[1]
|
Lindberg, I., Saleh, A., Tutzauer, J., Gunnarsdottir, F.B., Rydén, L., Bergenfelz, C., et al. (2025) Prognostic Relevance of CD163+ Immune Cells in Patients with Metastatic Breast Cancer. Cancer Immunology, Immunotherapy, 74, Article No. 42. https://doi.org/10.1007/s00262-024-03892-2
|
[2]
|
Chang, M.C., Eslami, Z., Ennis, M. and Goodwin, P.J. (2021) Crown-Like Structures in Breast Adipose Tissue of Breast Cancer Patients: Associations with CD68 Expression, Obesity, Metabolic Factors and Prognosis. npj Breast Cancer, 7, Article No. 97. https://doi.org/10.1038/s41523-021-00304-x
|
[3]
|
Corachea, A.J.M., Ferrer, R.J.E., Ty, L.P.B., Aquino, L.A.C., Morta, M.T., Macalindong, S.S., et al. (2025) Lymphovascular Invasion Is Associated with Doxorubicin Resistance in Breast Cancer. Laboratory Investigation, 105, Article ID: 104115. https://doi.org/10.1016/j.labinv.2025.104115
|
[4]
|
Noblejas-López, M.d.M., Baliu-Piqué, M., Nieto-Jiménez, C., Cimas, F.J., Morafraile, E.C., Pandiella, A., et al. (2021) Transcriptomic Profiles of CD47 in Breast Tumors Predict Outcome and Are Associated with Immune Activation. International Journal of Molecular Sciences, 22, Article 3836. https://doi.org/10.3390/ijms22083836
|
[5]
|
Kaur, S., Reginauld, B., Razjooyan, S., Phi, T., Singh, S.P., Meyer, T.J., et al. (2024) Effects of a Humanized CD47 Antibody and Recombinant SIRPα Proteins on Triple Negative Breast Carcinoma Stem Cells. Frontiers in Cell and Developmental Biology, 12, Article 1356421. https://doi.org/10.3389/fcell.2024.1356421
|
[6]
|
Zhu, X., Yu, J., Ai, F., Wang, Y., Lv, W., Yu, G., et al. (2023) CD24 May Serve as an Immunotherapy Target in Triple-Negative Breast Cancer by Regulating the Expression of PD-L1. Breast Cancer: Targets and Therapy, 15, 967-984. https://doi.org/10.2147/bctt.s409054
|
[7]
|
Wang, J., Zhang, H., Zhu, G., Zhao, L., Shi, J., Dai, Z., et al. (2024) STT3-Mediated Aberrant N-Glycosylation of CD24 Inhibits Paclitaxel Sensitivity in Triple-Negative Breast Cancer. Acta Pharmacologica Sinica, 46, 1097-1110. https://doi.org/10.1038/s41401-024-01419-0
|
[8]
|
Yang, P., Yu, F., Yao, Z., Ding, X., Xu, H. and Zhang, J. (2023) CD24 Is a Novel Target of Chimeric Antigen Receptor T Cells for the Treatment of Triple Negative Breast Cancer. Cancer Immunology, Immunotherapy, 72, 3191-3202. https://doi.org/10.1007/s00262-023-03491-7
|
[9]
|
Yang, Y., Li, J., Zhang, J., Wu, H., Yang, Y., Guo, H., et al. (2025) PPAB001, a Novel Bispecific Antibody against CD47 and CD24, Enhances Anti-PD-L1 Efficacy in Triple-Negative Breast Cancer via Reprogramming Tumor-Associated Macrophages Towards M1 Phenotype. International Immunopharmacology, 144, Article ID: 113740. https://doi.org/10.1016/j.intimp.2024.113740
|
[10]
|
Zhou, M., Xie, P., Chen, L., et al. (2023) Correlation between the Expression of CD24 on Circulating Tumor Cells and Prognosis in Breast Cancer. American Journal of Translational Research, 15, 1941-1952.
|
[11]
|
Wang, X., Cheng, K., Zhang, G., Jia, Z., Yu, Y., Guo, J., et al. (2020) Enrichment of CD44 in Exosomes from Breast Cancer Cells Treated with Doxorubicin Promotes Chemoresistance. Frontiers in Oncology, 10, Article 960. https://doi.org/10.3389/fonc.2020.00960
|
[12]
|
Morath, I., Jung, C., Lévêque, R., Linfeng, C., Toillon, R., Warth, A., et al. (2018) Differential Recruitment of CD44 Isoforms by ERBB Ligands Reveals an Involvement of CD44 in Breast Cancer. Oncogene, 37, 1472-1484. https://doi.org/10.1038/s41388-017-0030-1
|
[13]
|
Wang, Z., Wang, Q., Wang, Q., Wang, Y. and Chen, J. (2017) Prognostic Significance of CD24 and CD44 in Breast Cancer: A Meta-Analysis. The International Journal of Biological Markers, 32, 75-82. https://doi.org/10.5301/jbm.5000224
|
[14]
|
Sari, S., Özdemir, Ç. and Çilekar, M. (2022) The Relationship of Tumour-Associated Macrophages (CD68, CD163, CD11c) and Cancer Stem Cell (CD44) Markers with Prognostic Parameters in Breast Carcinomas. Polish Journal of Pathology, 73, 299-309. https://doi.org/10.5114/pjp.2022.125424
|
[15]
|
Chen, Y., Klingen, T.A., Aas, H., Wik, E. and Akslen, L.A. (2023) CD47 and CD68 Expression in Breast Cancer Is Associated with Tumor‐Infiltrating Lymphocytes, Blood Vessel Invasion, Detection Mode, and Prognosis. The Journal of Pathology: Clinical Research, 9, 151-164. https://doi.org/10.1002/cjp2.309
|
[16]
|
Celepli, P., Karabulut, S., Bigat, İ., Celepli, S. and Hücümenoğlu, S. (2022) CD47 Expression and Tumor-Associated Immune Cells in Breast Cancer and Their Correlation with Molecular Subtypes and Prognostic Factors. Pathology—Research and Practice, 238, Article ID: 154107. https://doi.org/10.1016/j.prp.2022.154107
|
[17]
|
Chen, C., Wang, R., Chen, X., Hou, Y. and Jiang, J. (2022) Targeting CD47 as a Novel Immunotherapy for Breast Cancer. Frontiers in Oncology, 12, Article 924740. https://doi.org/10.3389/fonc.2022.924740
|
[18]
|
Zhang, B., Shi, J., Shi, X., Xu, X., Gao, L., Li, S., et al. (2024) Development and Evaluation of a Human CD47/HER2 Bispecific Antibody for Trastuzumab-Resistant Breast Cancer Immunotherapy. Drug Resistance Updates, 74, Article ID: 101068. https://doi.org/10.1016/j.drup.2024.101068
|
[19]
|
Li, L., Gong, Y., Tang, J., Yan, C., Li, L., Peng, W., et al. (2022) ZBTB28 Inhibits Breast Cancer by Activating IFNAR and Dual Blocking CD24 and CD47 to Enhance Macrophages Phagocytosis. Cellular and Molecular Life Sciences, 79, Article No. 83. https://doi.org/10.1007/s00018-021-04124-x
|
[20]
|
Cheng, Y., Lin, L., Li, X., Lu, A., Hou, C., Wu, Q., et al. (2021) ADAM10 Is Involved in the Oncogenic Process and Chemo-Resistance of Triple-Negative Breast Cancer via Regulating Notch1 Signaling Pathway, CD44 and PrPc. Cancer Cell International, 21, Article No. 32. https://doi.org/10.1186/s12935-020-01727-5
|
[21]
|
Bian, Y., Lin, T., Jakos, T., Xiao, X. and Zhu, J. (2022) The Generation of Dual-Targeting Fusion Protein PD-L1/CD47 for the Inhibition of Triple-Negative Breast Cancer. Biomedicines, 10, Article 1843. https://doi.org/10.3390/biomedicines10081843
|
[22]
|
Huth, H.W., Castro-Gomes, T., de Goes, A.M. and Ropert, C. (2021) Translocation of Intracellular CD24 Constitutes a Triggering Event for Drug Resistance in Breast Cancer. Scientific Reports, 11, Article No. 17077. https://doi.org/10.1038/s41598-021-96449-7
|
[23]
|
Qu, X., Li, Q., Tu, S., Yang, X. and Wen, W. (2021) ELF5 Inhibits the Proliferation and Invasion of Breast Cancer Cells by Regulating CD24. Molecular Biology Reports, 48, 5023-5032. https://doi.org/10.1007/s11033-021-06495-7
|
[24]
|
Chantziou, A., Theodorakis, K., Polioudaki, H., de Bree, E., Kampa, M., Mavroudis, D., et al. (2021) Glycosylation Modulates Plasma Membrane Trafficking of CD24 in Breast Cancer Cells. International Journal of Molecular Sciences, 22, Article 8165. https://doi.org/10.3390/ijms22158165
|
[25]
|
Ye, Z., Dong, X., Chen, H., Gu, D. and Qiu, Z. (2021) Circular RNA CDR1as-Induced Autophagy Regulates the Proliferation and Migration of CD44+/CD24- Phenotype Breast Cancer Stem Cells in Vitro. All Life, 14, 569-576. https://doi.org/10.1080/26895293.2021.1934575
|
[26]
|
Chantaraamporn, J., Pothipan, P., Sakulterdkiat, T., Khiankaew, B., Lumkul, L., Mutapat, P., et al. (2024) CD47 and Calreticulin Expression in Breast Cancer Subtypes and Anti-CD47 Inhibitory Effects in Macrophage-Mediated Phagocytosis. Anticancer Research, 44, 4929-4940. https://doi.org/10.21873/anticanres.17318
|
[27]
|
Qiao, X., Zhang, Y., Sun, L., Ma, Q., Yang, J., Ai, L., et al. (2021) Association of Human Breast Cancer CD44-/CD24- Cells with Delayed Distant Metastasis. eLife, 10, e65418. https://doi.org/10.7554/elife.65418
|
[28]
|
Liu, C., Zhang, Y., Gao, J., Zhang, Q., Sun, L., Ma, Q., et al. (2023) A Highly Potent Small-Molecule Antagonist of Exportin-1 Selectively Eliminates CD44+CD24- Enriched Breast Cancer Stem-Like Cells. Drug Resistance Updates, 66, Article ID: 100903. https://doi.org/10.1016/j.drup.2022.100903
|
[29]
|
Sethi, A., Mishra, S., Upadhyay, V., Dubey, P., Siddiqui, S., Singh, A.K., et al. (2024) USP10 Deubiquitinates and Stabilizes CD44 Leading to Enhanced Breast Cancer Cell Proliferation, Stemness and Metastasis. Biochemical Journal, 481, 1877-1900. https://doi.org/10.1042/bcj20240611
|
[30]
|
Yan, H., Huang, W., Chen, C., Zhang, X., Zhu, K. and Yuan, J. (2023) MiR-133a/CD47 Axis Is a Novel Prognostic Biomarker to Promote Triple Negative Breast Cancer Progression. Pathology—Research and Practice, 244, Article ID: 154400. https://doi.org/10.1016/j.prp.2023.154400
|
[31]
|
Abdoli Shadbad, M., Hosseinkhani, N., Asadzadeh, Z., Derakhshani, A., Karim Ahangar, N., Hemmat, N., et al. (2021) A Systematic Review to Clarify the Prognostic Values of CD44 and CD44+CD24- Phenotype in Triple-Negative Breast Cancer Patients: Lessons Learned and the Road Ahead. Frontiers in Oncology, 11, Article 689839. https://doi.org/10.3389/fonc.2021.689839
|
[32]
|
Guo, Q., Liu, Y., He, Y., Du, Y., Zhang, G., Yang, C., et al. (2021) CD44 Activation State Regulated by the CD44v10 Isoform Determines Breast Cancer Proliferation. Oncology Reports, 45, Article No. 7. https://doi.org/10.3892/or.2021.7958
|
[33]
|
Vadhan, A., Hou, M., Vijayaraghavan, P., Wu, Y., Hu, S.C., Wang, Y., et al. (2022) CD44 Promotes Breast Cancer Metastasis through AKT-Mediated Downregulation of Nuclear FOXA2. Biomedicines, 10, Article 2488. https://doi.org/10.3390/biomedicines10102488
|
[34]
|
Martins Gama, J., Caetano Oliveira, R., Teixeira, P., Silva, F., Abrantes, C., Figueiredo, P., et al. (2023) An Immunohistochemical Study of Breast Cancer Brain Metastases: The Role of CD44 and AKT in the Prognosis. Applied Immunohistochemistry & Molecular Morphology, 31, 318-323. https://doi.org/10.1097/pai.0000000000001119
|
[35]
|
Malla, R., Jyosthsna, K., Rani, G. and Purnachandra Nagaraju, G. (2024) CD44/PD-L1-Mediated Networks in Drug Resistance and Immune Evasion of Breast Cancer Stem Cells: Promising Targets of Natural Compounds. International Immunopharmacology, 138, Article ID: 112613. https://doi.org/10.1016/j.intimp.2024.112613
|
[36]
|
Carvalho, A.M., Soares da Costa, D., Reis, R.L. and Pashkuleva, I. (2021) Influence of Hyaluronan Density on the Behavior of Breast Cancer Cells with Different CD44 Expression. Advanced Healthcare Materials, 11, e2101309. https://doi.org/10.1002/adhm.202101309
|
[37]
|
Yüceer, R.O., Aydın, S., Gelir, I., Koc, T., Tuncer, E. and Ucar, M. (2025) Exploring the Prognostic Role of Trop-2, CD47, and CD163 Expression Levels on Survival Outcomes in Patients with Triple-Negative Breast Cancer. Diagnostics, 15, Article 232. https://doi.org/10.3390/diagnostics15020232
|
[38]
|
Ahmed, M.S.U., Lord, B.D., Adu Addai, B., Singhal, S.K., Gardner, K., Salam, A.B., et al. (2023) Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling. Cancers, 15, Article 2282. https://doi.org/10.3390/cancers15082282
|
[39]
|
Tong, S., Zhu, Y., Leng, Y., Wu, Y., Xiao, X., Zhao, W., et al. (2024) Restoration of miR-299-3p Promotes Macrophage Phagocytosis and Suppresses Malignant Phenotypes in Breast Cancer Carcinogenesis via Dual-Targeting CD47 and ABCE1. International Immunopharmacology, 130, Article ID: 111708. https://doi.org/10.1016/j.intimp.2024.111708
|
[40]
|
Upton, R., Banuelos, A., Feng, D., Biswas, T., Kao, K., McKenna, K., et al. (2021) Combining CD47 Blockade with Trastuzumab Eliminates HER2-Positive Breast Cancer Cells and Overcomes Trastuzumab Tolerance. Proceedings of the National Academy of Sciences, 118, e2026849118. https://doi.org/10.1073/pnas.2026849118
|
[41]
|
Sun, Y., Liang, S., Li, T., Peng, C., Yang, Y., Lin, Y., et al. (2022) Prognostic Implications of Combined High Expression of CD47 and MCT1 in Breast Cancer: A Retrospective Study during a 10-Year Period. Translational Cancer Research, 11, 29-42. https://doi.org/10.21037/tcr-21-1951
|
[42]
|
Guo, L., Ke, H., Zhang, H., Zou, L., Yang, Q., Lu, X., et al. (2022) TDP43 Promotes Stemness of Breast Cancer Stem Cells through CD44 Variant Splicing Isoforms. Cell Death & Disease, 13, Article No. 428. https://doi.org/10.1038/s41419-022-04867-w
|
[43]
|
Gu, J., Chen, D., Li, Z., Yang, Y., Ma, Z. and Huang, G. (2022) Prognosis Assessment of CD44+/CD24− in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Archives of Gynecology and Obstetrics, 306, 1147-1160. https://doi.org/10.1007/s00404-022-06402-w
|