|
[1]
|
Lindberg, I., Saleh, A., Tutzauer, J., Gunnarsdottir, F.B., Rydén, L., Bergenfelz, C., et al. (2025) Prognostic Relevance of CD163+ Immune Cells in Patients with Metastatic Breast Cancer. Cancer Immunology, Immunotherapy, 74, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chang, M.C., Eslami, Z., Ennis, M. and Goodwin, P.J. (2021) Crown-Like Structures in Breast Adipose Tissue of Breast Cancer Patients: Associations with CD68 Expression, Obesity, Metabolic Factors and Prognosis. npj Breast Cancer, 7, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Corachea, A.J.M., Ferrer, R.J.E., Ty, L.P.B., Aquino, L.A.C., Morta, M.T., Macalindong, S.S., et al. (2025) Lymphovascular Invasion Is Associated with Doxorubicin Resistance in Breast Cancer. Laboratory Investigation, 105, Article ID: 104115. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Noblejas-López, M.d.M., Baliu-Piqué, M., Nieto-Jiménez, C., Cimas, F.J., Morafraile, E.C., Pandiella, A., et al. (2021) Transcriptomic Profiles of CD47 in Breast Tumors Predict Outcome and Are Associated with Immune Activation. International Journal of Molecular Sciences, 22, Article 3836. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kaur, S., Reginauld, B., Razjooyan, S., Phi, T., Singh, S.P., Meyer, T.J., et al. (2024) Effects of a Humanized CD47 Antibody and Recombinant SIRPα Proteins on Triple Negative Breast Carcinoma Stem Cells. Frontiers in Cell and Developmental Biology, 12, Article 1356421. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhu, X., Yu, J., Ai, F., Wang, Y., Lv, W., Yu, G., et al. (2023) CD24 May Serve as an Immunotherapy Target in Triple-Negative Breast Cancer by Regulating the Expression of PD-L1. Breast Cancer: Targets and Therapy, 15, 967-984. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, J., Zhang, H., Zhu, G., Zhao, L., Shi, J., Dai, Z., et al. (2024) STT3-Mediated Aberrant N-Glycosylation of CD24 Inhibits Paclitaxel Sensitivity in Triple-Negative Breast Cancer. Acta Pharmacologica Sinica, 46, 1097-1110. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yang, P., Yu, F., Yao, Z., Ding, X., Xu, H. and Zhang, J. (2023) CD24 Is a Novel Target of Chimeric Antigen Receptor T Cells for the Treatment of Triple Negative Breast Cancer. Cancer Immunology, Immunotherapy, 72, 3191-3202. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, Y., Li, J., Zhang, J., Wu, H., Yang, Y., Guo, H., et al. (2025) PPAB001, a Novel Bispecific Antibody against CD47 and CD24, Enhances Anti-PD-L1 Efficacy in Triple-Negative Breast Cancer via Reprogramming Tumor-Associated Macrophages Towards M1 Phenotype. International Immunopharmacology, 144, Article ID: 113740. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhou, M., Xie, P., Chen, L., et al. (2023) Correlation between the Expression of CD24 on Circulating Tumor Cells and Prognosis in Breast Cancer. American Journal of Translational Research, 15, 1941-1952.
|
|
[11]
|
Wang, X., Cheng, K., Zhang, G., Jia, Z., Yu, Y., Guo, J., et al. (2020) Enrichment of CD44 in Exosomes from Breast Cancer Cells Treated with Doxorubicin Promotes Chemoresistance. Frontiers in Oncology, 10, Article 960. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Morath, I., Jung, C., Lévêque, R., Linfeng, C., Toillon, R., Warth, A., et al. (2018) Differential Recruitment of CD44 Isoforms by ERBB Ligands Reveals an Involvement of CD44 in Breast Cancer. Oncogene, 37, 1472-1484. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, Z., Wang, Q., Wang, Q., Wang, Y. and Chen, J. (2017) Prognostic Significance of CD24 and CD44 in Breast Cancer: A Meta-Analysis. The International Journal of Biological Markers, 32, 75-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sari, S., Özdemir, Ç. and Çilekar, M. (2022) The Relationship of Tumour-Associated Macrophages (CD68, CD163, CD11c) and Cancer Stem Cell (CD44) Markers with Prognostic Parameters in Breast Carcinomas. Polish Journal of Pathology, 73, 299-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, Y., Klingen, T.A., Aas, H., Wik, E. and Akslen, L.A. (2023) CD47 and CD68 Expression in Breast Cancer Is Associated with Tumor‐Infiltrating Lymphocytes, Blood Vessel Invasion, Detection Mode, and Prognosis. The Journal of Pathology: Clinical Research, 9, 151-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Celepli, P., Karabulut, S., Bigat, İ., Celepli, S. and Hücümenoğlu, S. (2022) CD47 Expression and Tumor-Associated Immune Cells in Breast Cancer and Their Correlation with Molecular Subtypes and Prognostic Factors. Pathology—Research and Practice, 238, Article ID: 154107. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chen, C., Wang, R., Chen, X., Hou, Y. and Jiang, J. (2022) Targeting CD47 as a Novel Immunotherapy for Breast Cancer. Frontiers in Oncology, 12, Article 924740. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, B., Shi, J., Shi, X., Xu, X., Gao, L., Li, S., et al. (2024) Development and Evaluation of a Human CD47/HER2 Bispecific Antibody for Trastuzumab-Resistant Breast Cancer Immunotherapy. Drug Resistance Updates, 74, Article ID: 101068. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, L., Gong, Y., Tang, J., Yan, C., Li, L., Peng, W., et al. (2022) ZBTB28 Inhibits Breast Cancer by Activating IFNAR and Dual Blocking CD24 and CD47 to Enhance Macrophages Phagocytosis. Cellular and Molecular Life Sciences, 79, Article No. 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cheng, Y., Lin, L., Li, X., Lu, A., Hou, C., Wu, Q., et al. (2021) ADAM10 Is Involved in the Oncogenic Process and Chemo-Resistance of Triple-Negative Breast Cancer via Regulating Notch1 Signaling Pathway, CD44 and PrPc. Cancer Cell International, 21, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bian, Y., Lin, T., Jakos, T., Xiao, X. and Zhu, J. (2022) The Generation of Dual-Targeting Fusion Protein PD-L1/CD47 for the Inhibition of Triple-Negative Breast Cancer. Biomedicines, 10, Article 1843. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Huth, H.W., Castro-Gomes, T., de Goes, A.M. and Ropert, C. (2021) Translocation of Intracellular CD24 Constitutes a Triggering Event for Drug Resistance in Breast Cancer. Scientific Reports, 11, Article No. 17077. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Qu, X., Li, Q., Tu, S., Yang, X. and Wen, W. (2021) ELF5 Inhibits the Proliferation and Invasion of Breast Cancer Cells by Regulating CD24. Molecular Biology Reports, 48, 5023-5032. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chantziou, A., Theodorakis, K., Polioudaki, H., de Bree, E., Kampa, M., Mavroudis, D., et al. (2021) Glycosylation Modulates Plasma Membrane Trafficking of CD24 in Breast Cancer Cells. International Journal of Molecular Sciences, 22, Article 8165. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ye, Z., Dong, X., Chen, H., Gu, D. and Qiu, Z. (2021) Circular RNA CDR1as-Induced Autophagy Regulates the Proliferation and Migration of CD44+/CD24- Phenotype Breast Cancer Stem Cells in Vitro. All Life, 14, 569-576. [Google Scholar] [CrossRef]
|
|
[26]
|
Chantaraamporn, J., Pothipan, P., Sakulterdkiat, T., Khiankaew, B., Lumkul, L., Mutapat, P., et al. (2024) CD47 and Calreticulin Expression in Breast Cancer Subtypes and Anti-CD47 Inhibitory Effects in Macrophage-Mediated Phagocytosis. Anticancer Research, 44, 4929-4940. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Qiao, X., Zhang, Y., Sun, L., Ma, Q., Yang, J., Ai, L., et al. (2021) Association of Human Breast Cancer CD44-/CD24- Cells with Delayed Distant Metastasis. eLife, 10, e65418. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liu, C., Zhang, Y., Gao, J., Zhang, Q., Sun, L., Ma, Q., et al. (2023) A Highly Potent Small-Molecule Antagonist of Exportin-1 Selectively Eliminates CD44+CD24- Enriched Breast Cancer Stem-Like Cells. Drug Resistance Updates, 66, Article ID: 100903. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sethi, A., Mishra, S., Upadhyay, V., Dubey, P., Siddiqui, S., Singh, A.K., et al. (2024) USP10 Deubiquitinates and Stabilizes CD44 Leading to Enhanced Breast Cancer Cell Proliferation, Stemness and Metastasis. Biochemical Journal, 481, 1877-1900. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yan, H., Huang, W., Chen, C., Zhang, X., Zhu, K. and Yuan, J. (2023) MiR-133a/CD47 Axis Is a Novel Prognostic Biomarker to Promote Triple Negative Breast Cancer Progression. Pathology—Research and Practice, 244, Article ID: 154400. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Abdoli Shadbad, M., Hosseinkhani, N., Asadzadeh, Z., Derakhshani, A., Karim Ahangar, N., Hemmat, N., et al. (2021) A Systematic Review to Clarify the Prognostic Values of CD44 and CD44+CD24- Phenotype in Triple-Negative Breast Cancer Patients: Lessons Learned and the Road Ahead. Frontiers in Oncology, 11, Article 689839. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Guo, Q., Liu, Y., He, Y., Du, Y., Zhang, G., Yang, C., et al. (2021) CD44 Activation State Regulated by the CD44v10 Isoform Determines Breast Cancer Proliferation. Oncology Reports, 45, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Vadhan, A., Hou, M., Vijayaraghavan, P., Wu, Y., Hu, S.C., Wang, Y., et al. (2022) CD44 Promotes Breast Cancer Metastasis through AKT-Mediated Downregulation of Nuclear FOXA2. Biomedicines, 10, Article 2488. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Martins Gama, J., Caetano Oliveira, R., Teixeira, P., Silva, F., Abrantes, C., Figueiredo, P., et al. (2023) An Immunohistochemical Study of Breast Cancer Brain Metastases: The Role of CD44 and AKT in the Prognosis. Applied Immunohistochemistry & Molecular Morphology, 31, 318-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Malla, R., Jyosthsna, K., Rani, G. and Purnachandra Nagaraju, G. (2024) CD44/PD-L1-Mediated Networks in Drug Resistance and Immune Evasion of Breast Cancer Stem Cells: Promising Targets of Natural Compounds. International Immunopharmacology, 138, Article ID: 112613. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Carvalho, A.M., Soares da Costa, D., Reis, R.L. and Pashkuleva, I. (2021) Influence of Hyaluronan Density on the Behavior of Breast Cancer Cells with Different CD44 Expression. Advanced Healthcare Materials, 11, e2101309. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yüceer, R.O., Aydın, S., Gelir, I., Koc, T., Tuncer, E. and Ucar, M. (2025) Exploring the Prognostic Role of Trop-2, CD47, and CD163 Expression Levels on Survival Outcomes in Patients with Triple-Negative Breast Cancer. Diagnostics, 15, Article 232. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ahmed, M.S.U., Lord, B.D., Adu Addai, B., Singhal, S.K., Gardner, K., Salam, A.B., et al. (2023) Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling. Cancers, 15, Article 2282. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tong, S., Zhu, Y., Leng, Y., Wu, Y., Xiao, X., Zhao, W., et al. (2024) Restoration of miR-299-3p Promotes Macrophage Phagocytosis and Suppresses Malignant Phenotypes in Breast Cancer Carcinogenesis via Dual-Targeting CD47 and ABCE1. International Immunopharmacology, 130, Article ID: 111708. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Upton, R., Banuelos, A., Feng, D., Biswas, T., Kao, K., McKenna, K., et al. (2021) Combining CD47 Blockade with Trastuzumab Eliminates HER2-Positive Breast Cancer Cells and Overcomes Trastuzumab Tolerance. Proceedings of the National Academy of Sciences, 118, e2026849118. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sun, Y., Liang, S., Li, T., Peng, C., Yang, Y., Lin, Y., et al. (2022) Prognostic Implications of Combined High Expression of CD47 and MCT1 in Breast Cancer: A Retrospective Study during a 10-Year Period. Translational Cancer Research, 11, 29-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Guo, L., Ke, H., Zhang, H., Zou, L., Yang, Q., Lu, X., et al. (2022) TDP43 Promotes Stemness of Breast Cancer Stem Cells through CD44 Variant Splicing Isoforms. Cell Death & Disease, 13, Article No. 428. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Gu, J., Chen, D., Li, Z., Yang, Y., Ma, Z. and Huang, G. (2022) Prognosis Assessment of CD44+/CD24− in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Archives of Gynecology and Obstetrics, 306, 1147-1160. [Google Scholar] [CrossRef] [PubMed]
|