UHR与冠心病研究进展
Research Progress of UHR and Coronary Heart Disease
DOI: 10.12677/acrem.2025.133031, PDF, HTML, XML,   
作者: 王雪萌, 李 浩, 杨文琦*:华北理工大学附属医院医院心血管内科三病区,河北 唐山
关键词: 尿酸高密度脂蛋白冠心病机制Uric Acid High-Density Lipoprotein Coronary Heart Disease Mechanism
摘要: 冠状动脉粥样硬化性心脏病(Serum uric acid to high-density lipoprotein cholesterol ratio, UHR)是全球死亡的主要原因,随着饮食结构的改变,我国CHD的发病率呈逐年递增趋势。最近,血清尿酸与高密度脂蛋白胆固醇比值(Serum uric acid to High-density Lipoprotein cholesterol ratio, UHR)被报道为一种新的炎症和代谢标志物,它将CHD的致病因素与保护因素相结合。有研究表明,UHR是CHD的独立危险因素。本文将对UHR与CHD致病机制作一篇综述,旨在加强日常诊疗中对复合型指标的重视,使广大患者受益。
Abstract: Coronary Heart Disease (CHD) is a leading cause of death globally. With changes in dietary patterns, the incidence of CHD in China has shown a year-by-year increasing trend. Recently, the serum uric acid to high-density lipoprotein cholesterol ratio (UHR) has been reported as a novel inflammatory and metabolic biomarker that integrates both pathogenic and protective factors of CHD. Studies indicate that UHR is an independent risk factor for CHD. This review will explore the relationship between UHR and the pathogenic mechanisms of CHD, aiming to enhance the emphasis on composite indicators in routine clinical diagnosis and treatment, thereby benefiting a broad range of patients.
文章引用:王雪萌, 李浩, 杨文琦. UHR与冠心病研究进展[J]. 亚洲急诊医学病例研究, 2025, 13(3): 209-214. https://doi.org/10.12677/acrem.2025.133031

1. 引言

冠状动脉粥样硬化性心脏病(Serum uric acid to high-density lipoprotein cholesterol ratio, UHR)是指冠状动脉粥样硬化导致血管管腔狭窄或闭塞,从而引起心肌血供降低,导致以心肌缺血、缺氧、甚至坏死为主要特征的疾病。是全球最常见的高风险致死性疾病之一[1] [2]。近年来,我国CHD的负担仍继续增加,防控工作形势严峻。因此找寻一种能够有效快速评估冠心病患者病情的标志物显得尤为重要。

尿酸(serum uric acid, SUA)是嘌呤化合物代谢的最终产物,尿酸水平在体内的平衡是通过其生产和通过肾脏和肠道消除之间的微妙相互作用来维持的。肾脏是循环尿酸水平的重要调节器。大约三分之二的尿酸在肾脏排泄,其余三分之一排泄到肠道。当这一平衡遭到破坏,就会引起血尿酸水平的升高,高尿酸血症的定义为男性血清尿酸水平 > 416 μmol/L或者女性血清尿酸水平 > 357 μmol/L [3]。大量研究实验表明,尿酸会引起内皮细胞功能受损,同时导致一氧化氮生物利用度的降低,引起血小板聚集,增加了形成血栓的风险。同时还会放大氧化应激反应,促使低密度脂蛋白和脂质过氧化,从而加快了冠心病的进程。相反,作为人体脂质代谢的重要组成部分,高密度脂蛋白胆固醇(High-Density Lipoprotein Cholesterol, HDL-C)由胆固醇、甘油三酯、磷脂和载脂蛋白组成,尤其是载脂蛋白A1。已经证明,HDL-C通过其抗炎和抗氧化作用在促进动脉壁细胞中的胆固醇流出至肝脏和预防循环中的动脉硬化中起重要作用[4]

在许多研究中已经表明,通过组合不同组分中的血液参数获得的基于炎症的标记物可以强有力地独立预测CHD。UHR被报道为一种新型的炎症和代谢标记物[5]。它将冠心病的致病因素与保护因素相结合,相对于单一指标UHR可以更好地预测冠心病的发病风险。本文章将结合尿酸、血脂及冠心病的致病机制,对UHR与冠心病的关系作一篇综述,为冠心病的预防提供新的见解。

2. UHR与冠心病

冠心病常见的危险因素有性别、年龄、肥胖、吸烟史、家族史、糖尿病、高血压、高血脂等。近些年随着冠心病的发病率逐渐上升以及对心血管疾病致病机制的不断深入研究,目前认为是多种因素共同作用导致冠状动脉粥样硬化性心脏病的发生,不仅限于以上传统的高危因素,还包括尿酸、C反应蛋白、D-二聚体、同型半胱氨酸等[6]。有研究表明,UA和HDL-C可能相互作用,共同加快了CHD的进展[7]。但是UA和HDL-C之间的相互作用仍未完全阐明,血清UA水平升高能够影响HDL-C对颈动脉粥样硬化的作用,并可能影响这些患者HDL-C与炎症标记之间的关系。刘[8]等研究了UA、HDL-C和动脉粥样硬化性心血管疾病死亡率之间的关系,发现随着UHR的增加动脉粥样硬化性心血管疾病死亡率也增加,这表明UA与HDL-C对动脉粥样硬化性心血管疾病的预后影响有关。近年来,UHR作为一种新的生物标志物在临床上引起了广泛的关注。有研究表明,高UHR与缺血性心脏病的发生率呈正相关[9]。一项关于UHR对急性冠脉综合征的预测价值的研究中也表明,UHR可以作为急性冠脉综合征致病斑块的独立预测因子且预测价值优于低密度脂蛋白[10]。来自美国NHANES的一项大型横断面研究中得出:UHR与死亡率之间存在非线性关系,在一般人群中,全因死亡率的临界阈值为12.4,心血管疾病为10.7 [11]

3. 尿酸与冠心病

3.1. 高尿酸导致血管内皮功能异常

内皮细胞中一氧化氮合成、释放和/或活性的降低与心血管疾病的发展有关。一氧化氮是一种高活性和气体扩散的自由基,具有有效的血管舒张、抗炎和抗氧化特性。一氧化氮通过调节血管张力、血管生成、炎症细胞粘附和血小板聚集在冠心病的预防中发挥关键作用。然而,几种机制可能通过促进氧化还原失衡、减少L-精氨酸供应和抑制内皮型–氧化氮合酶活性而导致HUA-β诱导的内皮一氧化氮产生减少[12],从而引起血管内皮功能异常。高迁移率族蛋白染色体蛋白1作为一种炎性细胞因子,可激活晚期糖基化终产物的受体。在内皮细胞中,尿酸可引起高迁移率族蛋白染色体蛋白1的产生和释放,从而导致氧化状态和内皮功能障碍[13]。此外,黄嘌呤氧化酶(XO)在内皮细胞中表达,可能参与了动脉粥样硬化的发生发展。在一项小鼠实验中,已经显示主动脉细胞呈现内皮黄嘌呤氧化酶水平增加,这与内皮功能障碍的发展相关。XO抑制剂给药(非布司他)可减少动脉粥样硬化病变[14],也从侧面印证了尿酸会导致血管内皮功能障碍。

3.2. 尿酸引起炎症反应

研究表明,尿酸可以通过多种方式引起炎症反应。UA可以激活p38丝裂原活化蛋白激酶(MAPK)通路和细胞外信号调节激酶(ERK),这两种激酶都参与炎症细胞因子、粘附因子、趋化因子的分泌以及细胞增殖和迁移[15]。单磷酸腺苷活化蛋白激酶(AMPK)通路对细胞能量代谢的调节至关重要,而AMPK通路的抑制是细胞的应激信号,导致炎症细胞因子的分泌和核苷酸结合域和富含亮氨酸重复蛋白3 (NLRP3)炎性小体[16]的激活。UA可通过抑制AMPK通路导致炎症反应和氧化应激[17]。磷脂酰肌醇-3激酶(PI3K)-Akt通路与细胞增殖、迁移、分化和细胞能量代谢有关。UA磷酸化Akt并激活mTOR,mTOR通过缺氧诱导因子(HIF)-1α阻断自噬,促进炎症和血管生成[18]。此外,UA激活mTOR导致线粒体损伤,导致线粒体ROS水平升高和细胞色素c的释放,而细胞色素c参与凋亡和细胞衰老的内在途径[19]。SUA水平升高与一种叫做calpain-1的蛋白酶的产生增加有关,这种蛋白酶会导致内质网应激。肾素–血管紧张素–醛固酮系统(RAAS)和炎性小体途径参与了UA介导的细胞反应[20]。近几年体内的慢性炎症是导致心血管疾病的重要因素逐渐被证实,且尿酸会参与并加重炎症反应,在一定程度上促进了心血管疾病的发生和发展[21]

3.3. 尿酸引起氧化应激

氧化应激是动脉粥样硬化发生的重要因素之一。氧化应激通过诱导内皮细胞和血管舒张功能障碍、诱导炎性细胞(如巨噬细胞)炎症、血小板聚集和低密度脂蛋白氧化,参与动脉粥样硬化的发病机制。活性氧(ROS)是一种来源于氧分子(O2)不稳定的强氧化剂,在预防感染和介导信号转导方面具有重要的生理作用。在体内,它们是在线粒体氧化磷酸化(OXPHOS)过程中产生的。已知NADPH氧化酶、黄嘌呤氧化酶和脂氧合酶也会产生ROS。人体有天然的抗氧化系统,如果失去这种平衡,氧化应激成为主导会加速动脉粥样硬化病变进展。氧化应激水平与年龄、血压、吸烟、低密度脂蛋白胆固醇、血糖相关[19]。冠心病患者有高水平的氧化应激。在先前的研究中,尿酸抑制ROS的积累并保护缺血性神经元损伤[22]。然而,我们也知道细胞内尿酸在诱导氧化应激中起作用。在动脉粥样硬化的发病机制中,高尿酸血症是氧化应激的诱导剂。高尿酸血症条件下氧化应激积累的机制可能是,尿酸代谢过程中黄嘌呤氧化酶活性增加而产生的活性氧;NADPH氧化酶的表达和活性增加;线粒体损伤而产生的线粒体ROS (mtROS) [19]

3.4. 血脂异常、尿酸与冠心病

血脂异常通常定义为甘油三酯、总胆固醇、低密度脂蛋白胆固醇水平升高或高密度脂蛋白胆固醇水平降低。在一项前瞻性队列研究中,血脂异常被认为在心血管疾病发病和血清尿酸/血清肌酐比值关联中起重要的中介作用,其中甘油三酯的中介效应占比最大[23]。因此,制定CHD预防方案的过程中,应重视血脂异常对人体的影响,加强人群对血脂异常危害的警惕性[24]。血脂代谢和尿酸之间的关系目前也是热点话题,来自意大利米兰前瞻性队列研究发现尿酸水平的升高与血脂之间也存在关联,即使两者之间因果关系尚未明确,但研究者依据此研究推测尿酸升高对心血管不良事件发病风险的影响主要通过对促动脉粥样硬化脂蛋白的改变[25]。有些研究表明尿酸不仅可以作为独立的危险因素,直接参与冠心病的进展,同时尿酸还可以增加高血压、血脂异常、胰岛素抵抗、糖尿病的发病几率,进一步导致冠心病的发病风险增加,并影响冠心病的预后[26]-[29]

4. 总结与展望

近些年来生活方式改变,饮食结构中高嘌呤食物比例增加,高尿酸血症以及心血管疾病的发病率逐年升高,两者之间的相互作用一直属于热点议题,虽然最近几年有些循证医学研究表明降低尿酸可以减缓冠心病的进展,改善心血管疾病的预后,并且得到了部分临床资料的验证。但是尚无明确的临床证据证实尿酸是否可以像高脂血症、糖尿病、吸烟等冠心病传统高危因素一样可以作为心血管疾病的独立危险因素,这不仅需要大量的临床数据支持,更需要基础的研究来进一步阐述其机制、机理,并为后续的治疗提供充分的依据。UHR这些新型标志物的出现,通过结合不同组分,相较于单一的指标能够更有效地预测冠心病的发展进程,以便于及时早期干预,改善患者预后。

NOTES

*通讯作者。

参考文献

[1] Chempay, Y.D., Tshering, U. and Watts, M.R. (2025) Clinical Characteristics and Outcomes of Acute Coronary Syndrome Patients in a PCI-Limited Setting: A Prospective Study from Bhutan. BMC Cardiovascular Disorders, 25, Article no. 324.
https://doi.org/10.1186/s12872-025-04782-w
[2] Zou, S., Wang, Z., Bhura, M. and Tang, K. (2022) Association of Multimorbidity of Non-Communicable Diseases with Mortality: A 10-Year Prospective Study of 0.5 Million Chinese Adults. Public Health, 205, 63-71.
https://doi.org/10.1016/j.puhe.2022.01.021
[3] Rubio-Guerra, A., Morales-López, H., Garro-Almendaro, A., Vargas-Ayala, G., Durán-Salgado, M., Huerta-Ramírez, S., et al. (2016) Circulating Levels of Uric Acid and Risk for Metabolic Syndrome. Current Diabetes Reviews, 13, 87-90.
https://doi.org/10.2174/1573399812666150930122507
[4] Kang, H., Song, J. and Cheng, Y. (2024) HDL Regulates the Risk of Cardiometabolic and Inflammatory-Related Diseases: Focusing on Cholesterol Efflux Capacity. International Immunopharmacology, 138, Article 112622. ttps://doi.org/10.1016/j.intimp.2024.112622
[5] Kolahi Ahari, R., Mansoori, A., Sahranavard, T., Miri, M.S., Feizi, S., Esmaily, H., et al. (2023) Serum Uric Acid to High-Density Lipoprotein Ratio as a Novel Indicator of Inflammation Is Correlated with the Presence and Severity of Metabolic Syndrome: A Large-Scale Study. Endocrinology, Diabetes & Metabolism, 6, e446.
https://doi.org/10.1002/edm2.446
[6] Braga, F., Ferraro, S., Pasqualetti, S. and Panteghini, M. (2018) Reply to: Hyperuricemia Does Not Seem to Be an Independent Risk Factor for Coronary Heart Disease. Clinical Chemistry and Laboratory Medicine (CCLM), 56, e63-e64.
https://doi.org/10.1515/cclm-2017-0954
[7] Yang, Y., Zhang, J., Jia, L., Su, J., Ma, M. and Lin, X. (2023) The Interaction between Uric Acid and High-Density Lipoprotein Cholesterol on the Prognosis of Patients with Acute Myocardial Infarction. Frontiers in Cardiovascular Medicine, 10, Article 1226108.
https://doi.org/10.3389/fcvm.2023.1226108
[8] Liu, R., Peng, Y., Wu, H., et al. (2021) Uric Acid to High-Density Lipoprotein Cholesterol Ratio Predicts Cardiovascular Mortality in Patients on Peritoneal Dialysis. Nutrition, Metabolism and Cardiovascular Diseases, 31, 561-569.
[9] Park, B., Jung, D.H. and Lee, Y.J. (2022) Predictive Value of Serum Uric Acid to HDL Cholesterol Ratio for Incident Ischemic Heart Disease in Non-Diabetic Koreans. Biomedicines, 10, Article 1422.
https://doi.org/10.3390/biomedicines10061422
[10] Deng, F., Jia, F., Sun, Y., Zhang, L., Han, J., Li, D., et al. (2024) Predictive Value of the Serum Uric Acid to High-Density Lipoprotein Cholesterol Ratio for Culprit Plaques in Patients with Acute Coronary Syndrome. BMC Cardiovascular Disorders, 24, Article No. 155.
https://doi.org/10.1186/s12872-024-03824-z
[11] Li, Z., Liu, Q. and Yao, Z. (2024) The Serum Uric Acid-to-High-Density Lipoprotein Cholesterol Ratio Is a Predictor for All-Cause and Cardiovascular Disease Mortality: A Cross-Sectional Study. Frontiers in Endocrinology, 15, Article 1417485.
[12] Wei, X., Zhang, M., Huang, S., Lan, X., Zheng, J., Luo, H., et al. (2023) Hyperuricemia: A Key Contributor to Endothelial Dysfunction in Cardiovascular Diseases. The FASEB Journal, 37, e23012.
https://doi.org/10.1096/fj.202300393r
[13] Cortese, F., Giordano, P., Scicchitano, P., Faienza, M.F., De Pergola, G., Calculli, G., et al. (2019) Uric Acid: From a Biological Advantage to a Potential Danger. A Focus on Cardiovascular Effects. Vascular Pharmacology, 120, Article 106565.
https://doi.org/10.1016/j.vph.2019.106565
[14] Nomura, J., Busso, N., Ives, A., Matsui, C., Tsujimoto, S., Shirakura, T., et al. (2014) Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice. Scientific Reports, 4, Article No. 4554.
https://doi.org/10.1038/srep04554
[15] Kırça, M., Oğuz, N., Çetin, A., Uzuner, F. and Yeşilkaya, A. (2016) Uric Acid Stimulates Proliferative Pathways in Vascular Smooth Muscle Cells through the Activation of P38 MAPK, P44/42 MAPK and PDGFRβ. Journal of Receptors and Signal Transduction, 37, 167-173.
https://doi.org/10.1080/10799893.2016.1203941
[16] Lv, T., Fan, X., He, C., Zhu, S., Xiong, X., Yan, W., et al. (2024) SLC7A11-ROS/αKG-AMPK Axis Regulates Liver Inflammation through Mitophagy and Impairs Liver Fibrosis and NASH Progression. Redox Biology, 72, Article 103159.
https://doi.org/10.1016/j.redox.2024.103159
[17] Lanaspa, M.A., Cicerchi, C., Garcia, G., Li, N., Roncal-Jimenez, C.A., Rivard, C.J., et al. (2012) Counteracting Roles of AMP Deaminase and AMP Kinase in the Development of Fatty Liver. PLOS ONE, 7, e48801.
https://doi.org/10.1371/journal.pone.0048801
[18] Crişan, T.O., Cleophas, M.C.P., Novakovic, B., et al. (2017) Uric Acid Priming in Human Monocytes Is Driven by the AKT-PRAS40 Autophagy Pathway. Proceedings of the National Academy of Sciences of the United States of America, 114, 5485-5490.
[19] Kimura, Y., Tsukui, D. and Kono, H. (2021) Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis. International Journal of Molecular Sciences, 22, Article 12394.
[20] Sanchez-Lozada, L.G., Rodriguez-Iturbe, B., Kelley, E.E., Nakagawa, T., Madero, M., Feig, D.I., et al. (2020) Uric Acid and Hypertension: An Update with Recommendations. American Journal of Hypertension, 33, 583-594.
https://doi.org/10.1093/ajh/hpaa044
[21] Hansson, G.K., Robertson, A.L. and Söderberg-Nauclér, C. (2006) Inflammation and Atherosclerosis. Annual Review of Pathology: Mechanisms of Disease, 1, 297-329.
https://doi.org/10.1146/annurev.pathol.1.110304.100100
[22] Yu, Z.F., Bruce-Keller, A.J., Goodman, Y. and Mattson, M.P. (1998) Uric Acid Protects Neurons against Excitotoxic and Metabolic Insults in Cell Culture, and against Focal Ischemic Brain Injury in Vivo. Journal of Neuroscience Research, 53, 613-625.
https://doi.org/10.1002/(sici)1097-4547(19980901)53:5<613::aid-jnr11>3.0.co;2-1
[23] Wang, A., Tian, X., Wu, S., et al. (2021) Metabolic Factors Mediate the Association Between Serum Uric Acid to Serum Creatinine Ratio and Cardiovascular Disease. Journal of the American Heart Association, 10, e023054.
[24] Yusuf, S., Hawken, S., Ôunpuu, S., Dans, T., Avezum, A., Lanas, F., et al. (2004) Effect of Potentially Modifiable Risk Factors Associated with Myocardial Infarction in 52 Countries (the INTERHEART Study): Case-Control Study. The Lancet, 364, 937-952.
https://doi.org/10.1016/s0140-6736(04)17018-9
[25] Gharib, A.F., Nafea, O.E., Alrehaili, A.A., Almalki, A., Alharthi, A., Alsalmi, O., et al. (2023) Association between Serum Uric Acid Levels and Oxido-Inflammatory Biomarkers with Coronary Artery Disease in Type 2 Diabetic Patients. Cureus, 15, e47913.
https://doi.org/10.7759/cureus.47913
[26] Maloberti, A., Vanoli, J., Finotto, A., Bombelli, M., Facchetti, R., Redon, P., et al. (2022) Uric Acid Relationships with Lipid Profile and Adiposity Indices: Impact of Different Hyperuricemic Thresholds. The Journal of Clinical Hypertension, 25, 78-85.
https://doi.org/10.1111/jch.14613
[27] Kim, J.Y., Seo, C., Pak, H., et al. (2023) Uric Acid and Risk of Cardiovascular Disease and Mortality: A Longitudinal Cohort Study. Journal of Korean Medical Science, 38, e302.
[28] Li, M., Hu, X., Fan, Y., Li, K., Zhang, X., Hou, W., et al. (2016) Hyperuricemia and the Risk for Coronary Heart Disease Morbidity and Mortality a Systematic Review and Dose-Response Meta-Analysis. Scientific Reports, 6, Article No. 19520.
https://doi.org/10.1038/srep19520
[29] Chen, J., Pan, Y., Gao, Q., Zhuang, R. and Ma, L. (2024) Association of Hyperuricemia with Coronary Heart Disease: Protocol for an Updated Systematic Review and Dose-Response Meta-Analysis. PLOS ONE, 19, e0308719.
https://doi.org/10.1371/journal.pone.0308719