免疫检查点CTLA-4、PD-1/PD-L1、VISTA在溃疡性结肠炎中的研究进展
The Research Progress of Immune Checkpoints CTLA-4, PD-1/PD-L1 and VISTA in Ulcerative Colitis
DOI: 10.12677/jcpm.2025.44414, PDF, HTML, XML,   
作者: 赵艳革:济宁医学院临床医学院,山东 济宁;王韶轩*:济宁市第一人民医院消化内科,山东 济宁
关键词: 免疫检查点溃疡性结肠炎炎症机制细胞因子Immune Checkpoints Ulcerative Colitis Inflammatory Mechanisms Cytokines
摘要: 溃疡性结肠炎(Ulcerative Colitis, UC)是一种难治性且容易复发的非特异性的炎症性肠病,主要发生于结直肠。目前认为其发病机制复杂且不明确,针对UC的发病机制尚在研究中,临床上治疗效果也欠佳。通过大量阅读文献,并进行总结发现,新型免疫检查点在溃疡性结肠炎领域的研究具有广阔的前景,需要进一步深入探究免疫检查点之间的相互作用机制,以及它们与其他免疫分子和信号通路之间的复杂关系。通过明确免疫检查点的异常调节如何导致炎症反应和组织损伤等一系列病理过程,进一步完善UC发病机制的理论体系,为后续的基础研究奠定坚实基础,为UC的治疗提供了全新的靶点和策略。
Abstract: Ulcerative colitis (UC), a refractory and relapsing non-specific inflammatory bowel disease primarily affecting the colon and rectum, is characterized by complex and incompletely elucidated pathogenesis. Current clinical therapies remain suboptimal. Extensive literature review suggests that novel immune checkpoints hold promising potential in UC research. Further exploration is warranted to delineate the intricate interplay between immune checkpoints themselves, as well as their interactions with other immune molecules and signaling pathways. Clarifying how dysregulated immune checkpoint activity drives pathological processes, including sustained inflammatory responses and tissue damage, will refine the theoretical framework of UC pathogenesis. This advancement may establish a foundation for future mechanistic studies and provide innovative therapeutic targets and strategies for UC management.
文章引用:赵艳革, 王韶轩. 免疫检查点CTLA-4、PD-1/PD-L1、VISTA在溃疡性结肠炎中的研究进展[J]. 临床个性化医学, 2025, 4(4): 41-48. https://doi.org/10.12677/jcpm.2025.44414

1. 引言

溃疡性结肠炎(Ulcerative Colitis, UC)是一种慢性非特异性肠道炎症性疾病,其病理特征主要表现为连续性、弥漫性分布的黏膜及黏膜下层炎症,主要累及部位为直肠和结肠远端。典型临床症状包括反复发作的腹泻及黏液脓血便,常伴随腹痛与里急后重等表现[1]。该疾病不仅造成患者生活质量的显著下降,慢性病程也会诱发焦虑、抑郁等心理健康问题,同时伴随持续医疗支出带来的经济负担。更为严重的是,研究发现长期慢性炎症可能与结直肠癌变风险升高相关,这对患者生存预后构成潜在威胁[2]。现阶段临床治疗方案涵盖氨基水杨酸制剂、糖皮质激素、免疫调节剂以及生物制剂等多种干预手段,然而部分患者仍存在治疗效果差或药物耐受性问题,因此,深入探究UC的发病机制,寻找新的治疗靶点和手段具有重要的临床意义[3]

免疫检查点由刺激性和抑制性受体组成,通过免疫反应过程从而影响免疫细胞功能,其主要功能是调节免疫反应的强度和持续时间来维持自身耐受性和免疫稳态[4]。当免疫系统受到病原体或肿瘤细胞等威胁时,这些调控分子可以通过一系列信号传导途径,抑制或促进免疫细胞的活化、增殖和效应功能[5]。根据其在免疫反应中的功能,免疫检查点分为正向调节分子和负向调节分子[6]。正向调节分子如共刺激分子CD28和ICOS等,能够促进免疫反应,增强T细胞的激活和增殖[7]。当T细胞识别抗原后,CD28与抗原呈递细胞表面的B7分子结合,产生关键的共刺激信号,促进T细胞的活化和增殖,从而更好地发挥免疫效应[8]。负向调节分子如程序性死亡蛋白1 (PD-1)、细胞毒性T淋巴细胞相关抗原4 (CTLA-4)、V-set结构域免疫球蛋白抑制分子(VISTA)等,主要起到抑制免疫反应的作用,防止免疫反应过度,避免自身免疫病的发生[9]。例如,在免疫反应后期,当病原体被有效控制后,PD-1等负向调节分子会发挥作用,抑制T细胞的活性,使免疫反应逐渐减弱,防止免疫细胞对自身组织造成损伤[10]。溃疡性结肠炎是一种自身免疫相关的肠道炎症性疾病,免疫检查点在其发病机制中发挥重要作用。肠道免疫系统在维持肠道稳态中起着关键作用,而免疫检查点的失衡可能打破这种稳态,导致肠道黏膜的炎症反应。深入研究免疫检查点在溃疡性结肠炎中的作用机制,对于UC的发病机制、寻找新的治疗靶点具有重要意义。

2. 免疫检查点CTLA-4与溃疡性结肠炎

2.1. 免疫检查点CTLA-4的结构与功能

细胞毒性T淋巴细胞相关抗原4 (CTLA-4),又称CD152,是一种重要的免疫调节分子,在维持机体免疫平衡中发挥着关键作用[11]。CTLA-4属于免疫球蛋白超家族成员,CTLA-4蛋白由194个氨基酸组成,其结构包括一个信号肽、一个细胞外免疫球蛋白可变区样结构域(IgV样结构域)、一个跨膜区和一个短的细胞质尾区[12]。信号肽主要负责将CTLA-4蛋白转运至细胞表面,在转运完成后被切除,IgV样结构域含有与配体结合的关键位点,发挥至关重要的功能,跨膜区将CTLA-4锚定在细胞膜上,细胞质尾区含有多个潜在的磷酸化位点,参与细胞内信号传导,在信号传递过程中发挥重要作用[13]

在免疫调节过程中,CTLA-4发挥着重要的负调节作用,其主要功能是抑制T细胞的活化和调节免疫平衡[14]。在T细胞活化的过程中,T细胞表面的TCR识别抗原呈递细胞(APC)表面的抗原肽-MHC复合物,同时T细胞表面的CD28与APC表面的B7-1 (CD80)和B7-2 (CD86)结合,提供共刺激信号促进T细胞的活化和增殖[15]。当CTLA-4表达上调并与B7分子结合后,会竞争性抑制CD28与B7分子的相互作用,从而阻断共刺激信号的传递,抑制T细胞的活化;此外,CTLA-4与B7分子结合后,还可通过其胞内区的ITIM和ITSM对T细胞活化相关的信号通路进行负向调节,进一步抑制T细胞的增殖和功能[16]

2.2. 免疫检查点CTLA-4对溃疡性结肠炎的影响

CTLA-4作为免疫反应负调节分子,可以抑制T细胞的过度活化,防止免疫反应过激。当T细胞被抗原激活后,CTLA-4的表达水平升高,它与抗原呈递细胞(APC)表面的B7分子结合,阻断CD28与B7分子的相互作用,从而抑制T细胞的增殖和细胞因子的分泌[17]。因CTLA-4在T细胞活化调控中的核心作用,其在自身免疫性疾病如溃疡性结肠炎(UC)的发病机制中受到广泛关注。在UC患者中,由于CTLA-4表达不足或功能异常,T细胞过度活化,分泌大量的促炎细胞因子,如肿瘤坏死因子-α (TNF-α)、白细胞介素-1β (IL-1β)等,这些促炎细胞因子直接损伤肠道上皮细胞,诱导细胞凋亡,增加细胞的通透性[18]。TNF-α激活肠道上皮细胞内的凋亡信号通路,使细胞内的半胱天冬酶(caspase)活化,导致细胞凋亡。IL-1β能上调肠道上皮细胞表面的黏附分子表达,促进炎症细胞的黏附和浸润,进一步加重细胞损伤[19]。而CTLA-4通过抑制T细胞的活化,减少促炎细胞因子的分泌,从而减轻对肠道上皮细胞的损伤,保护肠道黏膜屏障[20]。CTLA-4还可以通过调节调节性T细胞(Treg)的功能来间接保护肠道上皮细胞。Treg细胞是一类具有免疫抑制功能的T细胞亚群,能够抑制其他免疫细胞的活化和增殖,维持免疫平衡。CTLA-4在Treg细胞表面持续高表达,它参与了Treg细胞的分化、增殖,CTLA-4通过与APC表面的B7分子结合,诱导APC表达免疫抑制分子催化色氨酸代谢,使局部微环境中色氨酸水平降低,这种代谢变化可抑制T细胞的增殖和活化,增强Treg细胞的免疫抑制功能[21]。在UC患者中,Treg细胞功能不足,无法有效抑制过度的免疫反应。而CTLA-4通过调节Treg细胞的功能,使其能够更好地发挥免疫抑制作用,减少炎症细胞对肠道上皮细胞的攻击,从而保护肠道上皮细胞,维持肠道黏膜屏障的完整性[22]

针对CTLA-4的免疫治疗策略为UC的治疗带来了新的思路。目前,主要的研究集中在CTLA-4抑制剂的应用上,通过阻断CTLA-4的负调节作用,增强T细胞的免疫活性,从而达到控制肠道炎症的目的[23]。尽管CTLA-4在UC中的作用机制已取得重要进展,我们仍需要进一步研究CTLA-4信号通路如何与UC中关键的促炎(如TNF-α、IL-6、IL-23)和抗炎(如IL-10、TGF-β)细胞因子相互作用,对UC的治疗提供新的方向。

3. 免疫检查点PD-1/PD-L1与溃疡性结肠炎

3.1. 免疫检查点PD-1/PD-L1的结构与功能

程序性死亡蛋白1 (PD-1),又称CD279,是一种重要的免疫抑制分子,属于CD28超家族成员[24]。PD-1蛋白是一种I型跨膜糖蛋白,由288个氨基酸组成,包括一个含有165个氨基酸的细胞外IgV样结构域、一个24个氨基酸的跨膜区和一个99个氨基酸的胞内区[25]。胞外区负责与配体结合,跨膜区将PD-1锚定在细胞膜上,胞内区含有免疫受体酪氨酸抑制基序(ITIM)和免疫受体酪氨酸转换基序(ITSM),当PD-1与配体结合后,ITIM和ITSM中的酪氨酸残基会发生磷酸化,抑制T细胞受体(TCR)关键分子的去磷酸化,从而抑制T细胞活化发挥作用[26]。程序性死亡配体1 (PD-L1),又称CD274或B7-H1,是PD-1的主要配体,也属于B7超家族成员,PD-1与PD-L1的相互作用在免疫调节中发挥着重要的作用[27]。当T细胞表面的TCR识别抗原呈递细胞(APC)表面的抗原肽-MHC复合物后,T细胞会被激活,同时上调PD-1的表达[28]。APC或肿瘤细胞表面表达PD-L1,PD-1与PD-L1结合,会向T细胞传递抑制性信号,从而抑制T细胞的活化、增殖和细胞因子分泌,PD-1/PD-L1信号通路通过抑制T细胞产生白细胞介素-2 (IL-2)、干扰素-γ (IFN-γ)等促炎细胞因子,降低T细胞的杀伤活性,从而避免过度的免疫反应对机体造成损伤[29]。在正常生理状态下,PD-1/PD-L1信号通路有助于维持免疫耐受,防止自身免疫性疾病的发生,而在肿瘤免疫中,肿瘤细胞利用PD-1/PD-L1信号通路耗尽T细胞逃避免疫监视,导致肿瘤的发生和发展[30]

3.2. 免疫检查点PD-1/PD-L1对溃疡性结肠炎的影响

PD-1/PD-L1通路在溃疡性结肠炎免疫平衡的调控中发挥着关键作用,主要通过调节Th1、Th2、Th17和Treg等细胞平衡,影响炎症反应的过程。在正常生理状态下,Th1和Th2细胞之间维持着动态平衡,共同调节机体的免疫反应[31]。Th1细胞主要分泌干扰素-γ (IFN-γ)、肿瘤坏死因子-α (TNF-α)等细胞因子,介导细胞免疫过程;Th2细胞主要分泌白介素-4 (IL-4)、白介素-5 (IL-5)和白介素-13 (IL-13)等细胞因子,介导体液免疫过程。而在溃疡性结肠炎患者中,这个过程会失衡[32]。研究表明,UC患者肠道黏膜中Th1细胞分泌促炎因子,IFN-γ、TNF-α等细胞因子表达升高,而Th2细胞分泌抗炎介质,IL-4、IL-10等细胞因子表达相对降低,这导致细胞免疫过度激活,引发肠道炎症反应[33]。在T细胞表面,PD-1主要通过结合其配体PD-L1和PD-L2来发挥抑制分子的作用。在炎症条件下,这两种配体都是在免疫细胞上诱导的,PD-1与T细胞结合后抑制T细胞受体和共刺激受体的激活信号,从而抑制免疫反应[34]。PD-1/PD-L1通路在溃疡性结肠炎(UC)免疫失衡发病机制中的作用日益受到重视。有研究发现,PD-1/PD-L1的表达水平与UC疾病活动度相关,PD-1和PD-L1可作为UC的潜在诊断标志物和评估UC疾病活动度的标志物,PD-1/PD-L1失衡是UC免疫功能失调的主要特征[35]。Th17和Treg细胞在免疫调节中也起着重要作用,它们之间的平衡对于维持免疫稳态至关重要。Th17细胞主要分泌白介素-17 (IL-17)、白介素-22 (IL-22)等促炎细胞因子,在自身免疫性疾病和炎症反应中发挥重要作用[36]。Treg细胞则通过分泌白细胞介素-10 (IL-10)和转化生长因子-β (TGF-β)等抑制性细胞因子,抑制免疫细胞的活化和增殖,维持免疫耐受[37]。在溃疡性结肠炎中,Th17细胞的数量和活性增加,分泌大量促炎细胞因子,导致肠道炎症的发生和发展;而Treg细胞的功能和数量相对不足,无法有效抑制炎症反应[38]。有研究表明,在UC患者中,PD-L1的表达与Treg细胞的数量显著高于其他炎症性疾病,因此PD-L1可能有助于UC的诊断[39]。深入探究PD-1/PD-L1通路在UC中的复杂作用及其与其他免疫检查点的机制,是开发新型疗法的关键。

4. 免疫检查点Vista与溃疡性结肠炎

4.1. 免疫检查点Vista的结构与功能

人类VISTA基因Vsir又称Dies-1、PD-1H、c10orf54、VSIR、SISP1、B7-H5、Gi24和DD1α,是一种重要的免疫检查点分子,属于B7家族成员,VISTA为Ⅰ型跨膜蛋白,含有279个氨基酸,包括162个氨基酸残基的胞外结构域,21个氨基酸残基的跨膜结构域和96个氨基酸残基的胞质结构域。其结构包括一个由30个氨基酸组成的单N端Ig结构区、一个由21个氨基酸组成的跨膜结构区、一个柄结构以及一个由95个氨基酸组成的胞内结构区,还有一个细胞外IgV结构域[40] [41]。VISTA蛋白只有一个Ig-V样结构域,而其他B7家族蛋白除了Ig-V样结构域,还具有一个Ig-C样结构域。VISTA的Ig-V结构域具有独有的典型的二硫键,并且,它还有四个额外的半胱氨酸(三个位于Ig-V结构域内,另一个在柄状区域),并在C"和D链之间插入了一个环结构。在保守的细胞质尾部,VISTA类似于CD28和CTLA-4。与其他B7家族成员不同,虽然它没有典型的ITIM/ITAM基序,但VISTA在细胞质尾部中间有一个保守的Src同源2 (SH2)结合位点和三个C末端的SH3结合域[42]

正因为这些不同之处,VISTA在免疫系统中通过双重作用机制调控细胞间相互作用。作为配体时,VISTA主要表达于抗原呈递细胞表面,通过与T细胞表面尚未明确的受体结合,抑制T细胞活化并降低关键免疫调节因子的分泌水平,包括白介素-2 (IL-2)、肿瘤坏死因子-α (TNF-α)和干扰素-γ (IFN-γ)等重要细胞因子的生成。当作为受体发挥作用时,VISTA则主要定位于T细胞膜表面,其与相应配体结合后能够激活下游信号通路,通过调控T细胞内的信号转导过程有效抑制T细胞功能活性[43] [44]

4.2. 免疫检查点Vista对溃疡性结肠炎的影响

VITSA在炎症调控中有非常重要的作用,对T细胞、B细胞等均有调节作用,其中对T细胞的研究最为广泛。VISTA能够抑制初始T细胞的活化,从而维持T细胞静息状态,这对于外周免疫耐受至关重要[45]。VISTA可以通过重编程髓细胞,减少肿瘤坏死因子-α (TNF-α)等促炎细胞因子的分泌,增加白细胞介素-10 (IL-10)等抗炎介质的产生,从而促进髓细胞的免疫抑制功能,在UC患者的肠道免疫微环境中,VISTA可能对髓系细胞产生类似的调节作用[46]。VISTA在调控免疫应答中起到关键作用,其在UC肠道免疫失衡为特征的疾病中起到重要功能。在UC中,除了Th1和Th2细胞,调节性T细胞(Treg细胞)能够通过释放转化生长因子β (TGF-β)和白介素10 (IL-10)等免疫抑制性细胞因子,对肠道免疫微环境进行负向调控,研究表明,Treg细胞能够显著抑制肠道黏膜固有层中巨噬细胞的活化及效应T细胞的促炎功能,这种抑制作用通过下调促炎介质的表达并阻断NF-κB等炎症信号通路实现[47]。Treg细胞还表达共抑制分子,包括PD-1、CTLA-4和VISTA,VISTA的高表达虽然在一定程度上促进了Treg细胞的增殖,但却影响了Treg细胞发挥免疫抑制功能的信号通路,导致Treg细胞无法有效抑制效应T细胞的活化和增殖,从而无法维持肠道免疫稳态[48]。VISTA在自身免疫性疾病中的潜在作用,降低自身抗原的T细胞免疫反应,并限制了自身免疫性疾病的发展,它可能通过抑制免疫细胞的活化增殖和减少炎症介质的释放来缓解疾病,说明VISTA在调节免疫反应和炎症介质平衡中可能起着关键作用[49]。研究这些复杂机制之间的作用,不仅揭示VISTA在UC发病中的机制,也对VISTA通路的创新诊断和靶向治疗提供关键科学依据,对临床工作具有重要意义。

5. 结语

尽管免疫检查点CTLA-4、PD-1/PD-L1、VISTA在溃疡性结肠炎中的研究取得了一定的进展,但仍面临诸多问题与挑战。免疫检查点抑制剂可以触发免疫系统通路,增加T细胞的活性并抑制肿瘤细胞存活,与大多数疗法一样,抑制剂并非没有风险,这些药物与各种免疫相关不良事件有关,最常见的副作用包括结肠炎、肝炎、皮炎、肺炎和内分泌病[50]。CTLA-4抑制剂长期刺激导致Treg表达耗竭,抑制功能下降[51]。CTLA-4抑制剂在肿瘤免疫治疗中诱发结肠炎,提示其可能加剧UC [52]。免疫相关不良反应是PD-1/PD-L1抑制剂治疗的主要挑战,UC患者使用后常见的不良反应包括免疫性肠炎、甲状腺功能异常及皮疹[53]。尽管PD-1/PD-L1抑制剂在UC中展现出潜力,仍需长期随访研究,明确长期使用的风险及对肠道微生态的影响。目前VISTA抑制剂在UC中的疗效研究主要集中于动物模型,会导致小鼠模型中炎性细胞因子和趋化因子的产生增加,增加感染风险[54]。未来需通过基础研究与临床转化,系统解决疗效预测、安全性管理及耐药应对等关键问题,将免疫检查点抑制剂尽快应用于UC临床治疗中。虽然已明确免疫检查点如CTLA-4、PD-1/PD-L1、VISTA在UC中表达异常,但具体的分子机制仍未完全阐明。这些免疫检查点之间的作用机制复杂,目前的研究只是初步揭示了它们之间的部分联系,在UC的发病过程中,CTLA-4、PD-1/PD-L1等免疫检查点如何在不同阶段调节T细胞的活化和增殖,它们之间的信号传导通路如何相互影响,仍需要深入研究。

NOTES

*通讯作者。

参考文献

[1] Zou, M. and Zhu, Y. (2022) Exploring the Molecular Mechanism of Tong Xie Yao Fang in Treating Ulcerative Colitis Using Network Pharmacology and Molecular Docking. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 8141443.
https://doi.org/10.1155/2022/8141443
[2] He, J., Zhang, Y., Ouyang, K., Chen, L., Meng, W., Zhang, Y., et al. (2022) Extraction, Chemical Composition, and Protective Effect of Essential Oil from Chimonanthus nitens Oliv. Leaves on Dextran Sodium Sulfate‐Induced Colitis in Mice. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9701938.
https://doi.org/10.1155/2022/9701938
[3] Liu, J., Di, B. and Xu, L. (2023) Recent Advances in the Treatment of IBD: Targets, Mechanisms and Related Therapies. Cytokine & Growth Factor Reviews, 71-72, 1-12.
https://doi.org/10.1016/j.cytogfr.2023.07.001
[4] Zhang, J., Jiang, X., Gao, H., Zhang, F., Zhang, X., Zhou, A., et al. (2022) Structural Basis of a Novel Agonistic Anti-Ox40 Antibody. Biomolecules, 12, Article No. 1209.
https://doi.org/10.3390/biom12091209
[5] Pyo, J.Y., Yoon, T., Ahn, S.S., Song, J.J., Park, Y. and Lee, S. (2022) Soluble Immune Checkpoint Molecules in Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Scientific Reports, 12, Article No. 21319.
https://doi.org/10.1038/s41598-022-25466-x
[6] Khadela, A., Shah, Y., Mistry, P., Bodiwala, K. and Cb, A. (2023) Immunomodulatory Therapy in Head and Neck Squamous Cell Carcinoma: Recent Advances and Clinical Prospects. Technology in Cancer Research & Treatment, 22.
https://doi.org/10.1177/15330338221150559
[7] Massarelli, E., Lam, V.K., Parra, E.R., Rodriguez-Canales, J., Behrens, C., Diao, L., et al. (2019) High OX-40 Expression in the Tumor Immune Infiltrate Is a Favorable Prognostic Factor of Overall Survival in Non-Small Cell Lung Cancer. Journal for ImmunoTherapy of Cancer, 7, Article No. 351.
https://doi.org/10.1186/s40425-019-0827-2
[8] Puntigam, L.K., Jeske, S.S., Götz, M., Greiner, J., Laban, S., Theodoraki, M., et al. (2020) Immune Checkpoint Expression on Immune Cells of HNSCC Patients and Modulation by Chemo-and Immunotherapy. International Journal of Molecular Sciences, 21, Article No. 5181.
https://doi.org/10.3390/ijms21155181
[9] Lee, J.H., Kim, Y.J., Ryu, H.W., Shin, S.W., Kim, E.J., Shin, S.H., et al. (2023) Correction: B7-H3 Expression Is Associated with High PD-L1 Expression in Clear Cell Renal Cell Carcinoma and Predicts Poor Prognosis. Diagnostic Pathology, 18, Article No. 36.
https://doi.org/10.1186/s13000-023-01356-2
[10] Dong, G., Huang, X., Chen, R., Wu, L., Jiang, S. and Chen, S. (2022) Increased PD-L1 Restricts Liver Injury in Nonalcoholic Fatty Liver Disease. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5954437.
[11] Krzyżanowska, N., Krawczyk, P., Wojas-Krawczyk, K., Kucharczyk, T. and Milanowski, J. (2022) Immunotherapy in Non-Small-Cell Lung Cancer Patients with Driver Alterations: A New Strategy? Cells, 11, Article No. 3280.
https://doi.org/10.3390/cells11203280
[12] Baldanzi, G. (2022) Immune Checkpoint Receptors Signaling in T Cells. International Journal of Molecular Sciences, 23, 3529.
[13] Teft, W.A., Chau, T.A. and Madrenas, J. (2009) Structure-Function Analysis of the CTLA-4 Interaction with PP2A. BMC Immunology, 10, Article No. 23.
https://doi.org/10.1186/1471-2172-10-23
[14] Kim, G. and Choi, J. (2022) Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy. Molecules and Cells, 45, 513-521.
https://doi.org/10.14348/molcells.2022.2056
[15] Sekiya, T. and Takaki, S. (2019) RGMB Enhances the Suppressive Activity of the Monomeric Secreted Form of CTLA-4. Scientific Reports, 9, Article No. 6984.
https://doi.org/10.1038/s41598-019-43068-y
[16] Li, X., Wang, R., Fan, P., Yao, X., Qin, L., Peng, Y., et al. (2019) A Comprehensive Analysis of Key Immune Checkpoint Receptors on Tumor-Infiltrating T Cells from Multiple Types of Cancer. Frontiers in Oncology, 9, Article No. 1066.
https://doi.org/10.3389/fonc.2019.01066
[17] Lerner, A. and Benzvi, C. (2022) Checkpoint Inhibitors and Induction of Celiac Disease-Like Condition. Biomedicines, 10, Article No. 609.
https://doi.org/10.3390/biomedicines10030609
[18] Abu-Sbeih, H., Faleck, D.M., Ricciuti, B., Mendelsohn, R.B., Naqash, A.R., Cohen, J.V., et al. (2020) Immune Checkpoint Inhibitor Therapy in Patients with Preexisting Inflammatory Bowel Disease. Journal of Clinical Oncology, 38, 576-583.
https://doi.org/10.1200/jco.19.01674
[19] Chen, X., Dou, J., Fu, Z., Qiu, Y., Zou, L., Huang, D., et al. (2022) Macrophage M1 Polarization Mediated via the IL-6/STAT3 Pathway Contributes to Apical Periodontitis Induced by Porphyromonas gingivalis. Journal of Applied Oral Science, 30, e20220316.
https://doi.org/10.1590/1678-7757-2022-0316
[20] Fear, V.S., Tilsed, C., Chee, J., Forbes, C.A., Casey, T., Solin, J.N., et al. (2018) Combination Immune Checkpoint Blockade as an Effective Therapy for Mesothelioma. OncoImmunology, 7, e1494111.
https://doi.org/10.1080/2162402x.2018.1494111
[21] Li, D., Li, J., Chu, H. and Wang, Z. (2020) A Functional Antibody Cross-Reactive to both Human and Murine Cytotoxic T-Lymphocyte-Associated Protein 4 via Binding to an N-Glycosylation Epitope. mAbs, 12, Article ID: 1725365.
https://doi.org/10.1080/19420862.2020.1725365
[22] Yamamoto, T. (2022) Skin Manifestation Induced by Immune Checkpoint Inhibitors. Clinical, Cosmetic and Investigational Dermatology, 15, 829-841.
https://doi.org/10.2147/ccid.s364243
[23] Saha, A., Dreyfuss, I., Sarfraz, H., Friedman, M. and Markowitz, J. (2022) Dietary Considerations for Inflammatory Bowel Disease Are Useful for Treatment of Checkpoint Inhibitor-Induced Colitis. Cancers, 15, Article No. 84.
https://doi.org/10.3390/cancers15010084
[24] Ayoub, N.M., Al-Shami, K.M. and Yaghan, R.J. (2019) Immunotherapy for Her2-Positive Breast Cancer: Recent Advances and Combination Therapeutic Approaches. Breast Cancer: Targets and Therapy, 11, 53-69.
https://doi.org/10.2147/bctt.s175360
[25] Wang, Y., Sun, Q., Mu, N., Sun, X., Wang, Y., Fan, S., et al. (2020) The Deubiquitinase USP22 Regulates PD-L1 Degradation in Human Cancer Cells. Cell Communication and Signaling, 18, Article No. 112.
https://doi.org/10.1186/s12964-020-00612-y
[26] Zhou, X., Li, C., Chen, T., Li, W., Wang, X. and Yang, Q. (2023) Targeting RNA N6-Methyladenosine to Synergize with Immune Checkpoint Therapy. Molecular Cancer, 22, Article No. 36.
https://doi.org/10.1186/s12943-023-01746-6
[27] Feng, P., Wang, X., Ferrall, L., Wu, T.-. and Hung, C. (2022) Control of Tumors by Antigen-Specific CD8+ T Cells through PDL1-Targeted Delivery of Antigenic Peptide. Journal of Immunology Research, 2022, Article ID: 9054569.
https://doi.org/10.1155/2022/9054569
[28] Li, Y., Cong, Y., Jia, M., He, Q., Zhong, H., Zhao, Y., et al. (2021) Targeting IL-21 to Tumor-Reactive T Cells Enhances Memory T Cell Responses and Anti-PD-1 Antibody Therapy. Nature Communications, 12, Article No. 951.
https://doi.org/10.1038/s41467-021-21241-0
[29] Urwyler, P., Earnshaw, I., Bermudez, M., Perucha, E., Wu, W., Ryan, S., et al. (2020) Mechanisms of Checkpoint Inhibition-Induced Adverse Events. Clinical and Experimental Immunology, 200, 141-154.
https://doi.org/10.1111/cei.13421
[30] Chen, M., Li, C., Sun, M., Li, Y. and Sun, X. (2022) Recent Developments in PD-1/PD-L1 Blockade Research for Gastroesophageal Malignancies. Frontiers in Immunology, 13, Article ID: 1043517.
https://doi.org/10.3389/fimmu.2022.1043517
[31] Aguilera, J., Han, X., Cao, S., Balmes, J., Lurmann, F., Tyner, T., et al. (2022) Increases in Ambient Air Pollutants during Pregnancy Are Linked to Increases in Methylation of IL4, IL10, and IFNγ. Clinical Epigenetics, 14, Article No. 40.
https://doi.org/10.1186/s13148-022-01254-2
[32] Cairat, M., Rinaldi, S., Navionis, A., Romieu, I., Biessy, C., Viallon, V., et al. (2022) Circulating Inflammatory Biomarkers, Adipokines and Breast Cancer Risk—A Case-Control Study Nested within the EPIC Cohort. BMC Medicine, 20, Article No. 118.
https://doi.org/10.1186/s12916-022-02319-y
[33] Aghamohammad, S., Sepehr, A., Miri, S.T., Najafi, S., Rohani, M. and Pourshafiea, M.R. (2022) The Effects of the Probiotic Cocktail on Modulation of the NF-κb and JAK/STAT Signaling Pathways Involved in the Inflammatory Response in Bowel Disease Model. BMC Immunology, 23, Article No. 8.
https://doi.org/10.1186/s12865-022-00484-6
[34] Batyrova, B., Luwaert, F., Maravelia, P., Miyabayashi, Y., Vashist, N., Stark, J.M., et al. (2019) PD‐1 Expression Affects Cytokine Production by ILC2 and Is Influenced by Peroxisome Proliferator‐Activated Receptor‐γ. Immunity, Inflammation and Disease, 8, 8-23.
https://doi.org/10.1002/iid3.279
[35] Shi, W., Zhang, Y., Hao, C., Guo, X., Yang, Q., Du, J., et al. (2023) The Significance of PD-1/PD-L1 Imbalance in Ulcerative Colitis. PeerJ, 11, e15481.
https://doi.org/10.7717/peerj.15481
[36] Wang, F., Song, J., Yan, Y., Zhou, Q., Li, X., Wang, P., et al. (2022) Correction to “Integrated Network Pharmacology Analysis and Serum Metabolomics to Reveal the Antimalaria Mechanism of Artesunate”. ACS Omega, 7, Article No. 36047.
https://doi.org/10.1021/acsomega.2c05623
[37] Amatore, F., Ortonne, N., Lopez, M., Orlanducci, F., Castellano, R., Ingen-Housz-Oro, S., et al. (2020) ICOS Is Widely Expressed in Cutaneous T-Cell Lymphoma, and Its Targeting Promotes Potent Killing of Malignant Cells. Blood Advances, 4, 5203-5214.
https://doi.org/10.1182/bloodadvances.2020002395
[38] Tian, J., Zhu, Q., Zhang, Y., Bian, Q., Hong, Y., Shen, Z., et al. (2020) Olfactory Ecto-Mesenchymal Stem Cell-Derived Exosomes Ameliorate Experimental Colitis via Modulating Th1/Th17 and Treg Cell Responses. Frontiers in Immunology, 11, Article ID: 598322.
https://doi.org/10.3389/fimmu.2020.598322
[39] Kim, M.K., Jo, S.I., Kim, S., Lim, H., Kang, H.S., Moon, S., et al. (2023) Pd-1-Positive Cells Contribute to the Diagnosis of Inflammatory Bowel Disease and Can Aid in Predicting Response to Vedolizumab. Scientific Reports, 13, Article No. 21329.
https://doi.org/10.1038/s41598-023-48651-y
[40] Tagliamento, M., Agostinetto, E., Borea, R., Brandão, M., Poggio, F., Addeo, A., et al. (2021) VISTA: A Promising Target for Cancer Immunotherapy? ImmunoTargets and Therapy, 10, 185-200.
https://doi.org/10.2147/itt.s260429
[41] Hosseinkhani, N., Derakhshani, A., Shadbad, M.A., Argentiero, A., Racanelli, V., Kazemi, T., et al. (2021) The Role of V-Domain Ig Suppressor of T Cell Activation (VISTA) in Cancer Therapy: Lessons Learned and the Road Ahead. Frontiers in Immunology, 12, Article ID: 676181.
https://doi.org/10.3389/fimmu.2021.676181
[42] Tang, X., Xiong, Y., Shi, X., Zhao, Y., Shi, A., Zheng, K., et al. (2022) IGSF11 and VISTA: A Pair of Promising Immune Checkpoints in Tumor Immunotherapy. Biomarker Research, 10, Article No. 49.
https://doi.org/10.1186/s40364-022-00394-0
[43] Mehta, N., Maddineni, S., Mathews, I.I., Andres Parra Sperberg, R., Huang, P. and Cochran, J.R. (2019) Structure and Functional Binding Epitope of V-Domain Ig Suppressor of T Cell Activation. Cell Reports, 28, 2509-2516.e5.
https://doi.org/10.1016/j.celrep.2019.07.073
[44] Emaldi, M., Alamillo-Maeso, P., Rey-Iborra, E., Mosteiro, L., Lecumberri, D., Pulido, R., et al. (2024) A Functional Role for Glycosylated B7-H5/VISTA Immune Checkpoint Protein in Metastatic Clear Cell Renal Cell Carcinoma. iScience, 27, Article ID: 110587.
https://doi.org/10.1016/j.isci.2024.110587
[45] ElTanbouly, M.A., Zhao, Y., Nowak, E., Li, J., Schaafsma, E., Le Mercier, I., et al. (2020) VISTA Is a Checkpoint Regulator for Naïve T Cell Quiescence and Peripheral Tolerance. Science, 367, eaay0524.
https://doi.org/10.1126/science.aay0524
[46] Xu, W., Dong, J., Zheng, Y., Zhou, J., Yuan, Y., Ta, H.M., et al. (2019) Immune-Checkpoint Protein VISTA Regulates Antitumor Immunity by Controlling Myeloid Cell-Mediated Inflammation and Immunosuppression. Cancer Immunology Research, 7, 1497-1510.
https://doi.org/10.1158/2326-6066.cir-18-0489
[47] Wang, S., Su, W., Wu, X. and Dong, W. (2024) Restoring Treg/Th17 Cell Balance in Ulcerative Colitis through HRas Silencing and MAPK Pathway Inhibition. International Immunopharmacology, 130, Article ID: 111608.
https://doi.org/10.1016/j.intimp.2024.111608
[48] Zhang, Y., Li, J. and Yin, X. (2023) High-Expression of Galactosidase Alpha Is Correlated with Poor Prognosis and Immune Infiltration in Low-Grade Glioma. Journal of Cancer, 14, 646-656.
https://doi.org/10.7150/jca.81975
[49] Zheng, M., Zhang, Z., Yu, L., Wang, Z., Dong, Y., Tong, A., et al. (2023) Immune-Checkpoint Protein VISTA in Allergic, Autoimmune Disease and Transplant Rejection. Frontiers in Immunology, 14, Article ID: 1194421.
https://doi.org/10.3389/fimmu.2023.1194421
[50] Vicier, C., Isambert, N., Cropet, C., Hamimed, M., Osanno, L., Legrand, F., et al. (2022) MOVIE: A Phase I, Open-Label, Multicenter Study to Evaluate the Safety and Tolerability of Metronomic Vinorelbine Combined with Durvalumab plus Tremelimumab in Patients with Advanced Solid Tumors. ESMO Open, 7, Article ID: 100646.
https://doi.org/10.1016/j.esmoop.2022.100646
[51] Xu, J., Cen, X., Yao, Y., Zhao, S., Li, W., Zhang, W., et al. (2022) Identification of Six N7-Methylguanosine-Related miRNA Signatures to Predict the Overall Survival and Immune Landscape of Triple-Negative Breast Cancer through in Silico Analysis. Journal of Oncology, 2022, Article ID: 2735251.
https://doi.org/10.1155/2022/2735251
[52] Zarifa, A., Kim, J.W., Lopez-Mattei, J., Palaskas, N., Iliescu, C. and Kim, P.Y. (2021) Cardiac Toxicities Associated with Immune Checkpoints Inhibitors: Mechanisms, Manifestations and Management. Korean Circulation Journal, 51, 579-597.
https://doi.org/10.4070/kcj.2021.0089
[53] Cheng, Y., Ling, F., Li, J., Chen, Y., Xu, M., Li, S., et al. (2023) An Updated Review of Gastrointestinal Toxicity Induced by PD-1 Inhibitors: From Mechanisms to Management. Frontiers in Immunology, 14, Article ID: 1190850.
https://doi.org/10.3389/fimmu.2023.1190850
[54] Choi, J.W., Kim, Y.J., Yun, K.A., Won, C.H., Lee, M.W., Choi, J.H., et al. (2020) The Prognostic Significance of VISTA and CD33-Positive Myeloid Cells in Cutaneous Melanoma and Their Relationship with PD-1 Expression. Scientific Reports, 10, Article No. 14372.
https://doi.org/10.1038/s41598-020-71216-2