[1]
|
Zou, M. and Zhu, Y. (2022) Exploring the Molecular Mechanism of Tong Xie Yao Fang in Treating Ulcerative Colitis Using Network Pharmacology and Molecular Docking. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 8141443. https://doi.org/10.1155/2022/8141443
|
[2]
|
He, J., Zhang, Y., Ouyang, K., Chen, L., Meng, W., Zhang, Y., et al. (2022) Extraction, Chemical Composition, and Protective Effect of Essential Oil from Chimonanthus nitens Oliv. Leaves on Dextran Sodium Sulfate‐Induced Colitis in Mice. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9701938. https://doi.org/10.1155/2022/9701938
|
[3]
|
Liu, J., Di, B. and Xu, L. (2023) Recent Advances in the Treatment of IBD: Targets, Mechanisms and Related Therapies. Cytokine & Growth Factor Reviews, 71-72, 1-12. https://doi.org/10.1016/j.cytogfr.2023.07.001
|
[4]
|
Zhang, J., Jiang, X., Gao, H., Zhang, F., Zhang, X., Zhou, A., et al. (2022) Structural Basis of a Novel Agonistic Anti-Ox40 Antibody. Biomolecules, 12, Article No. 1209. https://doi.org/10.3390/biom12091209
|
[5]
|
Pyo, J.Y., Yoon, T., Ahn, S.S., Song, J.J., Park, Y. and Lee, S. (2022) Soluble Immune Checkpoint Molecules in Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Scientific Reports, 12, Article No. 21319. https://doi.org/10.1038/s41598-022-25466-x
|
[6]
|
Khadela, A., Shah, Y., Mistry, P., Bodiwala, K. and Cb, A. (2023) Immunomodulatory Therapy in Head and Neck Squamous Cell Carcinoma: Recent Advances and Clinical Prospects. Technology in Cancer Research & Treatment, 22. https://doi.org/10.1177/15330338221150559
|
[7]
|
Massarelli, E., Lam, V.K., Parra, E.R., Rodriguez-Canales, J., Behrens, C., Diao, L., et al. (2019) High OX-40 Expression in the Tumor Immune Infiltrate Is a Favorable Prognostic Factor of Overall Survival in Non-Small Cell Lung Cancer. Journal for ImmunoTherapy of Cancer, 7, Article No. 351. https://doi.org/10.1186/s40425-019-0827-2
|
[8]
|
Puntigam, L.K., Jeske, S.S., Götz, M., Greiner, J., Laban, S., Theodoraki, M., et al. (2020) Immune Checkpoint Expression on Immune Cells of HNSCC Patients and Modulation by Chemo-and Immunotherapy. International Journal of Molecular Sciences, 21, Article No. 5181. https://doi.org/10.3390/ijms21155181
|
[9]
|
Lee, J.H., Kim, Y.J., Ryu, H.W., Shin, S.W., Kim, E.J., Shin, S.H., et al. (2023) Correction: B7-H3 Expression Is Associated with High PD-L1 Expression in Clear Cell Renal Cell Carcinoma and Predicts Poor Prognosis. Diagnostic Pathology, 18, Article No. 36. https://doi.org/10.1186/s13000-023-01356-2
|
[10]
|
Dong, G., Huang, X., Chen, R., Wu, L., Jiang, S. and Chen, S. (2022) Increased PD-L1 Restricts Liver Injury in Nonalcoholic Fatty Liver Disease. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5954437.
|
[11]
|
Krzyżanowska, N., Krawczyk, P., Wojas-Krawczyk, K., Kucharczyk, T. and Milanowski, J. (2022) Immunotherapy in Non-Small-Cell Lung Cancer Patients with Driver Alterations: A New Strategy? Cells, 11, Article No. 3280. https://doi.org/10.3390/cells11203280
|
[12]
|
Baldanzi, G. (2022) Immune Checkpoint Receptors Signaling in T Cells. International Journal of Molecular Sciences, 23, 3529.
|
[13]
|
Teft, W.A., Chau, T.A. and Madrenas, J. (2009) Structure-Function Analysis of the CTLA-4 Interaction with PP2A. BMC Immunology, 10, Article No. 23. https://doi.org/10.1186/1471-2172-10-23
|
[14]
|
Kim, G. and Choi, J. (2022) Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy. Molecules and Cells, 45, 513-521. https://doi.org/10.14348/molcells.2022.2056
|
[15]
|
Sekiya, T. and Takaki, S. (2019) RGMB Enhances the Suppressive Activity of the Monomeric Secreted Form of CTLA-4. Scientific Reports, 9, Article No. 6984. https://doi.org/10.1038/s41598-019-43068-y
|
[16]
|
Li, X., Wang, R., Fan, P., Yao, X., Qin, L., Peng, Y., et al. (2019) A Comprehensive Analysis of Key Immune Checkpoint Receptors on Tumor-Infiltrating T Cells from Multiple Types of Cancer. Frontiers in Oncology, 9, Article No. 1066. https://doi.org/10.3389/fonc.2019.01066
|
[17]
|
Lerner, A. and Benzvi, C. (2022) Checkpoint Inhibitors and Induction of Celiac Disease-Like Condition. Biomedicines, 10, Article No. 609. https://doi.org/10.3390/biomedicines10030609
|
[18]
|
Abu-Sbeih, H., Faleck, D.M., Ricciuti, B., Mendelsohn, R.B., Naqash, A.R., Cohen, J.V., et al. (2020) Immune Checkpoint Inhibitor Therapy in Patients with Preexisting Inflammatory Bowel Disease. Journal of Clinical Oncology, 38, 576-583. https://doi.org/10.1200/jco.19.01674
|
[19]
|
Chen, X., Dou, J., Fu, Z., Qiu, Y., Zou, L., Huang, D., et al. (2022) Macrophage M1 Polarization Mediated via the IL-6/STAT3 Pathway Contributes to Apical Periodontitis Induced by Porphyromonas gingivalis. Journal of Applied Oral Science, 30, e20220316. https://doi.org/10.1590/1678-7757-2022-0316
|
[20]
|
Fear, V.S., Tilsed, C., Chee, J., Forbes, C.A., Casey, T., Solin, J.N., et al. (2018) Combination Immune Checkpoint Blockade as an Effective Therapy for Mesothelioma. OncoImmunology, 7, e1494111. https://doi.org/10.1080/2162402x.2018.1494111
|
[21]
|
Li, D., Li, J., Chu, H. and Wang, Z. (2020) A Functional Antibody Cross-Reactive to both Human and Murine Cytotoxic T-Lymphocyte-Associated Protein 4 via Binding to an N-Glycosylation Epitope. mAbs, 12, Article ID: 1725365. https://doi.org/10.1080/19420862.2020.1725365
|
[22]
|
Yamamoto, T. (2022) Skin Manifestation Induced by Immune Checkpoint Inhibitors. Clinical, Cosmetic and Investigational Dermatology, 15, 829-841. https://doi.org/10.2147/ccid.s364243
|
[23]
|
Saha, A., Dreyfuss, I., Sarfraz, H., Friedman, M. and Markowitz, J. (2022) Dietary Considerations for Inflammatory Bowel Disease Are Useful for Treatment of Checkpoint Inhibitor-Induced Colitis. Cancers, 15, Article No. 84. https://doi.org/10.3390/cancers15010084
|
[24]
|
Ayoub, N.M., Al-Shami, K.M. and Yaghan, R.J. (2019) Immunotherapy for Her2-Positive Breast Cancer: Recent Advances and Combination Therapeutic Approaches. Breast Cancer: Targets and Therapy, 11, 53-69. https://doi.org/10.2147/bctt.s175360
|
[25]
|
Wang, Y., Sun, Q., Mu, N., Sun, X., Wang, Y., Fan, S., et al. (2020) The Deubiquitinase USP22 Regulates PD-L1 Degradation in Human Cancer Cells. Cell Communication and Signaling, 18, Article No. 112. https://doi.org/10.1186/s12964-020-00612-y
|
[26]
|
Zhou, X., Li, C., Chen, T., Li, W., Wang, X. and Yang, Q. (2023) Targeting RNA N6-Methyladenosine to Synergize with Immune Checkpoint Therapy. Molecular Cancer, 22, Article No. 36. https://doi.org/10.1186/s12943-023-01746-6
|
[27]
|
Feng, P., Wang, X., Ferrall, L., Wu, T.-. and Hung, C. (2022) Control of Tumors by Antigen-Specific CD8+ T Cells through PDL1-Targeted Delivery of Antigenic Peptide. Journal of Immunology Research, 2022, Article ID: 9054569. https://doi.org/10.1155/2022/9054569
|
[28]
|
Li, Y., Cong, Y., Jia, M., He, Q., Zhong, H., Zhao, Y., et al. (2021) Targeting IL-21 to Tumor-Reactive T Cells Enhances Memory T Cell Responses and Anti-PD-1 Antibody Therapy. Nature Communications, 12, Article No. 951. https://doi.org/10.1038/s41467-021-21241-0
|
[29]
|
Urwyler, P., Earnshaw, I., Bermudez, M., Perucha, E., Wu, W., Ryan, S., et al. (2020) Mechanisms of Checkpoint Inhibition-Induced Adverse Events. Clinical and Experimental Immunology, 200, 141-154. https://doi.org/10.1111/cei.13421
|
[30]
|
Chen, M., Li, C., Sun, M., Li, Y. and Sun, X. (2022) Recent Developments in PD-1/PD-L1 Blockade Research for Gastroesophageal Malignancies. Frontiers in Immunology, 13, Article ID: 1043517. https://doi.org/10.3389/fimmu.2022.1043517
|
[31]
|
Aguilera, J., Han, X., Cao, S., Balmes, J., Lurmann, F., Tyner, T., et al. (2022) Increases in Ambient Air Pollutants during Pregnancy Are Linked to Increases in Methylation of IL4, IL10, and IFNγ. Clinical Epigenetics, 14, Article No. 40. https://doi.org/10.1186/s13148-022-01254-2
|
[32]
|
Cairat, M., Rinaldi, S., Navionis, A., Romieu, I., Biessy, C., Viallon, V., et al. (2022) Circulating Inflammatory Biomarkers, Adipokines and Breast Cancer Risk—A Case-Control Study Nested within the EPIC Cohort. BMC Medicine, 20, Article No. 118. https://doi.org/10.1186/s12916-022-02319-y
|
[33]
|
Aghamohammad, S., Sepehr, A., Miri, S.T., Najafi, S., Rohani, M. and Pourshafiea, M.R. (2022) The Effects of the Probiotic Cocktail on Modulation of the NF-κb and JAK/STAT Signaling Pathways Involved in the Inflammatory Response in Bowel Disease Model. BMC Immunology, 23, Article No. 8. https://doi.org/10.1186/s12865-022-00484-6
|
[34]
|
Batyrova, B., Luwaert, F., Maravelia, P., Miyabayashi, Y., Vashist, N., Stark, J.M., et al. (2019) PD‐1 Expression Affects Cytokine Production by ILC2 and Is Influenced by Peroxisome Proliferator‐Activated Receptor‐γ. Immunity, Inflammation and Disease, 8, 8-23. https://doi.org/10.1002/iid3.279
|
[35]
|
Shi, W., Zhang, Y., Hao, C., Guo, X., Yang, Q., Du, J., et al. (2023) The Significance of PD-1/PD-L1 Imbalance in Ulcerative Colitis. PeerJ, 11, e15481. https://doi.org/10.7717/peerj.15481
|
[36]
|
Wang, F., Song, J., Yan, Y., Zhou, Q., Li, X., Wang, P., et al. (2022) Correction to “Integrated Network Pharmacology Analysis and Serum Metabolomics to Reveal the Antimalaria Mechanism of Artesunate”. ACS Omega, 7, Article No. 36047. https://doi.org/10.1021/acsomega.2c05623
|
[37]
|
Amatore, F., Ortonne, N., Lopez, M., Orlanducci, F., Castellano, R., Ingen-Housz-Oro, S., et al. (2020) ICOS Is Widely Expressed in Cutaneous T-Cell Lymphoma, and Its Targeting Promotes Potent Killing of Malignant Cells. Blood Advances, 4, 5203-5214. https://doi.org/10.1182/bloodadvances.2020002395
|
[38]
|
Tian, J., Zhu, Q., Zhang, Y., Bian, Q., Hong, Y., Shen, Z., et al. (2020) Olfactory Ecto-Mesenchymal Stem Cell-Derived Exosomes Ameliorate Experimental Colitis via Modulating Th1/Th17 and Treg Cell Responses. Frontiers in Immunology, 11, Article ID: 598322. https://doi.org/10.3389/fimmu.2020.598322
|
[39]
|
Kim, M.K., Jo, S.I., Kim, S., Lim, H., Kang, H.S., Moon, S., et al. (2023) Pd-1-Positive Cells Contribute to the Diagnosis of Inflammatory Bowel Disease and Can Aid in Predicting Response to Vedolizumab. Scientific Reports, 13, Article No. 21329. https://doi.org/10.1038/s41598-023-48651-y
|
[40]
|
Tagliamento, M., Agostinetto, E., Borea, R., Brandão, M., Poggio, F., Addeo, A., et al. (2021) VISTA: A Promising Target for Cancer Immunotherapy? ImmunoTargets and Therapy, 10, 185-200. https://doi.org/10.2147/itt.s260429
|
[41]
|
Hosseinkhani, N., Derakhshani, A., Shadbad, M.A., Argentiero, A., Racanelli, V., Kazemi, T., et al. (2021) The Role of V-Domain Ig Suppressor of T Cell Activation (VISTA) in Cancer Therapy: Lessons Learned and the Road Ahead. Frontiers in Immunology, 12, Article ID: 676181. https://doi.org/10.3389/fimmu.2021.676181
|
[42]
|
Tang, X., Xiong, Y., Shi, X., Zhao, Y., Shi, A., Zheng, K., et al. (2022) IGSF11 and VISTA: A Pair of Promising Immune Checkpoints in Tumor Immunotherapy. Biomarker Research, 10, Article No. 49. https://doi.org/10.1186/s40364-022-00394-0
|
[43]
|
Mehta, N., Maddineni, S., Mathews, I.I., Andres Parra Sperberg, R., Huang, P. and Cochran, J.R. (2019) Structure and Functional Binding Epitope of V-Domain Ig Suppressor of T Cell Activation. Cell Reports, 28, 2509-2516.e5. https://doi.org/10.1016/j.celrep.2019.07.073
|
[44]
|
Emaldi, M., Alamillo-Maeso, P., Rey-Iborra, E., Mosteiro, L., Lecumberri, D., Pulido, R., et al. (2024) A Functional Role for Glycosylated B7-H5/VISTA Immune Checkpoint Protein in Metastatic Clear Cell Renal Cell Carcinoma. iScience, 27, Article ID: 110587. https://doi.org/10.1016/j.isci.2024.110587
|
[45]
|
ElTanbouly, M.A., Zhao, Y., Nowak, E., Li, J., Schaafsma, E., Le Mercier, I., et al. (2020) VISTA Is a Checkpoint Regulator for Naïve T Cell Quiescence and Peripheral Tolerance. Science, 367, eaay0524. https://doi.org/10.1126/science.aay0524
|
[46]
|
Xu, W., Dong, J., Zheng, Y., Zhou, J., Yuan, Y., Ta, H.M., et al. (2019) Immune-Checkpoint Protein VISTA Regulates Antitumor Immunity by Controlling Myeloid Cell-Mediated Inflammation and Immunosuppression. Cancer Immunology Research, 7, 1497-1510. https://doi.org/10.1158/2326-6066.cir-18-0489
|
[47]
|
Wang, S., Su, W., Wu, X. and Dong, W. (2024) Restoring Treg/Th17 Cell Balance in Ulcerative Colitis through HRas Silencing and MAPK Pathway Inhibition. International Immunopharmacology, 130, Article ID: 111608. https://doi.org/10.1016/j.intimp.2024.111608
|
[48]
|
Zhang, Y., Li, J. and Yin, X. (2023) High-Expression of Galactosidase Alpha Is Correlated with Poor Prognosis and Immune Infiltration in Low-Grade Glioma. Journal of Cancer, 14, 646-656. https://doi.org/10.7150/jca.81975
|
[49]
|
Zheng, M., Zhang, Z., Yu, L., Wang, Z., Dong, Y., Tong, A., et al. (2023) Immune-Checkpoint Protein VISTA in Allergic, Autoimmune Disease and Transplant Rejection. Frontiers in Immunology, 14, Article ID: 1194421. https://doi.org/10.3389/fimmu.2023.1194421
|
[50]
|
Vicier, C., Isambert, N., Cropet, C., Hamimed, M., Osanno, L., Legrand, F., et al. (2022) MOVIE: A Phase I, Open-Label, Multicenter Study to Evaluate the Safety and Tolerability of Metronomic Vinorelbine Combined with Durvalumab plus Tremelimumab in Patients with Advanced Solid Tumors. ESMO Open, 7, Article ID: 100646. https://doi.org/10.1016/j.esmoop.2022.100646
|
[51]
|
Xu, J., Cen, X., Yao, Y., Zhao, S., Li, W., Zhang, W., et al. (2022) Identification of Six N7-Methylguanosine-Related miRNA Signatures to Predict the Overall Survival and Immune Landscape of Triple-Negative Breast Cancer through in Silico Analysis. Journal of Oncology, 2022, Article ID: 2735251. https://doi.org/10.1155/2022/2735251
|
[52]
|
Zarifa, A., Kim, J.W., Lopez-Mattei, J., Palaskas, N., Iliescu, C. and Kim, P.Y. (2021) Cardiac Toxicities Associated with Immune Checkpoints Inhibitors: Mechanisms, Manifestations and Management. Korean Circulation Journal, 51, 579-597. https://doi.org/10.4070/kcj.2021.0089
|
[53]
|
Cheng, Y., Ling, F., Li, J., Chen, Y., Xu, M., Li, S., et al. (2023) An Updated Review of Gastrointestinal Toxicity Induced by PD-1 Inhibitors: From Mechanisms to Management. Frontiers in Immunology, 14, Article ID: 1190850. https://doi.org/10.3389/fimmu.2023.1190850
|
[54]
|
Choi, J.W., Kim, Y.J., Yun, K.A., Won, C.H., Lee, M.W., Choi, J.H., et al. (2020) The Prognostic Significance of VISTA and CD33-Positive Myeloid Cells in Cutaneous Melanoma and Their Relationship with PD-1 Expression. Scientific Reports, 10, Article No. 14372. https://doi.org/10.1038/s41598-020-71216-2
|