基于“线粒体–氧化应激”损伤机制从“瘀”论治卵巢早衰
Treatment of Premature Ovarian Failure Based on “Mitochondrial-Oxidative Stress” Damage Mechanism from the “Stasis” Theory
DOI: 10.12677/acm.2025.1582220, PDF, HTML, XML,   
作者: 柴怡娜, 张 露, 曾龙霞, 郑雅杰:黑龙江中医药大学第二临床医学院,黑龙江 哈尔滨;朱小琳*:黑龙江中医药大学附属第二医院治未病科,黑龙江 哈尔滨
关键词: 卵巢早衰线粒体氧化应激血瘀炎症Premature Ovarian Failure Mitochondria Oxidative Stress Blood Stasis Inflammations
摘要: 卵巢早衰(premature ovarian failure, POF)的患病率在近年逐步攀升,其发病机制尚不明确。过量的活性氧引起线粒体损伤,造成氧化应激,因此“线粒体–氧化应激”损伤机制是POF的关键机制。此文通过梳理和总结国内外“线粒体–氧化应激”损伤机制的研究和报道,将氧化应激损伤和POF的关键病理因素“血瘀”结合,从而建立POF“血瘀–氧化应激–炎症”的中西医结合病理理论,在此基础上深入探讨POF的修复机制和潜在的治疗靶点,论述“治瘀法”的有效性和科学性,为中医药防治POF提供新的思路。
Abstract: The prevalence of premature ovarian failure (POF) has been increasing in recent years, and the pathogenesis of POF is still unclear. Excessive reactive oxygen species (ROS) cause mitochondrial damage and oxidative stress, and thus the “mitochondrial-oxidative stress” damage mechanism is a key mechanism of POF. In this paper, we review and summarize the studies and reports on the damage mechanism of “mitochondrial-oxidative stress” at home and abroad, and combine oxidative stress injury with blood stasis, which is a key pathological factor of POF, to establish the “blood stasis-oxidative stress-inflammation” pathology theory of POF that combines traditional Chinese and Western medicines. Based on this, we deeply explore the repair mechanism and potential therapeutic targets of POF and discuss the effectiveness and scientific validity of the “treatment of blood stasis method”, to provide new ideas for the prevention and treatment of POF by TCM.
文章引用:柴怡娜, 张露, 曾龙霞, 郑雅杰, 朱小琳. 基于“线粒体–氧化应激”损伤机制从“瘀”论治卵巢早衰[J]. 临床医学进展, 2025, 15(8): 198-205. https://doi.org/10.12677/acm.2025.1582220

1. 引言

卵巢早衰(premature ovarian failure, POF)是指女性未至40岁,便因卵巢储备功能急剧下降以致闭经,乃至生育能力下降,低雌激素以及高促性腺激素的现象。同时,还可能伴有潮热盗汗、情绪改变以及性交不适等围绝经期症状[1]。近年来,在多种因素作用下,卵巢早衰的发病率呈逐年上升趋势[2]。目前临床上多采用激素治疗,但此治疗并不能使POF患者的卵巢功能完全恢复,且可能会增加患乳腺癌的风险。因此,探索POF治疗的新模式势在必行。

一般将POF归属于中医学“闭经”、“不孕”、“血枯”、“经水早断”等疾病范畴,“肾虚血瘀”是其常见证型。在辨证论治的基础上,中医学通常采取“补肾活血”治法,标本兼顾。本文基于中西医对POF的认识,从“瘀”和“氧化应激”两个方面入手,进一步讨论中医药通过“瘀”来论治POF的可能性及科学性,为临床防治POF提供新视角以及理论支撑。

2. 氧化应激是POF的关键发病机制

目前关于POF的发病机制存在多种观点,但尚未有明确共识。线粒体作为细胞内的能量工厂,主要通过氧化磷酸化合成ATP,从而在细胞中发挥重要作用。在颗粒细胞(granulosa cells, GCs)中存在丰富的线粒体,不仅影响GCs生长、代谢以及信号传导等过程,还影响着卵母细胞和胚胎的质量。GCs中的线粒体衰竭是卵巢衰老的常见因素,不仅导致活性氧(reactive oxygen species, ROS)增加,还会导致GCs细胞凋亡并损害卵巢功能[3] [4]。临床研究表明,衰老患者血清中促炎细胞因子浓度升高,抗炎细胞因子水平降低,同时GCs和卵泡液中的抗氧化酶,如超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)等显著降低[5] [6],说明POF中存在OS损伤。也有学者发现,在POF动物模型中ROS过高、线粒体DNA损伤增加、线粒体减少以及形态异常[7]。由此可知,“线粒体–氧化应激”损伤机制是研究POF发病机制的重要切入口。

2.1. 线粒体功能障碍与氧化应激

ROS作为一种副产物,是线粒体通过电子转移链在氧化磷酸化以生成ATP过程中产生的。线粒体在衰老演变过程中不断积聚ROS,以致产生过量的ROS,进而减少ATP生成以及呼吸链活动障碍,并最终造成线粒体功能障碍和损伤。而卵母细胞的老化与线粒体功能异常有直接关系[8] [9]

蛋白质是衰老过程中氧化修饰的主要靶标。由于线粒体是ROS生成的主要来源,因此线粒体蛋白也易受氧化影响[10]。酪蛋白水解蛋白酶P (caseinolytic protease P, ClpP)主要通过清除错误折叠或受损的蛋白质来维持线粒体蛋白质质量稳定[11]。研究发现,抑制ClpP会导致ROS浓度升高、线粒体膜电位的下降,并进一步诱导卵巢GCs程序性死亡[12]

磷酸腺苷活化激酶(AMP-activated protein kinase, AMPK)主要调节细胞内能量平衡和代谢,在调节线粒体功能和防止衰老方面起着关键作用[13]。同时,还具备对哺乳动物中雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)活化过程的调控能力。AMPK/mTOR通路在细胞自噬的调控中起着关键作用,并且可以调节卵母细胞的老化和女性生殖健康[14]。过量的ROS通过干扰AMPK/mTOR信号通路诱导GCs细胞凋亡和自噬,并进一步导致POF [15]

沉默信息调节剂1 (silent information regulator 1, SIRT1)是一种NAD依赖性蛋白质脱乙酰酶,可调节线粒体的生物发生和炎症反应[16],与卵巢储备密切相关。在细胞生物学领域内,过氧化物酶体增殖物激活受体γ的共激活因子-1α (即PGC-1α)展现出对线粒体生物合成过程的显著影响[17]。而SIRT1可以激活PGC-1α来调节线粒体生物发生。研究表明,当SIRT1的活性受到抑制时,PGC-1α基因和蛋白质的表达水平也会相应降低,从而促进线粒体生成,并加剧OS和DNA损伤,线粒体功能发生障碍,最终导致卵巢衰老[18] [19]

2.2. 线粒体形态异常与氧化应激

线粒体动力学主要表现为裂变和融合。裂变将一个线粒体分解成两个独立的线粒体,而将两个独立线粒体连接在一起的便是融合。线粒体动力学有助于维持线粒体数量、形态、功能和亚细胞分布,这对于保持线粒体健康至关重要[20]。研究表明,卵巢老化后,卵巢中的线粒体形态发生了显著变化。肿胀线粒体和空泡化线粒体的数量明显增多[21]。因此,线粒体形态异常是OS发生的直接原因。

线粒体的动态平衡与氧化应激所诱发的损伤之间存在着密切且相互作用的关联。在线粒体裂变过程中,动力学相关蛋白(dynamin-related protein, Drp) 1起着非同小可的作用。而位于外膜上线粒体融合蛋白1 (Mitofusion 1)、Mfn2以及定位于线粒体内膜、对线粒体形态及功能至关重要的视神经萎缩症蛋白(Optic atrophy, Opa) 1则共同介导了线粒体融合过程的顺利进行,确保了线粒体网络的动态平衡与功能完整。[22]。研究表明,过量的ROS可增强线粒体裂变,导致线粒体结构发生异常,诱导OS发生[23] [24]。该结论在动物模型中也得到了验证,与年轻老鼠相比,中年老鼠的Drp1水平表现出了明显升高,而融合基因Mfn1、Mfn2的表达显著降低[25]。即卵巢衰老是通过增强卵巢线粒体裂变来破坏线粒体动力学[26] [27]。另一方面,融合不足或额外裂变可能导致线粒体自噬。线粒体自噬作为一种反应机制,是线粒体对氧化应激、营养匮乏或线粒体的有序淘汰[28]。而衰老会损害线粒体功能和线粒体自噬。PTEN诱导的假定激酶1 (PTEN-induced putative kinase protein 1, PINK1)作为一种关键的线粒体定位蛋白,与帕金森病相关蛋白(human Parkinson disease protein 2, Parkin)是PINK1-Parkin通路中的两个重要因素。PINK1-Parkin通路通过抑制线粒体的融合过程,同时促进其分裂,进而推动线粒体的自噬作用,这有助于维持线粒体内部结构和功能的动态平衡,改善卵巢储备功能[29] [30]

3. 中医从“瘀”认识POF

在中医理论中,暂未对卵巢早衰进行直接命名。因此,一般根据POF的临床症状,将其划分为“闭经”、“不孕”、“经水早断”等疾病中的一类。瘀不仅是POF发病的主要病理机制,还是其病理产物。叶天士《临证指南医案》曰:“大凡经主气,络主血,久病血瘀”[31]。瘀血久滞,冲任功能运行障碍,日久耗伤气血,以致血枯经闭,卵巢早衰。

3.1. “瘀”是POF发病的关键

现代研究认为瘀血乃多种因素阻碍血行,血液运行不畅,以致在体内瘀积,导致血液运行系统发生异常。《素问·六节藏象论》载:“肾者主蛰,封藏之本,精之处也”[32]。肾为天癸之源,冲任之本,主藏精生殖。肾气虚,耗伤气血,血行不畅,络道不通,胞脉受阻,血海匮乏以致月经失调。肾阳不足,不能温煦肾精,阻碍卵子发育成熟。肾阴亏虚,不能濡润脉道,血行迟缓,冲任功能失调,胞宫失养而致经水渐断。肝主疏泄,主藏血司血海,是维持气血和畅的关键。叶天士曾言:“女子阴性凝结,易于怫郁”[31],以致肝郁气滞,血行不畅,瘀阻胞络,胞宫失去濡养而致卵巢早衰。且肝肾母子相生,精血同源。肝肾功能失调,则气血失调,经水生化乏源,以致月经紊乱,久病成瘀,加重卵巢早衰。李东垣曾言:“经闭不行有三,脾胃占其二”[33]。脾为后天之本,主运化,主统血。脾虚则精血化生无源,不能濡养胞宫,血海匮乏,经水下行无源,乃至闭经。脾失健运,运化失职,以致血瘀水停,致使卵巢气血运行受阻。

女子以血为本,以气为用,肝脾肾等脏腑功能失调均能引起“血瘀”的产生,瘀血久滞,气血运行不畅,胞宫失去濡养,以致卵巢功能失常,从而发生卵巢早衰。由此可见,血瘀是POF发病的关键。

3.2. 瘀、炎症、OS三者密切相关

OS是POF发病的关键环节。ROS的异常累积引起组织细胞OS损伤,而OS通过调控线粒体途径介导GCs的程序性死亡。同时,ROS在细胞内过度积累也会引起炎症反应,炎症因子使OS损伤和炎症反应进一步加重,并加速POF发展进程[34] [35]。由此可见,OS和炎症对POF的发病具有协同作用,二者互为因果。

瘀血是机体在多种因素刺激下,脏腑功能失调,气血运行不畅状态下的病理产物。而ROS、炎症因子等则是机体受到有害刺激并诱发OS损伤时产生的病理产物。炎症反应是血瘀证的一个典型表现,血瘀证患者常常处于慢性炎症状态[36]。临床研究表明,血瘀证患者的炎症相关指标如高敏C-反应蛋白(high sensitivity C reactive protein, HS-CRP)、肿瘤坏死因子(tumor necrosis factor, TNF)-α、白介素(interleukin, IL)-6等均存在差异表达[37] [38]。作为一种病理产物,“血瘀”不仅与抗氧化酶的高表达水平密切相关,实际上其还可能是线粒体能量代谢异常产生的结果。有学者发现,在血瘀证动物模型体内可见SOD、CAT等含量明显下降[39] [40]。鉴于此,“炎性介质”与“氧化应激的副产物”或可视为中医理论中“瘀”的现代生物学对应物。具体而言,“瘀血”状态、“氧化应激”现象及“炎症反应”三者之间存在着紧密的内在联系,它们相互交织,共同构成了阐释卵巢早衰中“血瘀-OS-炎症”理论框架的科学基石。

3.3. “瘀”与线粒体功能形态的关系

线粒体是能量代谢和ATP产生的主要参与者,是维持人体正常生命活动必不可少的条件之一。而作为后天之本,气血生化之源的脾胃则将入胃的水谷转化为精微物质,输布至全身各个脏腑组织,为机体提供足够养料,以维持人体生命活动。脾和线粒体在功能上具有相似处。炎症因子、ROS等病理产物的产生是线粒体功能和形态发生异常,以致OS损伤发生的结果;瘀血作为病理产物,其发生乃是脾失健运、津液输布代谢功能障碍的结果。另一方面,瘀血与OS反应物在病理上关联性强。研究显示,血瘀证患者线粒体氧化功能减弱,ROS水平升高,影响水谷精微运化生成,线粒体数量减少,导致运化功能障碍;气血津液运行受到阻碍,在体内形成瘀滞状态,进一步扰乱线粒体膜电位的稳态平衡,使线粒体形态发生异常变化,主要表现为线粒体发生膨胀性水肿,且其内部结构中的线粒体嵴遭受破坏,出现断裂乃至完全消失的现象[41]-[43]。研究表明,在血瘀证模型大鼠体内,与能量代谢紧密相关的信号通路蛋白(如cAMP、cGMP等)的表达水平呈现显著下降的趋势,这一发现为揭示血瘀证病理机制中能量代谢调控的紊乱提供了新的视角[44],且“血瘀证”患者中MDA水平普遍上升,而SOD水平普遍下降[45]。在POF模型大鼠中也可见血瘀病理因素(ROS)的出现。而采用“治瘀法”则可以明显改善卵巢OS损伤,改善卵巢功能[46] [47]。因此,我们可以认为“瘀”通过影响线粒体功能和形态诱导OS损伤发生。

4. “治瘀法”调节OS损伤

《血证论》言:“故凡血证,总以祛瘀为要”[48],故以“治瘀法”为用药原则,临床常采用“活血化瘀法”使瘀滞消散,气血和畅,从而濡养胞宫,恢复卵巢功能。“瘀”为实邪,临床当以攻邪为主,但其亦可由正虚导致,因此,在“祛瘀”的同时也需扶正,辨清标本虚实,做到祛瘀而不伤正,从而恢复卵巢功能。

多项研究发现“治瘀法”不仅能够改善氧化应激和线粒体功能,减少ROS的产生,同时还能够抑制炎症因子,下调炎症反应,进而改善卵巢微循环,保护卵巢功能并延缓卵巢衰老[49]-[51]。“治瘀法”在清除病理产物“瘀”(如炎症因子,OS产物)的同时,还能够减轻卵巢损伤,维护卵巢的正常生理功能,体现了中医药治疗POF的系统性综合治疗。有研究发现“治瘀法”可以减轻POF动物模型卵巢内OS损伤和炎症反应,并通过刺激卵巢内皮细胞的运动和增殖来改善血管生成,恢复血管稳定性,以维持足够的功能性血管进行卵泡发育[47]。有学者发现,“治瘀法”可以通过修复粒体的形态和功能来增加卵母细胞的数量和提高其质量,从而促进卵母细胞的成熟[49] [52]

线粒体一直是多种疾病发病机理研究的关键领域。本文聚焦于卵巢早衰发病的核心要素,即氧化应激所介导的损伤机制,以及血瘀病理状态的形成过程,进而深入剖析了线粒体与氧化应激损伤之间的错综复杂的关系,并阐释了血瘀作为关键病理因素的作用机制。在此基础上,本研究致力于将中医与西医关于POF的理论认识进行有机融合,通过跨学科视角的整合分析,在深化对POF发病机制的理解的同时,为临床应用中医药防治POF开辟了更为广阔的研究视野与实践路径,也为提升POF患者的治疗效果与生活质量提供了科学依据与策略指导。但是本研究也存在一定不足,例如未进行实验以直接验证“治瘀法”对AMPK/mTOR、PINK1-Parkin等通路的调控作用,也未与西药进行对比试验。因此,期待未来能进行实验,深入探究相关机制,以期为“治瘀法”的应用提供更为全面的理论及实验依据。

NOTES

*通讯作者。

参考文献

[1] Jankowska, K. (2017) Premature Ovarian Failure. Menopausal Review, 2, 51-56.
https://doi.org/10.5114/pm.2017.68592
[2] Shareghi-oskoue, O., Aghebati-Maleki, L. and Yousefi, M. (2021) Transplantation of Human Umbilical Cord Mesenchymal Stem Cells to Treat Premature Ovarian Failure. Stem Cell Research & Therapy, 12, Article No. 454.
https://doi.org/10.1186/s13287-021-02529-w
[3] Li, C., Lin, L., Tsai, H., Wen, Z. and Tsui, K. (2022) Phosphoglycerate Mutase Family Member 5 Maintains Oocyte Quality via Mitochondrial Dynamic Rearrangement during Aging. Aging Cell, 21, e13546.
https://doi.org/10.1111/acel.13546
[4] Das, M., Sauceda, C. and Webster, N.J.G. (2020) Mitochondrial Dysfunction in Obesity and Reproduction. Endocrinology, 162, bqaa158.
https://doi.org/10.1210/endocr/bqaa158
[5] Debbarh, H., Louanjli, N., Aboulmaouahib, S., Jamil, M., Ahbbas, L., Kaarouch, I., et al. (2021) Antioxidant Activities and Lipid Peroxidation Status in Human Follicular Fluid: Age-Dependent Change. Zygote, 29, 490-494.
https://doi.org/10.1017/s0967199421000241
[6] Kunicki, M., Rzewuska, N. and Gross-Kępińska, K. (2024) Immunophenotypic Profiles and Inflammatory Markers in Premature Ovarian Insufficiency. Journal of Reproductive Immunology, 164, Article ID: 104253.
https://doi.org/10.1016/j.jri.2024.104253
[7] Xu, H., Mao, X., Nie, Z. and Li, Y. (2023) Oxr1a Prevents the Premature Ovarian Failure by Regulating Oxidative Stress and Mitochondrial Function in Zebrafish. Free Radical Biology and Medicine, 203, 102-113.
https://doi.org/10.1016/j.freeradbiomed.2023.04.002
[8] Bentov, Y., Yavorska, T., Esfandiari, N., Jurisicova, A. and Casper, R.F. (2011) The Contribution of Mitochondrial Function to Reproductive Aging. Journal of Assisted Reproduction and Genetics, 28, 773-783.
https://doi.org/10.1007/s10815-011-9588-7
[9] Simsek-Duran, F., Li, F., Ford, W., Swanson, R.J., Jones, H.W. and Castora, F.J. (2013) Age-Associated Metabolic and Morphologic Changes in Mitochondria of Individual Mouse and Hamster Oocytes. PLOS ONE, 8, e64955.
https://doi.org/10.1371/journal.pone.0064955
[10] Deshwal, S., Fiedler, K.U. and Langer, T. (2020) Mitochondrial Proteases: Multifaceted Regulators of Mitochondrial Plasticity. Annual Review of Biochemistry, 89, 501-528.
https://doi.org/10.1146/annurev-biochem-062917-012739
[11] Wang, T., Babayev, E., Jiang, Z., Li, G., Zhang, M., Esencan, E., et al. (2018) Mitochondrial Unfolded Protein Response Gene Clpp Is Required to Maintain Ovarian Follicular Reserve during Aging, for Oocyte Competence, and Development of Pre‐Implantation Embryos. Aging Cell, 17, e12784.
https://doi.org/10.1111/acel.12784
[12] Yuan, X., Ma, W., Chen, S., Wang, H., Zhong, C., Gao, L., et al. (2023) CLPP Inhibition Triggers Apoptosis in Human Ovarian Granulosa Cells via COX5A Abnormality-Mediated Mitochondrial Dysfunction. Frontiers in Genetics, 14, Article 1141167.
https://doi.org/10.3389/fgene.2023.1141167
[13] Herzig, S. and Shaw, R.J. (2017) AMPK: Guardian of Metabolism and Mitochondrial Homeostasis. Nature Reviews Molecular Cell Biology, 19, 121-135.
https://doi.org/10.1038/nrm.2017.95
[14] Wang, L., Tang, J., Wang, L., Tan, F., Song, H., Zhou, J., et al. (2021) Oxidative Stress in Oocyte Aging and Female Reproduction. Journal of Cellular Physiology, 236, 7966-7983.
https://doi.org/10.1002/jcp.30468
[15] Liu, T., Di, Q., Sun, J., Zhao, M., Xu, Q. and Shen, Y. (2020) Effects of Nonylphenol Induced Oxidative Stress on Apoptosis and Autophagy in Rat Ovarian Granulosa Cells. Chemosphere, 261, Article ID: 127693.
https://doi.org/10.1016/j.chemosphere.2020.127693
[16] Ling, H., Li, Q., Duan, Z., Wang, Y., Hu, B. and Dai, X. (2021) LncRNA GAS5 Inhibits miR-579-3p to Activate SIRT1/PGC-1α/Nrf2 Signaling Pathway to Reduce Cell Pyroptosis in Sepsis-Associated Renal Injury. American Journal of Physiology-Cell Physiology, 321, C117-C133.
https://doi.org/10.1152/ajpcell.00394.2020
[17] Halling, J.F. and Pilegaard, H. (2020) PGC-1α-Mediated Regulation of Mitochondrial Function and Physiological Implications. Applied Physiology, Nutrition, and Metabolism, 45, 927-936.
https://doi.org/10.1139/apnm-2020-0005
[18] Liu, S., Wang, Y., Yang, H., Tan, J., Zhang, J. and Zi, D. (2024) Correction: Pyrroloquinoline Quinone Promotes Human Mesenchymal Stem Cell-Derived Mitochondria to Improve Premature Ovarian Insufficiency in Mice through the SIRT1/ATM/p53 3 Pathway. Stem Cell Research & Therapy, 15, Article No. 206.
https://doi.org/10.1186/s13287-024-03841-x
[19] Alam, F., Syed, H., Amjad, S., Baig, M., Khan, T.A. and Rehman, R. (2021) Interplay between Oxidative Stress, SIRT1, Reproductive and Metabolic Functions. Current Research in Physiology, 4, 119-124.
https://doi.org/10.1016/j.crphys.2021.03.002
[20] Chan, D.C. (2012) Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health. Annual Review of Genetics, 46, 265-287.
https://doi.org/10.1146/annurev-genet-110410-132529
[21] Czajkowska, K. and Ajduk, A. (2023) Mitochondrial Activity and Redox Status in Oocytes from Old Mice: The Interplay between Maternal and Postovulatory Aging. Theriogenology, 204, 18-30.
https://doi.org/10.1016/j.theriogenology.2023.03.022
[22] Detmer, S.A. and Chan, D.C. (2007) Functions and Dysfunctions of Mitochondrial Dynamics. Nature Reviews Molecular Cell Biology, 8, 870-879.
https://doi.org/10.1038/nrm2275
[23] Liu, M., Fan, Y., Li, D., Han, B., Meng, Y., Chen, F., et al. (2021) Ferroptosis Inducer Erastin Sensitizes NSCLC Cells to Celastrol through Activation of the Ros-Mitochondrial Fission-Mitophagy Axis. Molecular Oncology, 15, 2084-2105.
https://doi.org/10.1002/1878-0261.12936
[24] Tresse, E., Riera‐Ponsati, L., Jaberi, E., Sew, W.Q.G., Ruscher, K. and Issazadeh-Navikas, S. (2021) IFN-β Rescues Neurodegeneration by Regulating Mitochondrial Fission via STAT5, PGAM5, and Drp1. The EMBO Journal, 40, e106868.
https://doi.org/10.15252/embj.2020106868
[25] Arslan, N.P., Taskin, M. and Keles, O.N. (2024) Nicotinamide Mononucleotide and Nicotinamide Riboside Reverse Ovarian Aging in Rats via Rebalancing Mitochondrial Fission and Fusion Mechanisms. Pharmaceutical Research, 41, 921-935.
https://doi.org/10.1007/s11095-024-03704-3
[26] Amartuvshin, O., Lin, C., Hsu, S., Kao, S., Chen, A., Tang, W., et al. (2020) Aging Shifts Mitochondrial Dynamics toward Fission to Promote Germline Stem Cell Loss. Aging Cell, 19, e13191.
https://doi.org/10.1111/acel.13191
[27] Chiang, J.L., Shukla, P., Pagidas, K., Ahmed, N.S., Karri, S., Gunn, D.D., et al. (2020) Mitochondria in Ovarian Aging and Reproductive Longevity. Ageing Research Reviews, 63, Article ID: 101168.
https://doi.org/10.1016/j.arr.2020.101168
[28] Wan, B., Huang, L., Jing, C., Li, Y., Jiao, N., Liang, M., et al. (2022) Zearalenone Promotes Follicle Development through Activating the SIRT1/PGC-1α Signaling Pathway in the Ovaries of Weaned Gilts. Journal of Animal Science, 100, skac058.
https://doi.org/10.1093/jas/skac058
[29] Zhang, L., Ding, F., Wu, X., Wang, R., Wan, Y., Hu, J., et al. (2023) Melatonin Ameliorates Glyphosate-and Hard Water-Induced Renal Tubular Epithelial Cell Senescence via Pink1-Parkin-Dependent Mitophagy. Ecotoxicology and Environmental Safety, 255, Article ID: 114719.
https://doi.org/10.1016/j.ecoenv.2023.114719
[30] Miao, C., Zhao, Y., Chen, Y., Wang, R., Ren, N., Chen, B., et al. (2023) Investigation of He’s Yang Chao Recipe against Oxidative Stress-Related Mitophagy and Pyroptosis to Improve Ovarian Function. Frontiers in Endocrinology, 14, Article 1077315.
https://doi.org/10.3389/fendo.2023.1077315
[31] 叶天士. 临证指南医案[M]. 北京: 中国中医药出版社, 2008.
[32] 中医出版中心. 黄帝内经素问[M]. 北京: 人民卫生出版社, 2012.
[33] 李东垣. 兰室秘藏[M]. 李仲平, 注解, 译. 北京: 中国医药科技出版社, 2011.
[34] Wang, J., Jia, R., Celi, P., Zhuo, Y., Ding, X., Zeng, Q., et al. (2022) Resveratrol Alleviating the Ovarian Function under Oxidative Stress by Alternating Microbiota Related Tryptophan-Kynurenine Pathway. Frontiers in Immunology, 13, Article 911381.
https://doi.org/10.3389/fimmu.2022.911381
[35] Lu, X., Cui, J., Cui, L., Luo, Q., Cao, Q., Yuan, W., et al. (2019) The Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cell Transplantation on Endometrial Receptivity Are Associated with Th1/Th2 Balance Change and uNK Cell Expression of Uterine in Autoimmune Premature Ovarian Failure Mice. Stem Cell Research & Therapy, 10, Article No. 214.
https://doi.org/10.1186/s13287-019-1313-y
[36] 肖雪, 王乐琪, 谢志茹, 等. 炎症介质: 探讨血瘀证生物学基础新思路[J]. 中华中医药杂志, 2021, 36(1): 32-36.
[37] 肖海凌, 郭珍立, 陈延, 等. 急性缺血性卒中血瘀证严重程度与血清炎症因子、血脂及凝血功能指标的相关性研究[J]. 中医药学报, 2022, 50(12): 65-70.
[38] 唐诗洋, 李金霞, 郑彩杏, 等. 五首活血化瘀方改善血瘀证家兔内皮细胞功能差异[J]. 中国中西医结合杂志, 2023, 43(10): 1214-1220.
[39] 宫海全, 刘欣, 许艳茹, 等. 仙牛腰骶痛颗粒对血瘀证大鼠活血化瘀作用研究[J]. 人参研究, 2021, 33(2): 41-43.
[40] 黄家宓, 胡国华, 万怡婷, 等. 育肾活血方治疗子宫腺肌病继发性痛经血瘀证的临床研究[J]. 北京中医药大学学报, 2022, 45(1): 73-80.
[41] 谭精培, 钟声, 张秋雁, 等. 基于线粒体能量代谢探讨血府逐瘀汤治疗冠心病血瘀证的作用机制[J]. 时珍国医国药, 2023, 34(2): 288-291.
[42] 于子璇, 张书萌, 张梦雪, 等. 养心通脉方对心肌梗死血瘀证模型大鼠心肌能量代谢的影响[J]. 中医杂志, 2023, 64(12): 1255-1262.
[43] 韩佳瑞, 彭紫凝, 王学艺, 等. 糖尿病肾病血瘀证大鼠铁死亡相关基因GPX4、ACSL4表达水平变化[J]. 安徽中医药大学学报, 2023, 42(2): 78-84.
[44] 李颢玥, 王茜, 郝蕾. 补肾活血方对肾虚血瘀型子宫内膜增生症大鼠的作用及机制研究[J]. 中药新药与临床药理, 2024, 35(5): 623-632.
[45] 王子钰, 王文婷, 徐仕晗, 等. “异病同治”视角下从血瘀论治糖尿病视网膜病变与冠心病的现代机制探析[J]. 中国实验方剂学杂志, 2024, 30(5): 197-205.
[46] Liu, J., Yang, Y., He, Y., Feng, C., Ou, H., Yang, J., et al. (2023) Erxian Decoction Alleviates Cisplatin-Induced Premature Ovarian Failure in Rats by Reducing Oxidation Levels in Ovarian Granulosa Cells. Journal of Ethnopharmacology, 304, Article ID: 116046.
https://doi.org/10.1016/j.jep.2022.116046
[47] Zhou, F., Song, Y., Liu, X., Zhang, C., Li, F., Hu, R., et al. (2021) Si-Wu-Tang Facilitates Ovarian Function through Improving Ovarian Microenvironment and Angiogenesis in a Mouse Model of Premature Ovarian Failure. Journal of Ethnopharmacology, 280, Article ID: 114431.
https://doi.org/10.1016/j.jep.2021.114431
[48] 唐宗海. 血证论[M]. 北京: 人民卫生出版社, 2005.
[49] Guan, F., Zhang, S., Fan, L., Sun, Y., Ma, Y., Cao, C., et al. (2023) Kunling Wan Improves Oocyte Quality by Regulating the PKC/Keap1/Nrf2 Pathway to Inhibit Oxidative Damage Caused by Repeated Controlled Ovarian Hyperstimulation. Journal of Ethnopharmacology, 301, Article ID: 115777.
https://doi.org/10.1016/j.jep.2022.115777
[50] 徐珊, 张小菜, 袁宁霞. 滋肾温阳汤联合克龄蒙治疗卵巢储备功能下降45例[J]. 山东中医杂志, 2021, 40(1): 48-52, 64.
[51] 王韫琪, 李兆萍, 向丽娟. 温经汤对寒凝血瘀型卵巢储备功能减退中医证候及卵巢功能的影响[J]. 中华中医药学刊, 2023, 41(6): 217-220.
[52] Yan, J., Deng, D.-S. and Wu, K.-M. (2024) XinJiaCongRongTuSiZiWan Protects Triptolide-Induced Rats from Oxidative Stress Injury via Mitophagy Mediated PINK1/Parkin Signaling Pathway. Acta Cirúrgica Brasileira, 39, e391424.
https://doi.org/10.1590/acb391424