分化簇分子CD24、CD44、CD47在乳腺癌中的研究进展
Research Progress of Differentiation Cluster Molecules CD24, CD44, CD47 in Breast Cancer
DOI: 10.12677/acm.2025.1582209, PDF, HTML, XML,    科研立项经费支持
作者: 岳林皓, 张国强, 王晓红, 王秋雨, 贾中明*:滨州医学院附属医院乳腺外科,山东 滨州
关键词: CD24CD44CD47乳腺癌表达耐药CD24 CD44 CD47 Breast Cancer Expression Resistance to Drugs
摘要: 分化簇分子CD24、CD44和CD47在乳腺癌的发生、发展及预后中扮演着关键角色。CD24在三阴性乳腺癌中备受关注,其高表达与药物抵抗性及肿瘤进展密切相关,并被认为是潜在的免疫治疗靶点。CD44作为细胞表面黏附分子,调控细胞增殖、分化和迁移,在乳腺癌中与肿瘤侵袭性及预后密切相关。CD47则作为抗凋亡分子,影响肿瘤细胞存活和免疫反应,其高表达与免疫逃逸机制相关,靶向CD47的免疫疗法展现出显著治疗潜力。本文综述了CD24、CD44和CD47在乳腺癌中的表达特征、临床意义及作用机制,并探讨其作为治疗靶点的潜力,旨在为乳腺癌的诊断、预后评估和治疗提供新的方向和策略。
Abstract: The differentiation cluster molecules CD24, CD44 and CD47 play key roles in the occurrence, development and prognosis of breast cancer. CD24 has attracted much attention in triple-negative breast cancer. Its high expression is closely related to drug resistance and tumor progression, and is considered as a potential immunotherapy target. CD44, as a cell surface adhesion molecule, regulates cell proliferation, differentiation and migration, and is closely related to tumor invasion and prognosis in breast cancer. As an anti-apoptotic molecule, CD47 affects tumor cell survival and immune response, and its high expression is related to immune escape mechanisms. Immunotherapy targeting CD47 has shown significant therapeutic potential. This article reviews the expression characteristics, clinical significance and mechanism of CD24, CD44 and CD47 in breast cancer, and discusses their potential as therapeutic targets, aiming to provide new directions and strategies for the diagnosis, prognosis evaluation and treatment of breast cancer.
文章引用:岳林皓, 张国强, 王晓红, 王秋雨, 贾中明. 分化簇分子CD24、CD44、CD47在乳腺癌中的研究进展[J]. 临床医学进展, 2025, 15(8): 129-136. https://doi.org/10.12677/acm.2025.1582209

1. 引言

乳腺癌是一种复杂且高度异质性的恶性肿瘤,其病理机制涉及多种分子和细胞成分的相互作用。近年来的研究表明,多种分化簇分子(如CD22、CD44、CD47等)在乳腺癌的发生、发展及预后中扮演着关键角色[1]-[5]。其中,CD24在三阴性乳腺癌(Triple Negative Breast Cancer, TNBC)中备受关注,它被认为是一个潜在的免疫治疗靶点,其高表达与药物抵抗性及肿瘤进展密切相关[6]-[8]。此外,作为细胞表面标志物,CD24在乳腺癌中的表达水平与肿瘤的侵袭性和耐药性显著相关[6] [7] [9] [10]。CD44是一种广泛存在于多种细胞类型的细胞表面黏附分子,通过与不同配体的结合,调控细胞的增殖、分化和迁移等生物学过程。在乳腺癌中,CD44不仅在肿瘤细胞中呈现高表达,还与肿瘤的侵袭性和预后密切相关[11]-[13]。CD47则作为一种抗凋亡分子,与肿瘤细胞的存活和增殖密切相关,并且能够显著影响肿瘤微环境的免疫反应[14]-[16]。研究发现,CD47与CD68的双表达可以有效预测乳腺癌患者的预后,并且与肿瘤浸润淋巴细胞(Tumor Infiltrating Lymphocytes, TILs)的数量呈正相关[15] [16]。此外,CD47的高表达与肿瘤的免疫逃逸机制密切相关,靶向CD47的免疫疗法已显示出显著的治疗潜力[17]-[19]。本文将深入探讨CD24、CD44及CD47在乳腺癌中的表达特征及其临床意义,剖析这些分子在肿瘤微环境中的作用机制,并评估其作为治疗靶点的潜力。通过对现有文献的系统性综合分析,我们期望为未来的研究方向和临床应用提供有价值的参考依据。

2. CD24在乳腺癌中的表达与功能

2.1. CD24作为三阴性乳腺癌免疫治疗靶点

在TNBC的免疫治疗研究中,CD24逐渐被视作一个潜在的靶点。Zhu等的研究表明TNBC中CD24的高表达与较差的预后密切相关,这为将其作为免疫治疗靶点提供了依据[6]。与此同时,Cheng等的研究聚焦于ADAM10在TNBC中的作用及其对新辅助化疗(Neo Adjuvant Chemo Therapy, NACT)效果的影响,发现其能够显著改善患者的生存率,这为进一步探索CD24在TNBC免疫治疗中的潜力奠定了基础[20]。尽管CD24作为TNBC免疫治疗靶点的潜力已初步得到验证,但其他标志物如CD47和CD68在相关研究中也备受关注。Bian等提出了一种创新的双靶向融合蛋白PD-L1/CD47,通过增强T细胞和巨噬细胞的活性,有效抑制TNBC的免疫逃逸,为免疫治疗提供了新的策略[21]。此外,Kaur等的研究比较了人源化CD47抗体和重组SIRPα蛋白对TNBC的影响,发现SIRPα-Fc能够显著增强乳腺球体的形成,并上调乳腺癌干细胞中的ALDH1表达,显示出其在调控肿瘤微环境中的巨大潜力[5]。虽然CD24作为TNBC免疫治疗靶点的研究仍处于初步阶段,但已有研究表明其在调控肿瘤免疫反应方面具有重要作用。未来的研究应进一步探索CD24与其他免疫标志物的联合应用,以期突破当前治疗瓶颈,显著提高TNBC患者的治疗效果和生存率。

2.2. CD24与药物耐药性的关系

在乳腺癌研究领域,CD24的表达与药物耐药性之间的联系日益受到关注。Wang等的研究发现,在三阴性乳腺癌(TNBC)中,CD24的异常糖基化显著降低了紫杉醇的敏感性,而通过抑制这种异常糖基化,可以有效增强紫杉醇的抗癌活性[7]。这为克服耐药性提供了新的思路。此外,Yang等的研究展示了针对CD24的嵌合抗原受体T细胞(CAR-T)疗法在治疗三阴性乳腺癌中的巨大潜力。这些经过基因工程改造的T细胞能够精准靶向并高效杀伤肿瘤细胞,且在治疗过程中未引起主要器官的损伤,显示出良好的安全性[8]。Hugo等的研究进一步揭示了CD24转位在乳腺癌细胞表型转换中的关键作用。他们发现,这一转位事件是药物耐受性的触发因素之一,并且与p38 MAPK信号通路的激活密切相关[22]。这表明CD24不仅参与了耐药机制的形成,还可能通过调控信号通路影响肿瘤细胞的生物学行为。这些研究结果表明,通过精准调控CD24的表达和功能,有望为解决乳腺癌的药物耐药性问题提供新的策略。未来的研究应进一步深入探索CD24在耐药机制中的具体作用,并开发针对性的治疗方案,以改善乳腺癌患者的治疗效果和预后。

2.3. CD24与乳腺癌细胞增殖及侵袭

在乳腺癌细胞增殖及侵袭的研究中,CD24的表达及其调控机制已成为研究热点。Qu等的研究揭示了转录因子ELF5通过调节CD24的表达,显著抑制了乳腺癌细胞的迁移和侵袭能力[23]。这一发现为理解CD24在肿瘤细胞行为中的作用提供了重要线索。Chantziou等的研究进一步指出在基底B型乳腺癌细胞中,N-糖基化对CD24的细胞内定位起着至关重要的作用[24]。这一发现不仅揭示了CD24在乳腺癌细胞中的复杂调控机制,还强调了糖基化修饰在肿瘤生物学中的潜在重要性。Ye等的研究则从另一个角度探讨了CD24相关机制。他们发现环状RNA CDR1as通过诱导自噬,调控了CD44(+)/CD24(−)亚群乳腺癌细胞的增殖和迁移[25]。这一研究不仅为乳腺癌干细胞的生长和迁移机制提供了新的视角,还提示了非编码RNA在肿瘤细胞生物学中的重要作用。此外,Chantaraamporn等的研究聚焦于CD47和CALR在不同激素受体亚型乳腺癌中的表达及其抑制效果[26]。虽然其主要研究对象并非CD24,但这些发现为全面理解乳腺癌的分子机制提供了重要的背景信息,进一步丰富了乳腺癌相关分子调控网络的图景。综上所述,CD24在乳腺癌细胞增殖及侵袭中的作用不仅涉及其直接的表达调控,还与复杂的信号通路、分子相互作用以及细胞内环境密切相关。这些研究结果为未来的治疗策略提供了潜在的靶点,并强调了深入探究CD24相关机制的重要性。

3. 乳腺癌中CD44的功能及其相关研究

3.1. CD44与乳腺癌干细胞标志物的关系

近年来,乳腺癌干细胞标志物与CD44关系的研究取得了显著进展。Qiao等的研究发现,在乳腺癌中,高频率的CD44(−)/CD24(−)细胞与延迟远处转移密切相关[27]。此外,RHBDL2基因沉默能够抑制癌症干细胞(CSC)的转化,而CD44(−)/CD24(−)细胞的高频率可以延缓术后乳腺癌的转移,RHBDL2在这一过程中发挥了关键作用[27]。Liu等的研究则发现了一种高效的小分子拮抗剂LFS-1107。该拮抗剂通过选择性消除CD44(+)/CD24(−)富集的癌症干细胞(CSCs),在三阴性乳腺癌模型中有效抑制了肿瘤的生长[28]。此外,Sethi等的研究揭示了USP10通过去泛素化作用调控CD44,从而增强乳腺癌干细胞的特性和转移能力,进一步凸显了CD44在乳腺癌中的重要作用[29]

Yan等的研究发现,miR-133a通过靶向CD47抑制癌细胞的增殖、迁移并促进凋亡,为乳腺癌预后提供了新的生物标志物[30]。在乳腺癌微环境的研究中,Sari等指出,在浸润性乳腺癌(IBC)中,肿瘤相关巨噬细胞(包括CD68、CD163和CD11c)与癌症干细胞标志物CD44之间存在显著关联。这些巨噬细胞的高水平表达与较差的预后和特定的肿瘤特征密切相关[14]。这一发现不仅表明CD68在乳腺癌免疫微环境中扮演重要角色,还提示其可能作为预测患者预后的潜在生物标志物。在乳腺癌预后相关性研究方面,Shadbad等通过系统综述明确了CD44和CD44(+)/CD24(−/low)表型与三阴性乳腺癌(TNBC)患者不良预后的关联性[31]。Guo等的研究则揭示了CD44v10剪接异构体对乳腺癌细胞增殖能力的调控作用,发现低透明质酸结合活性的CD44v10亚型具有更强的促增殖特性[32]。Vadhan等的研究强调了CD44在乳腺癌转移中的关键作用:其过表达通过AKT信号通路介导下调FOXA2,从而促进癌细胞迁移[33]。Gama等的研究进一步指出,CD44和AKT的过表达可预测乳腺癌脑转移患者的较差生存率[34]。综上所述,这些研究表明,CD44不仅在乳腺癌干细胞的维持和转移中发挥关键作用,还与其他分子标志物如CD68和CD24密切相关,共同影响乳腺癌的预后和治疗策略。这些发现为乳腺癌的精准治疗和预后评估提供了重要的理论依据。

3.2. CD44与乳腺癌免疫逃逸

在乳腺癌免疫逃逸机制的研究中,CD44的作用愈发受到重视。Malla等人的研究深入探讨了CD44和PD-L1在乳腺癌干细胞中的协同作用,发现某些天然化合物能够靶向这些关键分子,从而为开发新型免疫治疗策略提供了理论基础和潜在方向[35]。与此同时,Chen等的研究指出,靶向CD47的阻断疗法在乳腺癌治疗中展现出巨大潜力。当前正在进行的临床前研究和临床试验进一步验证了CD47阻断疗法的有效性,为乳腺癌的免疫治疗带来了新的希望[17]。Carvalho等在研究中开发了一个创新平台,用于分析透明质酸梯度对不同CD44表达水平的乳腺癌细胞的影响。研究结果显示,透明质酸与CD44的相互作用在乳腺癌细胞的生物学行为中具有显著的依赖性,这一发现为理解CD44在肿瘤微环境中的作用机制提供了新的视角[36]。这些研究共同揭示了CD44在乳腺癌免疫逃逸中的复杂作用机制,并进一步凸显了其作为潜在治疗靶点的重要性。未来的研究应继续深入探索CD44与其他免疫相关分子的相互作用,以开发更精准、更有效的乳腺癌免疫治疗策略。

4. CD47在乳腺癌中的表达与功能

近年来,关于CD47在乳腺癌中的作用及其与其他分子的相互关系的研究不断取得突破性进展,进一步揭示了其在肿瘤生物学中的复杂性及其潜在的临床意义。Yuceer等在2025年的研究中进一步指出,Trop-2、CD47和CD163的高表达与三阴性乳腺癌(TNBC)患者的晚期阶段密切相关[37]。这一发现为理解TNBC的进展机制提供了新的视角。Ahmed等的研究则揭示了种族差异在乳腺癌免疫逃逸中的潜在机制,他们发现非洲裔美国女性乳腺癌患者外泌体中的Kaiso蛋白通过调节CD47,促进了巨噬细胞介导的免疫逃逸,从而导致不良预后[38]。Tong等的研究表明,miR-299-3p通过抑制CD47的表达,显著增强了巨噬细胞对乳腺癌细胞的吞噬作用,从而改善了患者的预后[39]

在免疫治疗领域,Yang Yun在2025年开发了一种名为PPAB001的新型双特异性抗体,该抗体同时靶向CD47和CD24。研究发现,PPAB001与Tecentriq联合使用时,能够显著增强巨噬细胞对TNBC细胞的吞噬作用,并延缓肿瘤生长[9]。此外,Upton Rosalynd在2021年的研究中发现,将抗CD47疗法与曲妥珠单抗结合使用,可以有效消除HER2阳性乳腺癌细胞,从而克服免疫逃逸[40]。CD47与其他免疫相关分子的共表达也对乳腺癌患者的预后产生显著影响。Sun Yanting在2022年的研究发现,CD47和单羧酸转运蛋白1 (MCT1)的高表达共同预测了乳腺癌患者的不良生存率[41]。这一结果强调了在乳腺癌治疗中综合考虑多种分子标志物的重要性。在乳腺癌干细胞(BCSC)的研究中,Guo等指出,TDP43和SRSF3通过调控CD44变体剪接异构体,显著影响BCSC的干性,尤其是在TNBC中[42]。此外,Chang等的研究发现,乳腺癌组织中的冠状结构(CLS-B)与肥胖、炎症和代谢因素密切相关,其中36.2%的患者检测到人类CLS-B (hCLS-B),这可能与CD47的表达有关[2]

在预后评估方面,Gu等人在2022年的系统综述和荟萃分析中指出,CD44(+)/CD24(−)表型并不影响乳腺癌患者的肿瘤大小、淋巴结转移或远处转移[43]。然而,Zhou等人在2023年的研究显示,循环肿瘤细胞(CTCs)上CD24的表达与TNM分期、淋巴结转移和肿瘤大小显著相关[10]。此外,Zhang等介绍了一种针对CD47/HER2的双特异性抗体IMM2902。该抗体在体外和体内模型中均显示出对曲妥珠单抗耐药性乳腺癌的有效治疗效果[18]。综上所述,CD47在乳腺癌中的表达与多种临床参数和预后密切相关,其在免疫逃逸、肿瘤干性和转移中的作用值得深入研究。未来的研究应进一步探索CD47与其他分子的相互作用机制,并开发针对性的联合治疗策略,以改善乳腺癌患者的治疗效果和预后。

5. 总结与展望

CD24、CD44和CD47在乳腺癌中的表达及其与肿瘤微环境的相互作用,对于揭示乳腺癌的发生、发展和预后具有深远意义。这些分子不仅在肿瘤细胞的增殖、侵袭和免疫逃逸中发挥关键作用,还与患者的预后密切相关。研究表明,通过调控这些分子的表达或阻断其信号通路,可以显著抑制肿瘤细胞的恶性行为,并增强免疫治疗的效果。未来的研究应深入探索这些标志物在不同乳腺癌亚型中的具体作用机制,以及它们与其他关键分子(如Trop-2、MCT1等)的相互关系。此外,随着技术的不断进步,开发新型的分子工具和联合治疗策略,将有助于更精准地靶向这些分子,从而提高治疗效果并克服耐药性。总之,CD24、CD44和CD47的研究为乳腺癌的诊断、预后评估和治疗提供了新的方向,未来在这一领域的持续探索有望带来更多突破,为患者带来更好的治疗和预后。

利益冲突声明

所有作者均无利益冲突。

数据来源、搜索策略和纳入标准

我们在PubMed和Web of Science中搜索了相关研究。我们使用了独立关键词和组合关键词,如乳腺癌、分化簇分子、治疗、表达和临床研究,并排除了动物实验。我们的调查时间跨度截至2025年6月30日,语言限于英文文章,且均为SCI索引文章。在对标题和摘要进行初步评估后,我们下载了相关文献进行筛选。标准纳入标准如下:(1) 考虑原创性研究和综述性文章;(2) 主要关注点是CD24、CD44和CD47在乳腺癌中的表达特征、临床意义及作用机制;(3) 主要测量结果是乳腺癌的发生、发展、预后及治疗靶点潜力。排除标准如下:(1) 结果数据不完整或无效;(2) 冗余文献;(3) 与乳腺癌无关的其他癌症研究。

数据提取和研究质量评估

两名研究人员(岳林皓、王秋雨)筛选了文献并提取了数据。从纳入的研究中获得的信息包括研究基本信息、CD24、CD44和CD47的表达水平、临床结果指标以及研究结论。

基金项目

山东省自然科学基金面上项目(ZR2023MH115)、山东省医药卫生科技发展计划(202104010995)。

NOTES

*通讯作者。

参考文献

[1] Lindberg, I., Saleh, A., Tutzauer, J., Gunnarsdottir, F.B., Rydén, L., Bergenfelz, C., et al. (2025) Prognostic Relevance of CD163+ Immune Cells in Patients with Metastatic Breast Cancer. Cancer Immunology, Immunotherapy, 74, Article No. 42.
https://doi.org/10.1007/s00262-024-03892-2
[2] Chang, M.C., Eslami, Z., Ennis, M. and Goodwin, P.J. (2021) Crown-Like Structures in Breast Adipose Tissue of Breast Cancer Patients: Associations with CD68 Expression, Obesity, Metabolic Factors and Prognosis. npj Breast Cancer, 7, Article No. 97.
https://doi.org/10.1038/s41523-021-00304-x
[3] Corachea, A.J.M., Ferrer, R.J.E., Ty, L.P.B., Aquino, L.A.C., Morta, M.T., Macalindong, S.S., et al. (2025) Lymphovascular Invasion Is Associated with Doxorubicin Resistance in Breast Cancer. Laboratory Investigation, 105, Article ID: 104115.
https://doi.org/10.1016/j.labinv.2025.104115
[4] Noblejas-López, M.d.M., Baliu-Piqué, M., Nieto-Jiménez, C., Cimas, F.J., Morafraile, E.C., Pandiella, A., et al. (2021) Transcriptomic Profiles of CD47 in Breast Tumors Predict Outcome and Are Associated with Immune Activation. International Journal of Molecular Sciences, 22, Article 3836.
https://doi.org/10.3390/ijms22083836
[5] Kaur, S., Reginauld, B., Razjooyan, S., Phi, T., Singh, S.P., Meyer, T.J., et al. (2024) Effects of a Humanized CD47 Antibody and Recombinant SIRPα Proteins on Triple Negative Breast Carcinoma Stem Cells. Frontiers in Cell and Developmental Biology, 12, Article 1356421.
https://doi.org/10.3389/fcell.2024.1356421
[6] Zhu, X., Yu, J., Ai, F., Wang, Y., Lv, W., Yu, G., et al. (2023) CD24 May Serve as an Immunotherapy Target in Triple-Negative Breast Cancer by Regulating the Expression of PD-L1. Breast Cancer: Targets and Therapy, 15, 967-984.
https://doi.org/10.2147/bctt.s409054
[7] Wang, J., Zhang, H., Zhu, G., Zhao, L., Shi, J., Dai, Z., et al. (2024) STT3-Mediated Aberrant N-Glycosylation of CD24 Inhibits Paclitaxel Sensitivity in Triple-Negative Breast Cancer. Acta Pharmacologica Sinica, 46, 1097-1110.
https://doi.org/10.1038/s41401-024-01419-0
[8] Yang, P., Yu, F., Yao, Z., Ding, X., Xu, H. and Zhang, J. (2023) CD24 Is a Novel Target of Chimeric Antigen Receptor T Cells for the Treatment of Triple Negative Breast Cancer. Cancer Immunology, Immunotherapy, 72, 3191-3202.
https://doi.org/10.1007/s00262-023-03491-7
[9] Yang, Y., Li, J., Zhang, J., Wu, H., Yang, Y., Guo, H., et al. (2025) PPAB001, a Novel Bispecific Antibody against CD47 and CD24, Enhances Anti-PD-L1 Efficacy in Triple-Negative Breast Cancer via Reprogramming Tumor-Associated Macrophages Towards M1 Phenotype. International Immunopharmacology, 144, Article ID: 113740.
https://doi.org/10.1016/j.intimp.2024.113740
[10] Zhou, M., Xie, P., Chen, L., et al. (2023) Correlation between the Expression of CD24 on Circulating Tumor Cells and Prognosis in Breast Cancer. American Journal of Translational Research, 15, 1941-1952.
[11] Wang, X., Cheng, K., Zhang, G., Jia, Z., Yu, Y., Guo, J., et al. (2020) Enrichment of CD44 in Exosomes from Breast Cancer Cells Treated with Doxorubicin Promotes Chemoresistance. Frontiers in Oncology, 10, Article 960.
https://doi.org/10.3389/fonc.2020.00960
[12] Morath, I., Jung, C., Lévêque, R., Linfeng, C., Toillon, R., Warth, A., et al. (2018) Differential Recruitment of CD44 Isoforms by ERBB Ligands Reveals an Involvement of CD44 in Breast Cancer. Oncogene, 37, 1472-1484.
https://doi.org/10.1038/s41388-017-0030-1
[13] Wang, Z., Wang, Q., Wang, Q., Wang, Y. and Chen, J. (2017) Prognostic Significance of CD24 and CD44 in Breast Cancer: A Meta-Analysis. The International Journal of Biological Markers, 32, 75-82.
https://doi.org/10.5301/jbm.5000224
[14] Sari, S., Özdemir, Ç. and Çilekar, M. (2022) The Relationship of Tumour-Associated Macrophages (CD68, CD163, CD11c) and Cancer Stem Cell (CD44) Markers with Prognostic Parameters in Breast Carcinomas. Polish Journal of Pathology, 73, 299-309.
https://doi.org/10.5114/pjp.2022.125424
[15] Chen, Y., Klingen, T.A., Aas, H., Wik, E. and Akslen, L.A. (2023) CD47 and CD68 Expression in Breast Cancer Is Associated with Tumor‐Infiltrating Lymphocytes, Blood Vessel Invasion, Detection Mode, and Prognosis. The Journal of Pathology: Clinical Research, 9, 151-164.
https://doi.org/10.1002/cjp2.309
[16] Celepli, P., Karabulut, S., Bigat, İ., Celepli, S. and Hücümenoğlu, S. (2022) CD47 Expression and Tumor-Associated Immune Cells in Breast Cancer and Their Correlation with Molecular Subtypes and Prognostic Factors. PathologyResearch and Practice, 238, Article ID: 154107.
https://doi.org/10.1016/j.prp.2022.154107
[17] Chen, C., Wang, R., Chen, X., Hou, Y. and Jiang, J. (2022) Targeting CD47 as a Novel Immunotherapy for Breast Cancer. Frontiers in Oncology, 12, Article 924740.
https://doi.org/10.3389/fonc.2022.924740
[18] Zhang, B., Shi, J., Shi, X., Xu, X., Gao, L., Li, S., et al. (2024) Development and Evaluation of a Human CD47/HER2 Bispecific Antibody for Trastuzumab-Resistant Breast Cancer Immunotherapy. Drug Resistance Updates, 74, Article ID: 101068.
https://doi.org/10.1016/j.drup.2024.101068
[19] Li, L., Gong, Y., Tang, J., Yan, C., Li, L., Peng, W., et al. (2022) ZBTB28 Inhibits Breast Cancer by Activating IFNAR and Dual Blocking CD24 and CD47 to Enhance Macrophages Phagocytosis. Cellular and Molecular Life Sciences, 79, Article No. 83.
https://doi.org/10.1007/s00018-021-04124-x
[20] Cheng, Y., Lin, L., Li, X., Lu, A., Hou, C., Wu, Q., et al. (2021) ADAM10 Is Involved in the Oncogenic Process and Chemo-Resistance of Triple-Negative Breast Cancer via Regulating Notch1 Signaling Pathway, CD44 and PrPc. Cancer Cell International, 21, Article No. 32.
https://doi.org/10.1186/s12935-020-01727-5
[21] Bian, Y., Lin, T., Jakos, T., Xiao, X. and Zhu, J. (2022) The Generation of Dual-Targeting Fusion Protein PD-L1/CD47 for the Inhibition of Triple-Negative Breast Cancer. Biomedicines, 10, Article 1843.
https://doi.org/10.3390/biomedicines10081843
[22] Huth, H.W., Castro-Gomes, T., de Goes, A.M. and Ropert, C. (2021) Translocation of Intracellular CD24 Constitutes a Triggering Event for Drug Resistance in Breast Cancer. Scientific Reports, 11, Article No. 17077.
https://doi.org/10.1038/s41598-021-96449-7
[23] Qu, X., Li, Q., Tu, S., Yang, X. and Wen, W. (2021) ELF5 Inhibits the Proliferation and Invasion of Breast Cancer Cells by Regulating CD24. Molecular Biology Reports, 48, 5023-5032.
https://doi.org/10.1007/s11033-021-06495-7
[24] Chantziou, A., Theodorakis, K., Polioudaki, H., de Bree, E., Kampa, M., Mavroudis, D., et al. (2021) Glycosylation Modulates Plasma Membrane Trafficking of CD24 in Breast Cancer Cells. International Journal of Molecular Sciences, 22, Article 8165.
https://doi.org/10.3390/ijms22158165
[25] Ye, Z., Dong, X., Chen, H., Gu, D. and Qiu, Z. (2021) Circular RNA CDR1as-Induced Autophagy Regulates the Proliferation and Migration of CD44+/CD24- Phenotype Breast Cancer Stem Cells in Vitro. All Life, 14, 569-576.
https://doi.org/10.1080/26895293.2021.1934575
[26] Chantaraamporn, J., Pothipan, P., Sakulterdkiat, T., Khiankaew, B., Lumkul, L., Mutapat, P., et al. (2024) CD47 and Calreticulin Expression in Breast Cancer Subtypes and Anti-CD47 Inhibitory Effects in Macrophage-Mediated Phagocytosis. Anticancer Research, 44, 4929-4940.
https://doi.org/10.21873/anticanres.17318
[27] Qiao, X., Zhang, Y., Sun, L., Ma, Q., Yang, J., Ai, L., et al. (2021) Association of Human Breast Cancer CD44-/CD24- Cells with Delayed Distant Metastasis. eLife, 10, e65418.
https://doi.org/10.7554/elife.65418
[28] Liu, C., Zhang, Y., Gao, J., Zhang, Q., Sun, L., Ma, Q., et al. (2023) A Highly Potent Small-Molecule Antagonist of Exportin-1 Selectively Eliminates CD44+CD24- Enriched Breast Cancer Stem-Like Cells. Drug Resistance Updates, 66, Article ID: 100903.
https://doi.org/10.1016/j.drup.2022.100903
[29] Sethi, A., Mishra, S., Upadhyay, V., Dubey, P., Siddiqui, S., Singh, A.K., et al. (2024) USP10 Deubiquitinates and Stabilizes CD44 Leading to Enhanced Breast Cancer Cell Proliferation, Stemness and Metastasis. Biochemical Journal, 481, 1877-1900.
https://doi.org/10.1042/bcj20240611
[30] Yan, H., Huang, W., Chen, C., Zhang, X., Zhu, K. and Yuan, J. (2023) MiR-133a/CD47 Axis Is a Novel Prognostic Biomarker to Promote Triple Negative Breast Cancer Progression. PathologyResearch and Practice, 244, Article ID: 154400.
https://doi.org/10.1016/j.prp.2023.154400
[31] Abdoli Shadbad, M., Hosseinkhani, N., Asadzadeh, Z., Derakhshani, A., Karim Ahangar, N., Hemmat, N., et al. (2021) A Systematic Review to Clarify the Prognostic Values of CD44 and CD44+CD24- Phenotype in Triple-Negative Breast Cancer Patients: Lessons Learned and the Road Ahead. Frontiers in Oncology, 11, Article 689839.
https://doi.org/10.3389/fonc.2021.689839
[32] Guo, Q., Liu, Y., He, Y., Du, Y., Zhang, G., Yang, C., et al. (2021) CD44 Activation State Regulated by the CD44v10 Isoform Determines Breast Cancer Proliferation. Oncology Reports, 45, Article No. 7.
https://doi.org/10.3892/or.2021.7958
[33] Vadhan, A., Hou, M., Vijayaraghavan, P., Wu, Y., Hu, S.C., Wang, Y., et al. (2022) CD44 Promotes Breast Cancer Metastasis through AKT-Mediated Downregulation of Nuclear FOXA2. Biomedicines, 10, Article 2488.
https://doi.org/10.3390/biomedicines10102488
[34] Martins Gama, J., Caetano Oliveira, R., Teixeira, P., Silva, F., Abrantes, C., Figueiredo, P., et al. (2023) An Immunohistochemical Study of Breast Cancer Brain Metastases: The Role of CD44 and AKT in the Prognosis. Applied Immunohistochemistry & Molecular Morphology, 31, 318-323.
https://doi.org/10.1097/pai.0000000000001119
[35] Malla, R., Jyosthsna, K., Rani, G. and Purnachandra Nagaraju, G. (2024) CD44/PD-L1-Mediated Networks in Drug Resistance and Immune Evasion of Breast Cancer Stem Cells: Promising Targets of Natural Compounds. International Immunopharmacology, 138, Article ID: 112613.
https://doi.org/10.1016/j.intimp.2024.112613
[36] Carvalho, A.M., Soares da Costa, D., Reis, R.L. and Pashkuleva, I. (2021) Influence of Hyaluronan Density on the Behavior of Breast Cancer Cells with Different CD44 Expression. Advanced Healthcare Materials, 11, e2101309.
https://doi.org/10.1002/adhm.202101309
[37] Yüceer, R.O., Aydın, S., Gelir, I., Koc, T., Tuncer, E. and Ucar, M. (2025) Exploring the Prognostic Role of Trop-2, CD47, and CD163 Expression Levels on Survival Outcomes in Patients with Triple-Negative Breast Cancer. Diagnostics, 15, Article 232.
https://doi.org/10.3390/diagnostics15020232
[38] Ahmed, M.S.U., Lord, B.D., Adu Addai, B., Singhal, S.K., Gardner, K., Salam, A.B., et al. (2023) Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling. Cancers, 15, Article 2282.
https://doi.org/10.3390/cancers15082282
[39] Tong, S., Zhu, Y., Leng, Y., Wu, Y., Xiao, X., Zhao, W., et al. (2024) Restoration of miR-299-3p Promotes Macrophage Phagocytosis and Suppresses Malignant Phenotypes in Breast Cancer Carcinogenesis via Dual-Targeting CD47 and ABCE1. International Immunopharmacology, 130, Article ID: 111708.
https://doi.org/10.1016/j.intimp.2024.111708
[40] Upton, R., Banuelos, A., Feng, D., Biswas, T., Kao, K., McKenna, K., et al. (2021) Combining CD47 Blockade with Trastuzumab Eliminates HER2-Positive Breast Cancer Cells and Overcomes Trastuzumab Tolerance. Proceedings of the National Academy of Sciences, 118, e2026849118.
https://doi.org/10.1073/pnas.2026849118
[41] Sun, Y., Liang, S., Li, T., Peng, C., Yang, Y., Lin, Y., et al. (2022) Prognostic Implications of Combined High Expression of CD47 and MCT1 in Breast Cancer: A Retrospective Study during a 10-Year Period. Translational Cancer Research, 11, 29-42.
https://doi.org/10.21037/tcr-21-1951
[42] Guo, L., Ke, H., Zhang, H., Zou, L., Yang, Q., Lu, X., et al. (2022) TDP43 Promotes Stemness of Breast Cancer Stem Cells through CD44 Variant Splicing Isoforms. Cell Death & Disease, 13, Article No. 428.
https://doi.org/10.1038/s41419-022-04867-w
[43] Gu, J., Chen, D., Li, Z., Yang, Y., Ma, Z. and Huang, G. (2022) Prognosis Assessment of CD44+/CD24 in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Archives of Gynecology and Obstetrics, 306, 1147-1160.
https://doi.org/10.1007/s00404-022-06402-w