azoospermia in Humans. iScience, 26, Article 107193.
https://doi.org/10.1016/j.isci.2023.107193
[65] Wang, W., Su, L., Meng, L., He, J., Tan, C., Yi, D., et al. (2023) Biallelic Variants in KCTD19 Associated with Male Factor Infertility and Oligoasthenoteratozoospermia. Human Reproduction, 38, 1399-1411.
https://doi.org/10.1093/humrep/dead095
[66] Zhang, X., Zhou, H., Cai, L., Fan, C., Liu, Y., Wang, L., et al. (2017) KCTD20 Promotes the Development of Non‐Small Cell Lung Cancer through Activating Fak/AKT Pathway and Predicts Poor Overall Survival of Patients. Molecular Carcinogenesis, 56, 2058-2065.
https://doi.org/10.1002/mc.22660
[67] Generous, A., Thorson, M., Barcus, J., Jacher, J., Busch, M. and Sleister, H. (2014) Identification of Putative Interactions between Swine and Human Influenza a Virus Nucleoprotein and Human Host Proteins. Virology Journal, 11, Article No. 228.
https://doi.org/10.1186/s12985-014-0228-6
[68] Gadwal, A., Purohit, P., Khokhar, M., Vishnoi, J.R., Pareek, P., Choudhary, R., et al. (2023) In Silico Analysis of Differentially Expressed-Aberrantly Methylated Genes in Breast Cancer for Prognostic and Therapeutic Targets. Clinical and Experimental Medicine, 23, 3847-3866.
https://doi.org/10.1007/s10238-023-01060-x