[1]
|
陈莹, 谭婕, 李兴佳, 等. Graves病患者的促甲状腺素受体抗体与甲状腺刺激性免疫球蛋白及甲巯咪唑治疗反应的相关性[J]. 重庆医科大学学报, 2022, 47(11): 1327-1332.
|
[2]
|
刘永德, 于建成. Graves病131I治疗后早发甲减的相关因素分析[J]. 标记免疫分析与临床, 2023, 30(4): 644-648.
|
[3]
|
王超群, 匡蕾, 梁军. 肠道微生物与Graves病关系的研究进展[J]. 中国医药导报, 2023, 20(2): 43-46.
|
[4]
|
中华医学会核医学会. 131I治疗格雷夫斯甲亢指南(2021版) [J]. 中华核医学与分子影像杂志, 2021, 41(4): 243-253.
|
[5]
|
Walker, M.D. and Shane, E. (2022) Hypercalcemia: A Review. JAMA, 328, 1624-1636. https://doi.org/10.1001/jama.2022.18331
|
[6]
|
黄勤, 魏军平. Graves病发病机制研究进展[J]. 世界中医药, 2023, 18(7): 1044-1048.
|
[7]
|
赵冬, 王广. 儿童及青少年Graves病的治疗进展[J]. 医学综述, 2023, 29(6): 1164-1169.
|
[8]
|
张青, 李乐乐, 柴晓峰, 等. 甲状腺功能亢进症患者血清鸢尾素水平与Graves病的关系研究[J]. 中国全科医学, 2023, 26(8): 927-931+938.
|
[9]
|
Motlaghzadeh, Y., Bilezikian, J.P. and Sellmeyer, D.E. (2021) Rare Causes of Hypercalcemia: 2021 Update. The Journal of Clinical Endocrinology & Metabolism, 106, 3113-3128. https://doi.org/10.1210/clinem/dgab504
|
[10]
|
Tonon, C.R., Silva, T.A.A.L., Pereira, F.W.L., Queiroz, D.A.R., Junior, E.L.F., Martins, D., et al. (2022) A Review of Current Clinical Concepts in the Pathophysiology, Etiology, Diagnosis, and Management of Hypercalcemia. Medical Science Monitor, 28, e935821. https://doi.org/10.12659/msm.935821
|
[11]
|
Goltzman, D. (2021) Pathophysiology of Hypercalcemia. Endocrinology and Metabolism Clinics of North America, 50, 591-607. https://doi.org/10.1016/j.ecl.2021.07.008
|
[12]
|
Lugo Lopez, Z.M., Penna, L.E.M., Ortiz, A.N., Rivera, I.A., Diez, A.d.T., Bossolo, A.N.G., et al. (2021) Graves’ Disease Induced Severe Hypercalcemia. Journal of the Endocrine Society, 5, A931. https://doi.org/10.1210/jendso/bvab048.1903
|
[13]
|
陈长军, 王秋入, 赵鑫, 等. 骨质疏松症的发病机制及临床药物治疗研究进展[J]. 重庆医科大学学报, 2024, 49(10): 1031-1038.
|
[14]
|
马兴坡, 牛敏, 申金付, 等. 甲亢患者骨代谢指标与甲状腺激素的相关性及对甲亢性疏松的预测价值[J]. 河北医学, 2021, 27(7): 1085-1090.
|
[15]
|
蒋瑞妹, 王卓群, 牛敏, 等. 骨吸收标志物β-CTX与Graves病患者并发高钙血症的相关性[J]. 中国医师杂志, 2023, 25(4): 528-531, 536.
|
[16]
|
罗文, 罗钢, 周玉玲, 等. Graves病患者血清IL-23, IL-17及Klotho蛋白水平变化及意义[J]. 现代检验医学杂志, 2022, 37 (4): 178-182.
|
[17]
|
Dadu, R., et al. (2020) Calcium-Sensing Receptor Autoantibody-Mediated Hypoparathyroidism Associated with Immune Checkpoint Inhibitor Therapy: Diagnosis and Long-Term Follow-Up. Journal for Immunotherapy of Cancer, 8, e000687. https://doi.org/10.1136/jitc-2020-000687
|
[18]
|
Fux-Otta, C., Reynoso, R., Chedraui, P., Estario, P., Estario, M.E., Iraci, G., et al. (2024) Clinical and Molecular Evaluation of Insulin Autoimmune Syndrome in a Woman with Graves’ Disease Who Subsequently Became Pregnant: A Case Report. Case Reports in Women’s Health, 43, e00644. https://doi.org/10.1016/j.crwh.2024.e00644
|
[19]
|
Maruotti, N., Corrado, A., Rotondo, C. and Cantatore, F.P. (2019) Janus Kinase Inhibitors Role in Bone Remodeling. Journal of Cellular Physiology, 235, 1915-1920. https://doi.org/10.1002/jcp.29149
|
[20]
|
Kaur, K., Batra, N., Kadian, K. and Sridharan, K. (2022) Hypercalcaemia as the Initial Presentation of Graves’ Disease. BMJ Case Reports, 15, e251454. https://doi.org/10.1136/bcr-2022-251454
|
[21]
|
Mura, C., Sonnino, R., Crispino, L., Rota, C.A. and Pontecorvi, A. (2024) Graves’ Disease in Hypopituitarism Due to Pituitary Apoplexy. Endocrine, Metabolic & Immune Disorders—Drug Targets, 24, 21. https://doi.org/10.2174/0118715303322830240528051609
|
[22]
|
Huang, F., Zhang, L., Zhou, Y., Zhao, S. and Wang, J. (2024) NrCAM Activates the NF-κB Signalling Pathway by Competitively Binding to SUMO‐1 and Promotes Th17 Cell Differentiation in Graves’ Disease. Scandinavian Journal of Immunology, 100, e13401. https://doi.org/10.1111/sji.13401
|
[23]
|
Vogt, A.Z. and Vrcek, I.M. (2024) Use of Oxymetazoline Hydrochloride Ophthalmic Solution, 0.1% for Improved Lid Symmetry in Graves’ Disease. Orbit, 44, 34-38. https://doi.org/10.1080/01676830.2024.2389303
|
[24]
|
Smith, T.J., Holt, R.J., Fu, Q., Qashqai, A., Barretto, N., Conrad, E., et al. (2024) Assessment of Hearing Dysfunction in Patients with Graves’ Disease and Thyroid Eye Disease without or with Teprotumumab. The Journal of Clinical Endocrinology & Metabolism, 110, 811-819. https://doi.org/10.1210/clinem/dgae560
|
[25]
|
Berger, J.M. and Karsenty, G. (2022) Osteocalcin and the Physiology of Danger. FEBS Letters, 596, 665-680. https://doi.org/10.1002/1873-3468.14259
|
[26]
|
Gillet, M., Vasikaran, S. and Inderjeeth, C. (2021) The Role of PINP in Diagnosis and Management of Metabolic Bone Disease. Clinical Biochemist Reviews, 42, 3-10. https://doi.org/10.33176/aacb-20-0001
|
[27]
|
Kefeli, M., Gucer, H., Durmus, E.T., Atmaca, A., Colak, R. and Mete, O. (2024) Prevalence of Papillary Thyroid Carcinoma Is Significantly Higher in Graves Disease with Synchronous Thyroid Nodules. Turkish Journal of Pathology, 40, 190-195. https://doi.org/10.5146/tjpath.2024.13650
|
[28]
|
Zavaleta, C.J.M., Aldave, Q.E.J., Fabián, R.E.K., et al. (2024) Methimazole-Induced Pancytopenia in a Patient with Graves’ Disease: A Case Report and Literature Review. Current Drug Safety, 20, 371-376.
|
[29]
|
Schiavone, D., Crimì, F., Cabrelle, G., Pennelli, G., Sacchi, D., Mian, C., et al. (2024) Role of Lugol Solution before Total Thyroidectomy for Graves’ Disease: Randomized Clinical Trial. British Journal of Surgery, 111, znae196. https://doi.org/10.1093/bjs/znae196
|
[30]
|
Cai, H., Chen, S., Jiang, Z., Chen, L. and Yang, X. (2024) PTPN22 through the Regulation of Th17/Treg Balance Acts as a Potential Target for the Treatment of Graves’ Disease. Tissue and Cell, 90, Article ID: 102502. https://doi.org/10.1016/j.tice.2024.102502
|
[31]
|
Lanzolla, G., Marinò, M. and Menconi, F. (2024) Graves Disease: Latest Understanding of Pathogenesis and Treatment Options. Nature Reviews Endocrinology, 20, 647-660. https://doi.org/10.1038/s41574-024-01016-5
|
[32]
|
Kartini, D. and Dini, M.A.R. (2024) Pediatric Graves’ Disease: Surgical Interventions in a Single Institution—A Comprehensive Case Series. Indian Journal of Otolaryngology and Head & Neck Surgery, 76, 4846-4850. https://doi.org/10.1007/s12070-024-04902-6
|
[33]
|
Silva, B.C.A., Damas, I.I., Moma, A.C., et al. (2024) Lower Proportion of Intra-Thyroidal B Lymphocytes CD20+ Associated to Methimazole and Lack of Influence of Iodide on Lymphocyte Subpopulations in Graves’ Disease. Molecular and Cellular Endocrinology, 592, Article ID: 112331.
|