|
[1]
|
Chempay, Y.D., Tshering, U. and Watts, M.R. (2025) Clinical Characteristics and Outcomes of Acute Coronary Syndrome Patients in a PCI-Limited Setting: A Prospective Study from Bhutan. BMC Cardiovascular Disorders, 25, Article no. 324. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zou, S., Wang, Z., Bhura, M. and Tang, K. (2022) Association of Multimorbidity of Non-Communicable Diseases with Mortality: A 10-Year Prospective Study of 0.5 Million Chinese Adults. Public Health, 205, 63-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rubio-Guerra, A., Morales-López, H., Garro-Almendaro, A., Vargas-Ayala, G., Durán-Salgado, M., Huerta-Ramírez, S., et al. (2016) Circulating Levels of Uric Acid and Risk for Metabolic Syndrome. Current Diabetes Reviews, 13, 87-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kang, H., Song, J. and Cheng, Y. (2024) HDL Regulates the Risk of Cardiometabolic and Inflammatory-Related Diseases: Focusing on Cholesterol Efflux Capacity. International Immunopharmacology, 138, Article 112622. ttps://doi.org/10.1016/j.intimp.2024.112622
|
|
[5]
|
Kolahi Ahari, R., Mansoori, A., Sahranavard, T., Miri, M.S., Feizi, S., Esmaily, H., et al. (2023) Serum Uric Acid to High-Density Lipoprotein Ratio as a Novel Indicator of Inflammation Is Correlated with the Presence and Severity of Metabolic Syndrome: A Large-Scale Study. Endocrinology, Diabetes & Metabolism, 6, e446. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Braga, F., Ferraro, S., Pasqualetti, S. and Panteghini, M. (2018) Reply to: Hyperuricemia Does Not Seem to Be an Independent Risk Factor for Coronary Heart Disease. Clinical Chemistry and Laboratory Medicine (CCLM), 56, e63-e64. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yang, Y., Zhang, J., Jia, L., Su, J., Ma, M. and Lin, X. (2023) The Interaction between Uric Acid and High-Density Lipoprotein Cholesterol on the Prognosis of Patients with Acute Myocardial Infarction. Frontiers in Cardiovascular Medicine, 10, Article 1226108. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Liu, R., Peng, Y., Wu, H., et al. (2021) Uric Acid to High-Density Lipoprotein Cholesterol Ratio Predicts Cardiovascular Mortality in Patients on Peritoneal Dialysis. Nutrition, Metabolism and Cardiovascular Diseases, 31, 561-569.
|
|
[9]
|
Park, B., Jung, D.H. and Lee, Y.J. (2022) Predictive Value of Serum Uric Acid to HDL Cholesterol Ratio for Incident Ischemic Heart Disease in Non-Diabetic Koreans. Biomedicines, 10, Article 1422. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Deng, F., Jia, F., Sun, Y., Zhang, L., Han, J., Li, D., et al. (2024) Predictive Value of the Serum Uric Acid to High-Density Lipoprotein Cholesterol Ratio for Culprit Plaques in Patients with Acute Coronary Syndrome. BMC Cardiovascular Disorders, 24, Article No. 155. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, Z., Liu, Q. and Yao, Z. (2024) The Serum Uric Acid-to-High-Density Lipoprotein Cholesterol Ratio Is a Predictor for All-Cause and Cardiovascular Disease Mortality: A Cross-Sectional Study. Frontiers in Endocrinology, 15, Article 1417485.
|
|
[12]
|
Wei, X., Zhang, M., Huang, S., Lan, X., Zheng, J., Luo, H., et al. (2023) Hyperuricemia: A Key Contributor to Endothelial Dysfunction in Cardiovascular Diseases. The FASEB Journal, 37, e23012. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cortese, F., Giordano, P., Scicchitano, P., Faienza, M.F., De Pergola, G., Calculli, G., et al. (2019) Uric Acid: From a Biological Advantage to a Potential Danger. A Focus on Cardiovascular Effects. Vascular Pharmacology, 120, Article 106565. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nomura, J., Busso, N., Ives, A., Matsui, C., Tsujimoto, S., Shirakura, T., et al. (2014) Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice. Scientific Reports, 4, Article No. 4554. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kırça, M., Oğuz, N., Çetin, A., Uzuner, F. and Yeşilkaya, A. (2016) Uric Acid Stimulates Proliferative Pathways in Vascular Smooth Muscle Cells through the Activation of P38 MAPK, P44/42 MAPK and PDGFRβ. Journal of Receptors and Signal Transduction, 37, 167-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lv, T., Fan, X., He, C., Zhu, S., Xiong, X., Yan, W., et al. (2024) SLC7A11-ROS/αKG-AMPK Axis Regulates Liver Inflammation through Mitophagy and Impairs Liver Fibrosis and NASH Progression. Redox Biology, 72, Article 103159. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lanaspa, M.A., Cicerchi, C., Garcia, G., Li, N., Roncal-Jimenez, C.A., Rivard, C.J., et al. (2012) Counteracting Roles of AMP Deaminase and AMP Kinase in the Development of Fatty Liver. PLOS ONE, 7, e48801. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Crişan, T.O., Cleophas, M.C.P., Novakovic, B., et al. (2017) Uric Acid Priming in Human Monocytes Is Driven by the AKT-PRAS40 Autophagy Pathway. Proceedings of the National Academy of Sciences of the United States of America, 114, 5485-5490.
|
|
[19]
|
Kimura, Y., Tsukui, D. and Kono, H. (2021) Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis. International Journal of Molecular Sciences, 22, Article 12394.
|
|
[20]
|
Sanchez-Lozada, L.G., Rodriguez-Iturbe, B., Kelley, E.E., Nakagawa, T., Madero, M., Feig, D.I., et al. (2020) Uric Acid and Hypertension: An Update with Recommendations. American Journal of Hypertension, 33, 583-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hansson, G.K., Robertson, A.L. and Söderberg-Nauclér, C. (2006) Inflammation and Atherosclerosis. Annual Review of Pathology: Mechanisms of Disease, 1, 297-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yu, Z.F., Bruce-Keller, A.J., Goodman, Y. and Mattson, M.P. (1998) Uric Acid Protects Neurons against Excitotoxic and Metabolic Insults in Cell Culture, and against Focal Ischemic Brain Injury in Vivo. Journal of Neuroscience Research, 53, 613-625. [Google Scholar] [CrossRef]
|
|
[23]
|
Wang, A., Tian, X., Wu, S., et al. (2021) Metabolic Factors Mediate the Association Between Serum Uric Acid to Serum Creatinine Ratio and Cardiovascular Disease. Journal of the American Heart Association, 10, e023054.
|
|
[24]
|
Yusuf, S., Hawken, S., Ôunpuu, S., Dans, T., Avezum, A., Lanas, F., et al. (2004) Effect of Potentially Modifiable Risk Factors Associated with Myocardial Infarction in 52 Countries (the INTERHEART Study): Case-Control Study. The Lancet, 364, 937-952. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gharib, A.F., Nafea, O.E., Alrehaili, A.A., Almalki, A., Alharthi, A., Alsalmi, O., et al. (2023) Association between Serum Uric Acid Levels and Oxido-Inflammatory Biomarkers with Coronary Artery Disease in Type 2 Diabetic Patients. Cureus, 15, e47913. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Maloberti, A., Vanoli, J., Finotto, A., Bombelli, M., Facchetti, R., Redon, P., et al. (2022) Uric Acid Relationships with Lipid Profile and Adiposity Indices: Impact of Different Hyperuricemic Thresholds. The Journal of Clinical Hypertension, 25, 78-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kim, J.Y., Seo, C., Pak, H., et al. (2023) Uric Acid and Risk of Cardiovascular Disease and Mortality: A Longitudinal Cohort Study. Journal of Korean Medical Science, 38, e302.
|
|
[28]
|
Li, M., Hu, X., Fan, Y., Li, K., Zhang, X., Hou, W., et al. (2016) Hyperuricemia and the Risk for Coronary Heart Disease Morbidity and Mortality a Systematic Review and Dose-Response Meta-Analysis. Scientific Reports, 6, Article No. 19520. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, J., Pan, Y., Gao, Q., Zhuang, R. and Ma, L. (2024) Association of Hyperuricemia with Coronary Heart Disease: Protocol for an Updated Systematic Review and Dose-Response Meta-Analysis. PLOS ONE, 19, e0308719. [Google Scholar] [CrossRef] [PubMed]
|