低氧相关基因在肾透明细胞癌中的研究进展
Research Progress of Hypoxia Related Genes in Renal Clear Cell Carcinoma
摘要: 肾透明细胞癌是肾癌中最常见的类型,低氧相关基因在其发生、发展、诊断、治疗及预后等方面发挥着关键作用。本文通过生物信息学分析、临床数据整合及文献综述,系统探讨了低氧相关基因在肾透明细胞癌中的基础理论(包括生物信息学方法、病理机制与表达调控)、流行病学特征、诊断技术、治疗策略、预后预测及研究争议与展望。研究发现,低氧诱导因子(HIF)通路、免疫微环境调控及代谢相关基因是当前研究热点,基于低氧相关基因的风险分层模型和分子标志物在临床应用中具有显著潜力。未来研究需关注基因异质性、多组学整合及新兴技术(如单细胞测序、CRISPR编辑)的应用。本文为肾透明细胞癌的基础研究与临床转化提供了全面参考。
Abstract: Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer, and hypoxia-related genes play a critical role in their occurrence, development, diagnosis, treatment, and prognosis. Through bioinformatics analysis, clinical data integration, and literature review, this paper systematically discusses the basic theories of hypoxia-related genes in ccRCC, including bioinformatics methods, pathological mechanisms, and expression regulation, as well as their epidemiological characteristics, diagnostic techniques, treatment strategies, prognostic prediction, and research controversies and prospects. The study finds that the hypoxia-inducible factor (HIF) pathway, immune microenvironment regulation, and metabolism-related genes are current research hotspots. Risk stratification models and molecular markers based on hypoxia-related genes show significant potential in clinical applications. Future research should focus on gene heterogeneity, multi-omics integration, and the application of emerging technologies such as single-cell sequencing and CRISPR editing. This paper provides a comprehensive reference for basic research and clinical translation in ccRCC.
文章引用:晏巧华, 阮天, 黄月, 李明航, 张梓悦, 李东梅, 杨清媛, 王慧. 低氧相关基因在肾透明细胞癌中的研究进展[J]. 临床个性化医学, 2025, 4(4): 77-83. https://doi.org/10.12677/jcpm.2025.44419

1. 引言

肾透明细胞癌(ccRCC)占肾细胞癌的80%以上,是严重威胁人类健康的恶性肿瘤之一[1]。低氧微环境是肿瘤进展的重要驱动因素,其通过调控基因表达重塑肿瘤细胞代谢、血管生成及免疫逃逸能力[2]。近年来,随着生物信息学技术和精准医学的发展,低氧相关基因在ccRCC中的作用机制及临床应用成为研究焦点。本文系统综述低氧相关基因在ccRCC中的研究进展,旨在为该领域的深入探索提供理论依据。

2. 低氧相关基因的基础理论研究

2.1. 生物信息学分析方法

生物信息学通过挖掘公共数据库(如GEO、TCGA)中的基因表达数据,识别低氧相关差异表达基因(DEGs)。例如,在急性心肌梗死研究中,通过分析GSE76387和GSE161427数据集,鉴定出53个上调和16个下调基因,富集于PI3K-Akt信号通路等[3]。在ccRCC研究中,可通过GO/KEGG富集分析明确DEGs的生物学功能,利用Cytoscape构建蛋白质–蛋白质相互作用(PPI)网络筛选枢纽基因(如HIF-1α、VEGFA),并预测潜在治疗药物[4]。通过生物信息学分析,我们能够识别出在ccRCC中起关键作用的差异表达基因(DEGs)、枢纽基因及相关信号通路如图1。在ccRCC组织与正常组织的比较中,发现了大量因低氧环境而表达水平显著改变的基因。

2.2. 病理机制与低氧环境

ccRCC的低氧微环境通过调控肿瘤细胞行为和免疫微环境促进癌症进展。研究表明,缺氧条件下肾癌细胞中血小板反应蛋白-1表达降低,增强细胞迁移和侵袭能力[5]。HIF-α在84%的ccRCC中组成性表达,其介导的脂质积累与透明细胞表型密切相关[6]。此外,低氧通过调控长链非编码RNA (如ENST00000574654.1)促进细胞迁移,涉及HIF-1α/VEGFA通路[7]

2.3. 基因功能与表达调控

低氧相关基因的表达受转录因子(如HIF-1α、HIF-2α)和表观遗传机制调控。在拟南芥中,不同转录因子子集以氧浓度依赖方式调控低氧响应基因,而miRNA作用较小[8]。在肝星状细胞中,HIF-1α/2α直接调控Ccr1、Ccr5等基因表达,参与血管生成和胶原合成[9]。表观遗传方面,缺氧通过组蛋白甲基化(如H3K4me3、H3K27me3)和乳酸化修饰调控基因表达,影响肿瘤微环境[10]。关键信号通路富集分析(KEGG)如图2

Figure 1. Differentially expressed genes

1. 差异表达基因

Figure 2. Key signaling pathways

2. 关键信号通路

3. 流行病学与低氧相关基因表达特征

3.1. 流行病学特征

ccRCC发病呈中老年(平均58.2岁)、男性略多的特点,[11]非洲裔美国人发病率较高[12]。肿瘤大小、分期(如TNM分期)和分级(如Fuhrman分级)与预后密切相关,[13]乳酸脱氢酶A(LDHA)高表达患者无病生存期和总生存期显著缩短[14]。肾透明细胞乳头状癌(ccpRCC)作为特殊亚型(占4.1%~4.3%),与慢性肾病相关,呈惰性病程[15]

3.2. 基因表达模式

在ccRCC组织中,果糖-1,6-双磷酸酶1 (FBP1)表达与HIF-1α、促红细胞生成素(EPO)正相关,与HIF-2α无显著关联[16]。肌红蛋白在缺氧条件下表达可增加62倍,与HIF-1α及毛细血管密度相关,提示其作为低氧早期标志物的潜力[17]。代谢相关基因(如GLUT1、PDHK1)和免疫逃逸基因(如PD-L1)在低氧微环境中异常表达,促进肿瘤进展[18]

3.3. 与临床特征的关联

基于缺氧–免疫相关基因(如PLAUR、UCN)构建的预后模型显示,高缺氧–低免疫状态患者生存率显著降低[19]。CUB结构域包含蛋白1 (CDCP1)和HIF-1α高表达与肿瘤转移和预后不良相关[20],可作为潜在预后标志物[21]

4. 诊断技术中的应用

4.1. 生物信息学驱动的诊断模型

通过机器学习算法(如LASSO、随机森林)整合基因表达数据,可构建ccRCC诊断模型。例如,在子痫前期研究中,基于P4HA1、NDRG1、BHLHE40的模型诊断效能显著(AUC > 0.8) [22]。在ccRCC中,筛选低氧相关枢纽基因(如CA9、VEGFA)并结合临床数据,可提高早期诊断准确性。

4.2. 临床数据整合与分子标志物开发

整合影像学特征(如CT值)和基因表达数据,可建立多模态诊断体系。例如,在特发性肺纤维化中,炎症–缺氧相关基因特征(HS3ST1、WFDC2等)可预测临床结局[23]。ccRCC中,血清HIF-1α、CA9水平与肿瘤负荷正相关,可作为无创诊断标志物[24]

5. 治疗策略与研究进展

5.1. 靶向治疗

针对HIF通路的小分子抑制剂(如PT2385、PT2977)已进入临床试验,通过抑制HIF-DNA结合阻断低氧适应[25]。基因治疗方面,靶向敲低色氨酸羟化酶-1 (Tph1)可缓解低氧诱导的肺动脉高压,为ccRCC治疗提供新思路[26]

5.2. 与免疫治疗的协同作用

低氧通过诱导PD-L1表达和M2巨噬细胞浸润抑制免疫应答。缺氧敏感纳米系统(如CS@TAP)联合抗PD-L1抗体可增强T细胞浸润,延缓肿瘤生长[27]。多组学分析显示,CXCL1/2/3高表达的C2亚型患者对免疫治疗敏感,提示分子分型指导个体化治疗的潜力[28]

6. 预后预测模型构建

6.1. 风险分层模型

基于8个缺氧–干细胞相关基因(如FBLN2、IL17RB)的模型可将食管癌患者分为高低风险组,高风险组生存率显著更低[29]。在ccRCC中,整合ANKZF1、ETS1等6个低氧基因构建的模型,内部和外部验证显示良好预后预测效能[30]

6.2. 生存分析与临床应用

HIF-1α高表达与ccRCC患者无复发生存期缩短显著相关(HR = 1.82, p < 0.01)。Nomogram模型结合基因风险评分和临床特征(如肿瘤分期),可精准预测患者5年生存率,指导治疗决策[31]

7. 研究争议与未来展望

7.1. 争议点

  • 基因功能研究挑战:低氧调控网络复杂,如FUT11在胰腺癌中的作用机制尚未完全阐明[32],ccRCC中类似基因(如SLC2A1)的组织特异性功能需进一步验证。

  • 生物信息学可靠性:不同数据库(如GEO vs. TCGA)的数据异质性可能导致分析结果偏差,需结合湿实验验证[33]

  • 患者异质性:HIF1α在胶质瘤和脑膜瘤中表达差异显著[34],ccRCC中不同分子亚型(如C1/C2亚型)对治疗响应的差异需深入研究。

7.2. 未来方向

  • 新兴技术:单细胞测序揭示肿瘤细胞异质性,CRISPR-Cas9系统解析基因互作网络[35]

  • 精准医学:基于多组学(基因组、转录组、蛋白组)的分子分型,指导HIF抑制剂和免疫治疗药物的个体化选择。

  • 多学科合作:结合生物信息学、材料科学(如低氧响应纳米载体)和临床医学,推动基础研究向临床转化[36]

8. 结论

低氧相关基因在ccRCC的发生发展和诊疗中具有核心作用,其机制研究和临床应用已取得显著进展,但基因异质性和技术局限性仍需突破。未来需借助新兴技术和多学科交叉,构建更精准的诊断和治疗体系,为ccRCC患者提供个体化医疗方案。

基金项目

云南医药健康职业学院科学研究基金2024Y009;云南医药健康职业学院科学研究基金2024Y010;云南省教育厅科学研究基金2024J2134;云南省教育厅科学研究基金2025J2315;云南省教育厅科学研究基金2025J2323;云南医药健康职业学院教改课程建设项目2022K1104。

NOTES

*通讯作者。

参考文献

[1] Xia, H.S., et al. (2022) Identification of Hypoxia-Related Genes in Acute Myocardial Infarction Using Bioinformatics Analysis. Combinatorial Chemistry & High Throughput Screening, 26, 728-742.
[2] Choudhury, P., Dasgupta, S., Kar, A., Sarkar, S., Chakraborty, P., Bhattacharyya, P., et al. (2024) Bioinformatics Analysis of Hypoxia Associated Genes and Inflammatory Cytokine Profiling in COPD-PH. Respiratory Medicine, 227, Article ID: 107658.
https://doi.org/10.1016/j.rmed.2024.107658
[3] Yu, C.H., et al. (2024) Key Genes and Regulatory Networks for Diabetic Retinopathy Based on Hypoxia-Related Genes: A Bioinformatics Analysis. International Journal of Ophthalmology, 17, 1411-1417.
[4] Bienes-Martínez, R., Ordóñez, A., Feijoo-Cuaresma, M., Corral-Escariz, M., Mateo, G., Stenina, O., et al. (2012) Autocrine Stimulation of Clear-Cell Renal Carcinoma Cell Migration in Hypoxia via HIF-Independent Suppression of Thrombospondin-1. Scientific Reports, 2, Article No. 788.
https://doi.org/10.1038/srep00788
[5] Tóth, K., Chintala, S. and Rustum, Y.M. (2014) Constitutive Expression of HIF-α Plays a Major Role in Generation of Clear-Cell Phenotype in Human Primary and Metastatic Renal Carcinoma. Applied Immunohistochemistry & Molecular Morphology, 22, 642-647.
https://doi.org/10.1097/pai.0000000000000012
[6] Wang, Y., Yan, K., Lin, J., Li, J. and Bi, J. (2021) Macrophage M2 Co-Expression Factors Correlate with the Immune Microenvironment and Predict Outcome of Renal Clear Cell Carcinoma. Frontiers in Genetics, 12, Article ID: 615655.
https://doi.org/10.3389/fgene.2021.615655
[7] Che, J.P., et al. (2020) Hypoxia Promoted Renal Cell Carcinoma Cell Migration through Regulating lncRNA-ENST00000574654.1. American Journal of Translational Research, 12, 3884-3894.
[8] Licausi, F., Weits, D.A., Pant, B.D., Scheible, W., Geigenberger, P. and van Dongen, J.T. (2010) Hypoxia Responsive Gene Expression Is Mediated by Various Subsets of Transcription Factors and MiRNAs That Are Determined by the Actual Oxygen Availability. New Phytologist, 190, 442-456.
https://doi.org/10.1111/j.1469-8137.2010.03451.x
[9] Copple, B.L., Bai, S., Burgoon, L.D. and Moon, J. (2010) Hypoxia-Inducible Factor-1α Regulates the Expression of Genes in Hypoxic Hepatic Stellate Cells Important for Collagen Deposition and Angiogenesis. Liver International, 31, 230-244.
https://doi.org/10.1111/j.1478-3231.2010.02347.x
[10] Lee, S., Lee, J., Chae, S., Moon, Y., Lee, H., Park, B., et al. (2017) Multi-Dimensional Histone Methylations for Coordinated Regulation of Gene Expression under Hypoxia. Nucleic Acids Research, 45, 11643-11657.
https://doi.org/10.1093/nar/gkx747
[11] Li, X., Yang, N., Wu, Y., Wang, X., Sun, J., Liu, L., et al. (2022) Hypoxia Regulates Fibrosis-Related Genes via Histone Lactylation in the Placentas of Patients with Preeclampsia. Journal of Hypertension, 40, 1189-1198.
https://doi.org/10.1097/hjh.0000000000003129
[12] Zeng, R., Li, Y., He, D., Sun, M., Huang, W., Wang, Y., et al. (2022) Potassium Channel-Related Genes Are a Novel Prognostic Signature for the Tumor Microenvironment of Renal Clear Cell Carcinoma. Frontiers in Oncology, 12, Article ID: 1013324.
https://doi.org/10.3389/fonc.2022.1013324
[13] Zhou, H., Zheng, S., Truong, L.D., Ro, J.Y., Ayala, A.G. and Shen, S.S. (2014) Clear Cell Papillary Renal Cell Carcinoma Is the Fourth Most Common Histologic Type of Renal Cell Carcinoma in 290 Consecutive Nephrectomies for Renal Cell Carcinoma. Human Pathology, 45, 59-64.
https://doi.org/10.1016/j.humpath.2013.08.004
[14] Wang, K., Zarzour, J., Rais-Bahrami, S. and Gordetsky, J. (2017) Clear Cell Papillary Renal Cell Carcinoma: New Clinical and Imaging Characteristics. Urology, 103, 136-141.
https://doi.org/10.1016/j.urology.2016.12.002
[15] Girgis, H., Masui, O., White, N.M., Scorilas, A., Rotondo, F., Seivwright, A., et al. (2014) Lactate Dehydrogenase A Is a Potential Prognostic Marker in Clear Cell Renal Cell Carcinoma. Molecular Cancer, 13, Article No. 101.
https://doi.org/10.1186/1476-4598-13-101
[16] Ning, X., Li, T., Gong, Y., He, Q., Shen, Q., Peng, S., et al. (2016) Association between FBP1 and Hypoxia-Related Gene Expression in Clear Cell Renal Cell Carcinoma. Oncology Letters, 11, 4095-4098.
https://doi.org/10.3892/ol.2016.4504
[17] Behnes, C.L., Bedke, J., Schneider, S., Küffer, S., Strauss, A., Bremmer, F., et al. (2013) Myoglobin Expression in Renal Cell Carcinoma Is Regulated by Hypoxia. Experimental and Molecular Pathology, 95, 307-312.
https://doi.org/10.1016/j.yexmp.2013.09.003
[18] Simon, A.G., Esser, L.K., Ellinger, J., Ritter, M., Kristiansen, G., Muders, M.H., et al. (2022) RNA Sequencing Reveals Alterations and Similarities in Cell Metabolism, Hypoxia and Immune Evasion in Primary Cell Cultures of Clear Cell Renal Cell Carcinoma. Frontiers in Oncology, 12, Article ID: 883195.
https://doi.org/10.3389/fonc.2022.883195
[19] Bai, S., Chen, L., Yan, Y., Wang, X., Jiang, A., Li, R., et al. (2022) Identification of Hypoxia-Immune-Related Gene Signatures and Construction of a Prognostic Model in Kidney Renal Clear Cell Carcinoma. Frontiers in Cell and Developmental Biology, 9, Article ID: 796156.
https://doi.org/10.3389/fcell.2021.796156
[20] Emerling Brooke, M., et al. (2013) Identification of CDCP1 as a Hypoxia-Inducible Factor 2α (HIF-2α) Target Gene That Is Associated with Survival in Clear Cell Renal Cell Carcinoma Patients. Proceedings of the National Academy of Sciences of the United States of America, 110, 3483-3488.
[21] Daniele, M., et al. (2015) Survival in Patients with Clear Cell Renal Cell Carcinoma Is Predicted by HIF-1α Expression. Anticancer Research, 35, 433-438.
[22] Cao, J., Zhou, C., Mao, H. and Zhang, X. (2025) Leveraging Machine Learning and Bioinformatics to Identify Diagnostic Biomarkers Connected to Hypoxia-Related Genes in Preeclampsia. Computer Methods in Biomechanics and Biomedical Engineering, 1-19.
https://doi.org/10.1080/10255842.2025.2484572
[23] Liu, J., Gu, L. and Li, W. (2022) The Prognostic Value of Integrated Analysis of Inflammation and Hypoxia-Related Genes in Idiopathic Pulmonary Fibrosis. Frontiers in Immunology, 13, Article ID: 730186.
https://doi.org/10.3389/fimmu.2022.730186
[24] Wu, X., Pan, Z., Liu, W., Zha, S., Song, Y., Zhang, Q., et al. (2022) The Discovery, Validation, and Function of Hypoxia-Related Gene Biomarkers for Obstructive Sleep Apnea. Frontiers in Medicine, 9, Article ID: 813459.
https://doi.org/10.3389/fmed.2022.813459
[25] Ye, Y.Q., et al. (2020) Characterization of Hypoxia-Associated Molecular Features to Aid Hypoxia-Targeted Therapy. Nature Metabolism, 1, 431-444.
[26] Morecroft, I., White, K., Caruso, P., Nilsen, M., Loughlin, L., Alba, R., et al. (2012) Gene Therapy by Targeted Adenovirus-Mediated Knockdown of Pulmonary Endothelial Tph1 Attenuates Hypoxia-Induced Pulmonary Hypertension. Molecular Therapy, 20, 1516-1528.
https://doi.org/10.1038/mt.2012.70
[27] Chen, W., Sheng, P., Chen, Y., Liang, Y., Wu, S., Jia, L., et al. (2023) Hypoxia-Responsive Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy for Potentiating Cancer Immunotherapy. Chemical Engineering Journal, 451, Article ID: 138781.
https://doi.org/10.1016/j.cej.2022.138781
[28] Zhong, W., Zhong, H., Zhang, F., Huang, C., Lin, Y. and Huang, J. (2021) Characterization of Hypoxia-Related Molecular Subtypes in Clear Cell Renal Cell Carcinoma to Aid Immunotherapy and Targeted Therapy via Multi-Omics Analysis. Frontiers in Molecular Biosciences, 8, Article ID: 684050.
https://doi.org/10.3389/fmolb.2021.684050
[29] Tang, K., Cheng, Y. and Li, Q. (2021) Construction and Verification of a Hypoxia-Stemness-Based Gene Signature for Risk Stratification in Esophageal Cancer. Medical Science Monitor, 27, e934359.
https://doi.org/10.12659/msm.934359
[30] Li, Z.T., et al. (2021) Identification and Validation of a Hypoxia-Related Prognostic Signature in Clear Cell Renal Cell Carcinoma Patients. Medicine (Baltimore), 100, e27374.
[31] Chen, J., Fu, Y., Hu, J. and He, J. (2022) Hypoxia-Related Gene Signature for Predicting LUAD Patients’ Prognosis and Immune Microenvironment. Cytokine, 152, Article ID: 155820.
https://doi.org/10.1016/j.cyto.2022.155820
[32] Cao, W., Zeng, Z., Pan, R., Wu, H., Zhang, X., Chen, H., et al. (2021) Hypoxia-Related Gene FUT11 Promotes Pancreatic Cancer Progression by Maintaining the Stability of PDK1. Frontiers in Oncology, 11, Article ID: 675991.
https://doi.org/10.3389/fonc.2021.675991
[33] Tangherlini, M., Dell’Anno, A., Zeigler Allen, L., Riccioni, G. and Corinaldesi, C. (2016) Assessing Viral Taxonomic Composition in Benthic Marine Ecosystems: Reliability and Efficiency of Different Bioinformatic Tools for Viral Metagenomic Analyses. Scientific Reports, 6, Article No. 28428.
https://doi.org/10.1038/srep28428
[34] Bayat, S., Mamivand, A., Khoshnevisan, A., Maghrouni, A., Shabani, S., Raouf, M., et al. (2021) Differential Expression of Hypoxia-Related Genes in Primary Brain Tumors and Correlation with Clinicopathologic Data. World Neurosurgery, 154, e465-e472.
https://doi.org/10.1016/j.wneu.2021.07.068
[35] Kostyuk, A.I., Kokova, A.D., Podgorny, O.V., Kelmanson, I.V., Fetisova, E.S., Belousov, V.V., et al. (2020) Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants, 9, Article No. 516.
https://doi.org/10.3390/antiox9060516
[36] Zhang, J. and Cui, Y. (2022) Integrative Analysis Identifies Potential Ferroptosis-Related Genes of Hypoxia Adaptation in Yak. Frontiers in Veterinary Science, 9, Article ID: 1022972.
https://doi.org/10.3389/fvets.2022.1022972