[1]
|
陈海瑞, 李文才, 陈天东, 等. 原发性肺腺癌组织亚型及预后[J]. 河南医学研究, 2017, 26(18): 3271-3273.
|
[2]
|
Shinagare, A.B., Okajima, Y., Oxnard, G.R., DiPiro, P.J., Johnson, B.E., Hatabu, H., et al. (2012) Unsuspected Pulmonary Embolism in Lung Cancer Patients: Comparison of Clinical Characteristics and Outcome with Suspected Pulmonary Embolism. Lung Cancer, 78, 161-166. https://doi.org/10.1016/j.lungcan.2012.08.007
|
[3]
|
An, J., Minie, M., Sasaki, T., Woodward, J.J. and Elkon, K.B. (2017) Antimalarial Drugs as Immune Modulators: New Mechanisms for Old Drugs. Annual Review of Medicine, 68, 317-330. https://doi.org/10.1146/annurev-med-043015-123453
|
[4]
|
Ho, W.E., Peh, H.Y., Chan, T.K. and Wong, W.S.F. (2014) Artemisinins: Pharmacological Actions Beyond Anti-malarial. Pharmacology & Therapeutics, 142, 126-139. https://doi.org/10.1016/j.pharmthera.2013.12.001
|
[5]
|
Kong, L.Y. and Tan, R.X. (2015) Artemisinin, a Miracle of Traditional Chinese Medicine. Natural Product Reports, 32, 1617-1621. https://doi.org/10.1039/c5np00133a
|
[6]
|
Dai, X., Zhang, X., Chen, W., Chen, Y., Zhang, Q., Mo, S., et al. (2021) Dihydroartemisinin: A Potential Natural Anticancer Drug. International Journal of Biological Sciences, 17, 603-622. https://doi.org/10.7150/ijbs.50364
|
[7]
|
Wong, Y.K., Xu, C., Kalesh, K.A., He, Y., Lin, Q., Wong, W.S.F., et al. (2017) Artemisinin as an Anticancer Drug: Recent Advances in Target Profiling and Mechanisms of Action. Medicinal Research Reviews, 37, 1492-1517. https://doi.org/10.1002/med.21446
|
[8]
|
Samson, K. (2017) Stage III NSCLC Survival Rate Doubles with Standard Radiation Therapy. Oncology Times, 39, 58-58. https://doi.org/10.1097/01.cot.0000527185.03150.fc
|
[9]
|
Mitsudomi, T., Morita, S., Yatabe, Y., Negoro, S., Okamoto, I., Tsurutani, J., et al. (2010) Gefitinib versus Cisplatin Plus Docetaxel in Patients with Non-Small-Cell Lung Cancer Harbouring Mutations of the Epidermal Growth Factor Receptor (WJTOG3405): An Open Label, Randomised Phase 3 Trial. The Lancet Oncology, 11, 121-128. https://doi.org/10.1016/s1470-2045(09)70364-x
|
[10]
|
Marsoni, M.C.G.A. (2013) Erlotinib versus Docetaxel as Second-Line Treatment of Patients with Advanced Non-Small-Cell Lung Cancer and Wild-Type EGFR Tumours (TAILOR): A Randomised Controlled Trial. The Lancet Oncology, 14, 981-988.
|
[11]
|
Liao, R.G., Watanabe, H., Meyerson, M. and Hammerman, P.S. (2012) Targeted Therapy for Squamous Cell Lung Cancer. Lung Cancer Management, 1, 293-300. https://doi.org/10.2217/lmt.12.40
|
[12]
|
Lilenbaum, R., Samuels, M., Wang, X., Kong, F.M., Jänne, P.A., Masters, G., et al. (2015) A Phase II Study of Induction Chemotherapy Followed by Thoracic Radiotherapy and Erlotinib in Poor-Risk Stage III Non-Small-Cell Lung Cancer: Results of CALGB 30605 (Alliance)/RTOG 0972 (NRG). Journal of Thoracic Oncology, 10, 143-147. https://doi.org/10.1097/jto.0000000000000347
|
[13]
|
Okamoto, I., Takahashi, T., Okamoto, H., Nakagawa, K., Watanabe, K., Nakamatsu, K., et al. (2011) Single-Agent Gefitinib with Concurrent Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer Harboring Mutations of the Epidermal Growth Factor Receptor. Lung Cancer, 72, 199-204. https://doi.org/10.1016/j.lungcan.2010.08.016
|
[14]
|
Hess, L.M., Kern, D.M., Carter, G.C., Winfree, K., Wang, L., Sontag, A., et al. (2017) Real-World Treatment Sequences and Outcomes among Patients with Non-Small Cell Lung Cancer (RESOUNDS) in the United States: Study Protocol. JMIR Research Protocols, 6, e195. https://doi.org/10.2196/resprot.7750
|
[15]
|
Ohaegbulam, K.C., Assal, A., Lazar-Molnar, E., Yao, Y. and Zang, X. (2015) Human Cancer Immunotherapy with Antibodies to the PD-1 and PD-L1 Pathway. Trends in Molecular Medicine, 21, 24-33. https://doi.org/10.1016/j.molmed.2014.10.009
|
[16]
|
Brahmer, J.R. (2013) Harnessing the Immune System for the Treatment of Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 31, 1021-1028. https://doi.org/10.1200/jco.2012.45.8703
|
[17]
|
Sgambato, A., Casaluce, F., C. Sacco, P., Palazzolo, G., Maione, P., Rossi, A., et al. (2016) Anti PD-1 and PDL-1 Immunotherapy in the Treatment of Advanced Non-Small Cell Lung Cancer (NSCLC): A Review on Toxicity Profile and Its Management. Current Drug Safety, 11, 62-68. https://doi.org/10.2174/1574886311207040289
|
[18]
|
Kazandjian, D., Suzman, D.L., Blumenthal, G., Mushti, S., He, K., Libeg, M., et al. (2016) FDA Approval Summary: Nivolumab for the Treatment of Metastatic Non-Small Cell Lung Cancer with Progression on or after Platinum-Based Chemotherapy. The Oncologist, 21, 634-642. https://doi.org/10.1634/theoncologist.2015-0507
|
[19]
|
Jin, H., Jiang, A., Wang, H., Cao, Y., Wu, Y. and Jiang, X. (2017) Dihydroartemisinin and Gefitinib Synergistically Inhibit NSCLC Cell Growth and Promote Apoptosis via the Akt/mTOR/STAT3 Pathway. Molecular Medicine Reports, 16, 3475-3481. https://doi.org/10.3892/mmr.2017.6989
|
[20]
|
Guan, X. and Guan, Y. (2020) Artemisinin Induces Selective and Potent Anticancer Effects in Drug Resistant Breast Cancer Cells by Inducing Cellular Apoptosis and Autophagy and G2/M Cell Cycle Arrest. J BUON, 25, 1330-1336.
|
[21]
|
Sangiovanni, E., et al. (2014) Inhibition of Metalloproteinase-9 Secretion and Gene Expression by Artemisinin Derivatives. Acta Tropica: Journal of Biomedical Sciences, 140, 77-83.
|
[22]
|
Tong, Y., Liu, Y., Zheng, H., Zheng, L., Liu, W., Wu, J., et al. (2016) Artemisinin and Its Derivatives Can Significantly Inhibit Lung Tumorigenesis and Tumor Metastasis through Wnt/β-Catenin Signaling. Oncotarget, 7, 31413-31428. https://doi.org/10.18632/oncotarget.8920
|
[23]
|
Mi, Y., Geng, G., Zou, Z., Gao, J., Luo, X., Liu, Y., et al. (2015) Dihydroartemisinin Inhibits Glucose Uptake and Cooperates with Glycolysis Inhibitor to Induce Apoptosis in Non-Small Cell Lung Carcinoma Cells. PLOS ONE, 10, e0120426. https://doi.org/10.1371/journal.pone.0120426
|
[24]
|
Xu, X., Lai, Y. and Hua, Z. (2019) Apoptosis and Apoptotic Body: Disease Message and Therapeutic Target Potentials. Bioscience Reports, 39, BSR20180992. https://doi.org/10.1042/bsr20180992
|
[25]
|
Lemke, D., Pledl, H., Zorn, M., Jugold, M., Green, E., Blaes, J., et al. (2016) Slowing down Glioblastoma Progression in Mice by Running or the Anti-Malarial Drug Dihydroartemisinin? Induction of Oxidative Stress in Murine Glioblastoma Therapy. Oncotarget, 7, 56713-56725. https://doi.org/10.18632/oncotarget.10723
|
[26]
|
Lu, Y., Chen, T., Qu, J., Pan, W., Sun, L. and Wei, X. (2009) Dihydroartemisinin (DHA) Induces Caspase-3-Dependent Apoptosis in Human Lung Adenocarcinoma ASTC-a-1 Cells. Journal of Biomedical Science, 16, Article No. 16. https://doi.org/10.1186/1423-0127-16-16
|
[27]
|
Sarmiento-Salinas, F.L., Delgado-Magallón, A., Montes-Alvarado, J.B., Ramírez-Ramírez, D., Flores-Alonso, J.C., Cortés-Hernández, P., et al. (2019) Breast Cancer Subtypes Present a Differential Production of Reactive Oxygen Species (ROS) and Susceptibility to Antioxidant Treatment. Frontiers in Oncology, 9, Article 480. https://doi.org/10.3389/fonc.2019.00480
|
[28]
|
Weidle, U.H., Birzele, F., Kollmorgen, G. and Rüger, R. (2017) The Multiple Roles of Exosomes in Metastasis. Cancer Genomics & Proteomics, 14, 1-16. https://doi.org/10.21873/cgp.20015
|
[29]
|
Tang, T., Xia, Q. and Xi, M. (2021) Dihydroartemisinin and Its Anticancer Activity against Endometrial Carcinoma and Cervical Cancer: Involvement of Apoptosis, Autophagy and Transferrin Receptor. Singapore Medical Journal, 62, 96-103. https://doi.org/10.11622/smedj.2019138
|
[30]
|
Thongchot, S., et al. (2018) Dihydroartemisinin Induces Apoptosis and Autophagy-Dependent Cell Death in Cholangiocarcinoma through a DAPK1-BECLIN1 Pathway. Molecular Carcinogenesis, 57, 1735-1750.
|
[31]
|
Luo, Q., Zhang, S., Zhang, D., Feng, R., Li, N., Chen, W., et al. (2021) Effects and Mechanisms of Anlotinib and Dihydroartemisinin Combination Therapy in Ameliorating Malignant Biological Behavior of Gastric Cancer Cells. Current Pharmaceutical Biotechnology, 22, 523-533. https://doi.org/10.2174/1389201021666200623132803
|
[32]
|
Wattanakul, T., Baker, M., Mohrle, J., McWhinney, B., Hoglund, R.M., McCarthy, J.S., et al. (2021) Semimechanistic Pharmacokinetic and Pharmacodynamic Modeling of Piperaquine in a Volunteer Infection Study with Plasmodium falciparum Blood-Stage Malaria. Antimicrobial Agents and Chemotherapy, 65, e01583-20. https://doi.org/10.1128/aac.01583-20
|
[33]
|
Varmazyad, M., Modi, M.M., Kalen, A.L., Sarsour, E.H., Wagner, B., Du, J., et al. (2021) N-Alkyl Triphenylvinylpyridinium Conjugated Dihydroartemisinin Perturbs Mitochondrial Functions Resulting in Enhanced Cancer versus Normal Cell Toxicity. Free Radical Biology and Medicine, 165, 421-434. https://doi.org/10.1016/j.freeradbiomed.2021.01.050
|
[34]
|
Guo, S., Yao, X., Jiang, Q., Wang, K., Zhang, Y., Peng, H., et al. (2020) Dihydroartemisinin-Loaded Magnetic Nanoparticles for Enhanced Chemodynamic Therapy. Frontiers in Pharmacology, 11, Article 226. https://doi.org/10.3389/fphar.2020.00226
|
[35]
|
Liu, Y., Tian, Y., Cai, W., Guo, Y., Xue, C. and Wang, J. (2021) DHA/EPA-Enriched Phosphatidylcholine Suppresses Tumor Growth and Metastasis via Activating Peroxisome Proliferator-Activated Receptor γ in Lewis Lung Cancer Mice. Journal of Agricultural and Food Chemistry, 69, 676-685. https://doi.org/10.1021/acs.jafc.0c06890
|
[36]
|
Shen, Y., et al. (2018) Transferrin Receptor 1 in Cancer: A New Sight for Cancer Therapy. American Journal of Cancer Research, 8, 916-931.
|
[37]
|
Shen, Y., Zhang, B., Su, Y., Badshah, S.A., Wang, X., Li, X., et al. (2020) Iron Promotes Dihydroartemisinin Cytotoxicity via ROS Production and Blockade of Autophagic Flux via Lysosomal Damage in Osteosarcoma. Frontiers in Pharmacology, 11, Article 444. https://doi.org/10.3389/fphar.2020.00444
|
[38]
|
Liu, X., Lu, J., Liao, Y., Liu, S., Chen, Y., He, R., et al. (2019) Dihydroartemisinin Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation and Oxidative Stress. Biomedicine & Pharmacotherapy, 117, Article ID: 109070. https://doi.org/10.1016/j.biopha.2019.109070
|
[39]
|
Wang, L., Liu, L., Chen, Y., Du, Y., Wang, J. and Liu, J. (2018) Correlation between Adenosine Triphosphate (ATP)-Binding Cassette Transporter G2 (ABCG2) and Drug Resistance of Esophageal Cancer and Reversal of Drug Resistance by Artesunate. Pathology—Research and Practice, 214, 1467-1473. https://doi.org/10.1016/j.prp.2018.08.001
|
[40]
|
Gruber, L., Abdelfatah, S., Fröhlich, T., Reiter, C., Klein, V., Tsogoeva, S., et al. (2018) Treatment of Multidrug-Resistant Leukemia Cells by Novel Artemisinin-, Egonol-, and Thymoquinone-Derived Hybrid Compounds. Molecules, 23, Article 841. https://doi.org/10.3390/molecules23040841
|
[41]
|
Li, Y., Shi, N., Zhang, W., Zhang, H., Song, Y., Zhu, W., et al. (2020) Supramolecular Hybrids of Carbon Dots and Dihydroartemisinin for Enhanced Anticancer Activity and Mechanism Analysis. Journal of Materials Chemistry B, 8, 9777-9784. https://doi.org/10.1039/d0tb01826k
|
[42]
|
Hientz, K., Mohr, A., Bhakta-Guha, D. and Efferth, T. (2016) The Role of P53 in Cancer Drug Resistance and Targeted Chemotherapy. Oncotarget, 8, 8921-8946. https://doi.org/10.18632/oncotarget.13475
|
[43]
|
陈卫强, 戚好文, 吴昌归, 等. 双氢青蒿素和顺铂诱导人肺腺癌A549/CDDP细胞凋亡[J]. 现代肿瘤医学, 2007(5): 616-619.
|
[44]
|
Zhang, J., Wang, Z., Hu, W., Chen, S., Lou, X. and Zhou, H. (2013) DHA Regulates Angiogenesis and Improves the Efficiency of CDDP for the Treatment of Lung Carcinoma. Microvascular Research, 87, 14-24. https://doi.org/10.1016/j.mvr.2013.02.006
|
[45]
|
Zhou, H., Zhang, J., Li, A., Wang, Z. and Lou, X. (2009) Dihydroartemisinin Improves the Efficiency of Chemotherapeutics in Lung Carcinomas in Vivo and Inhibits Murine Lewis Lung Carcinoma Cell Line Growth in Vitro. Cancer Chemotherapy and Pharmacology, 66, 21-29. https://doi.org/10.1007/s00280-009-1129-z
|
[46]
|
Bicheng, Z., et al. (2018) Dihydroartemisinin Sensitizes Lewis Lung Carcinoma Cells to Carboplatin Therapy via p38 Mito-Gen-Activated Protein Kinase Activation. Oncology Letters, 15, 7531-7536.
|
[47]
|
左占杰, 王松涛, 江莉祥, 等. 二氢青蒿素联合放疗对肺癌GLC-82细胞凋亡的影响及机制研究[J]. 中国中西医结合杂志, 2014, 34(10): 1220-1224.
|