[1]
|
Fernando, A.B.P. and Robbins, T.W. (2011) Animal Models of Neuropsychiatric Disorders. Annual Review of Clinical Psychology, 7, 39-61. https://doi.org/10.1146/annurev-clinpsy-032210-104454
|
[2]
|
Bell, V., Wilkinson, S., Greco, M., Hendrie, C., Mills, B. and Deeley, Q. (2020) What Is the Functional/Organic Distinction Actually Doing in Psychiatry and Neurology? Wellcome Open Research, 5, Article 138. https://doi.org/10.12688/wellcomeopenres.16022.1
|
[3]
|
Khowdiary, M.M., Al-kuraishy, H.M., Al-Gareeb, A.I., Albuhadily, A.K., Elhenawy, A.A., Babalghith, A.O., et al. (2025) Dysregulation of Serotonergic Neurotransmission in Parkinson Disease: A Key Duet. European Journal of Pharmacology, 995, Article ID: 177419. https://doi.org/10.1016/j.ejphar.2025.177419
|
[4]
|
Goto, S. (2024) Functional Pathology of Neuroleptic-Induced Dystonia Based on the Striatal Striosome-Matrix Dopamine System in Humans. Journal of Neurology, Neurosurgery & Psychiatry, 96, 177-183. https://doi.org/10.1136/jnnp-2024-334545
|
[5]
|
Marafioti, G., Culicetto, L., Latella, D., Marra, A., Quartarone, A. and Lo Buono, V. (2025) Neural Correlates of Subjective Cognitive Decline in Alzheimer’s Disease: A Systematic Review of Structural and Functional Brain Changes for Early Diagnosis and Intervention. Frontiers in Aging Neuroscience, 17, Article 1549134. https://doi.org/10.3389/fnagi.2025.1549134
|
[6]
|
Liss, A., Siddiqi, M.T., Marsland, P. and Varodayan, F.P. (2025) Neuroimmune Regulation of the Prefrontal Cortex Tetrapartite Synapse. Neuropharmacology, 269, Article ID: 110335. https://doi.org/10.1016/j.neuropharm.2025.110335
|
[7]
|
Hekmatimoghaddam, S., Zare‐Khormizi, M.R. and Pourrajab, F. (2016) Underlying Mechanisms and Chemical/Biochemical Therapeutic Approaches to Ameliorate Protein Misfolding Neurodegenerative Diseases. BioFactors, 43, 737-759. https://doi.org/10.1002/biof.1264
|
[8]
|
Thapar, A., Cooper, M. and Rutter, M. (2017) Neurodevelopmental Disorders. The Lancet Psychiatry, 4, 339-346. https://doi.org/10.1016/s2215-0366(16)30376-5
|
[9]
|
Pitsikas, N. (2024) Evaluation of the Potential Efficacy of the Nitric Oxide Donor Molsidomine for the Treatment of Schizophrenia. Medical Gas Research, 15, 228-233. https://doi.org/10.4103/mgr.medgasres-d-24-00070
|
[10]
|
Wu, S., Zhang, Y., Lu, Y., Yin, Y., Yang, C., Tang, W., et al. (2025) Vascular Depression: A Comprehensive Exploration of the Definition, Mechanisms, and Clinical Challenges. Neurobiology of Disease, 211, Article ID: 106946. https://doi.org/10.1016/j.nbd.2025.106946
|
[11]
|
Bray, N.J. and O’Donovan, M.C. (2018) The Genetics of Neuropsychiatric Disorders. Brain and Neuroscience Advances, 2, 1-6. https://doi.org/10.1177/2398212818799271
|
[12]
|
Kisku, A., Nishad, A., Agrawal, S., Paliwal, R., Datusalia, A.K., Gupta, G., et al. (2024) Recent Developments in Intranasal Drug Delivery of Nanomedicines for the Treatment of Neuropsychiatric Disorders. Frontiers in Medicine, 11, Article 1463976. https://doi.org/10.3389/fmed.2024.1463976
|
[13]
|
Missal, M. and Keller, E.L. (2002) Common Inhibitory Mechanism for Saccades and Smooth-Pursuit Eye Movements. Journal of Neurophysiology, 88, 1880-1892. https://doi.org/10.1152/jn.2002.88.4.1880
|
[14]
|
Przybyszewski, A.W., Śledzianowski, A., Chudzik, A., Szlufik, S. and Koziorowski, D. (2023) Machine Learning and Eye Movements Give Insights into Neurodegenerative Disease Mechanisms. Sensors, 23, Article 2145. https://doi.org/10.3390/s23042145
|
[15]
|
Poletti, B., Carelli, L., Solca, F., Lafronza, A., Pedroli, E., Faini, A., et al. (2017) An Eye-Tracker Controlled Cognitive Battery: Overcoming Verbal-Motor Limitations in ALS. Journal of Neurology, 264, 1136-1145. https://doi.org/10.1007/s00415-017-8506-z
|
[16]
|
Tao, L., Wang, Q., Liu, D., Wang, J., Zhu, Z. and Feng, L. (2020) Eye Tracking Metrics to Screen and Assess Cognitive Impairment in Patients with Neurological Disorders. Neurological Sciences, 41, 1697-1704. https://doi.org/10.1007/s10072-020-04310-y
|
[17]
|
Daffner, K.R., Scinto, L.F.M., Weintraub, S., Guinessey, J.E. and Mesulam, M.M. (1992) Diminished Curiosity in Patients with Probable Alzheimer’s Disease as Measured by Exploratory Eye Movements. Neurology, 42, 320-320. https://doi.org/10.1212/wnl.42.2.320
|
[18]
|
Levy, D.L., Holzman, P.S., Matthysse, S. and Mendell, N.R. (1993) Eye Tracking Dysfunction and Schizophrenia: A Critical Perspective. Schizophrenia Bulletin, 19, 461-536. https://doi.org/10.1093/schbul/19.3.461
|
[19]
|
Holzman, P.S. (1988) A Single Dominant Gene Can Account for Eye Tracking Dysfunctions and Schizophrenia in Offspring of Discordant Twins. Archives of General Psychiatry, 45, 641-647. https://doi.org/10.1001/archpsyc.1988.01800310049006
|
[20]
|
Klin, A., Jones, W., Schultz, R., Volkmar, F. and Cohen, D. (2002) Visual Fixation Patterns during Viewing of Naturalistic Social Situations as Predictors of Social Competence in Individuals with Autism. Archives of General Psychiatry, 59, 809-816. https://doi.org/10.1001/archpsyc.59.9.809
|
[21]
|
Perugini, A., Ditterich, J., Shaikh, A.G., Knowlton, B.J. and Basso, M.A. (2018) Paradoxical Decision-Making: A Framework for Understanding Cognition in Parkinson’s Disease. Trends in Neurosciences, 41, 512-525. https://doi.org/10.1016/j.tins.2018.04.006
|
[22]
|
Chow, N., Aarsland, D., Honarpisheh, H., Beyer, M.K., Somme, J.H., Elashoff, D., et al. (2012) Comparing Hippocampal Atrophy in Alzheimer’s Dementia and Dementia with Lewy Bodies. Dementia and Geriatric Cognitive Disorders, 34, 44-50. https://doi.org/10.1159/000339727
|
[23]
|
Wang, C.-A., McInnis, H., Brien, D.C., Pari, G. and Munoz, D.P. (2016) Disruption of Pupil Size Modulation Correlates with Voluntary Motor Preparation Deficits in Parkinson’s Disease. Neuropsychologia, 80, 176-184. https://doi.org/10.1016/j.neuropsychologia.2015.11.019
|
[24]
|
Pavisic, I.M., Firth, N.C., Parsons, S., Rego, D.M., Shakespeare, T.J., Yong, K.X.X., et al. (2017) Eyetracking Metrics in Young Onset Alzheimer’s Disease: A Window into Cognitive Visual Functions. Frontiers in Neurology, 8, Article 377. https://doi.org/10.3389/fneur.2017.00377
|
[25]
|
Lee, D.Y., Choi, B., Kim, C., Fridgeirsson, E., Reps, J., Kim, M., et al. (2023) Privacy-Preserving Federated Model Predicting Bipolar Transition in Patients with Depression: Prediction Model Development Study. Journal of Medical Internet Research, 25, e46165. https://doi.org/10.2196/46165
|
[26]
|
Kang, S., Jeon, S., Lee, Y. and Ye, B.S. (2023) Striatal Dopamine Transporter Uptake, Parkinsonism and Cognition in Alzheimer’s Disease. European Journal of Neurology, 30, 3105-3113. https://doi.org/10.1111/ene.15995
|
[27]
|
Lio, G., Corazzol, M., Fadda, R., Doneddu, G. and Sirigu, A. (2025) A Neuronal Marker of Eye Contact Spontaneously Activated in Neurotypical Subjects but Not in Autistic Spectrum Disorders. Cortex, 183, 87-104. https://doi.org/10.1016/j.cortex.2024.10.022
|
[28]
|
Orui, M., Ishikuro, M., Obara, T., Noda, A., Shinoda, G., Murakami, K., et al. (2025) Longitudinal Association between the Duration of Eye Gaze Fixation on Social Information and Specific Symptoms of Neurodevelopmental Disorders in Children: A Large‐Scale Community‐Based Cohort Study. Psychiatry and Clinical Neurosciences Reports, 4, e70095. https://doi.org/10.1002/pcn5.70095
|
[29]
|
Tatham, A.J., Murray, I.C., McTrusty, A.D., Cameron, L.A., Perperidis, A., Brash, H.M., et al. (2020) Speed and Accuracy of Saccades in Patients with Glaucoma Evaluated Using an Eye Tracking Perimeter. BMC Ophthalmology, 20, Article No. 259. https://doi.org/10.1186/s12886-020-01528-4
|
[30]
|
Kumar, D., Dutta, A., Das, A. and Lahiri, U. (2016) SmartEye: Developing a Novel Eye Tracking System for Quantitative Assessment of Oculomotor Abnormalities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24, 1051-1059. https://doi.org/10.1109/tnsre.2016.2518222
|
[31]
|
Efron, N. (2023) Augmented Reality Contact Lenses—So near Yet So Far. Clinical and Experimental Optometry, 106, 349-350. https://doi.org/10.1080/08164622.2023.2188176
|
[32]
|
Wu, C., Liaqat, S., Cheung, S., Chuah, C. and Ozonoff, S. (2019) Predicting Autism Diagnosis Using Image with Fixations and Synthetic Saccade Patterns. 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shanghai, 8-12 July 2019, 647-650. https://doi.org/10.1109/icmew.2019.00125
|
[33]
|
王文浩. 应用眼动技术和深度学习对自闭症的分类评估研究[D]: [硕士学位论文]. 南昌: 江西师范大学, 2023.
|
[34]
|
Wang, Y., Lyu, H., Tian, X., Lang, B., Wang, X., St Clair, D., et al. (2022) The Similar Eye Movement Dysfunction between Major Depressive Disorder, Bipolar Depression and Bipolar Mania. The World Journal of Biological Psychiatry, 23, 689-702. https://doi.org/10.1080/15622975.2022.2025616
|
[35]
|
戚静瑜, 阮宗才. 虚拟现实在自闭症儿童干预训练中的应用及展望[J]. 信息化研究, 2017, 43(6): 7-12.
|
[36]
|
梁璇. 虚拟现实技术对自闭症干预的适用性研究[J]. 绥化学院学报, 2017, 37(7): 100-103.
|
[37]
|
Roh, O.B., Son, C.N., Park, T.W., et al. (2011) The Effects of Neurofeedback Training on Inattention and Hyperactivity/Impulsivity in Children with ADHD. Korean Journal of Clinical Psychology, 30, 397-418. https://doi.org/10.15842/kjcp.2011.30.2.003
|
[38]
|
Cantwell, D.P. and Baker, L. (1989) Stability and Natural History of DSM-III Childhood Diagnoses. Journal of the American Academy of Child & Adolescent Psychiatry, 28, 691-700. https://doi.org/10.1097/00004583-198909000-00009
|
[39]
|
Sekaninová, N., Mestanik, M., Mestanikova, A., Hamrakova, A. and Tonhajzerova, I. (2019) Novel Approach to Evaluate Central Autonomic Regulation in Attention Deficit/Hyperactivity Disorder (ADHD). Physiological Research, 68, 531-545. https://doi.org/10.33549/physiolres.934160
|
[40]
|
Kwon, S.Y., Seo, G., Jang, M., Shin, H., Choi, W., Lim, Y.B., et al. (2023) The Effect of Mobile Neurofeedback Training in Children with Attention Deficit Hyperactivity Disorder: A Randomized Controlled Trial. Clinical Psychopharmacology and Neuroscience, 22, 67-78. https://doi.org/10.9758/cpn.23.1054
|
[41]
|
Lee, T., Yeung, M., Sze, S. and Chan, A. (2020) Computerized Eye-Tracking Training Improves the Saccadic Eye Movements of Children with Attention-Deficit/Hyperactivity Disorder. Brain Sciences, 10, Article 1016. https://doi.org/10.3390/brainsci10121016
|
[42]
|
陈建语, 苗婵婵, 樊琦, 等. 癫痫共患情绪障碍的发病机制与诊疗进展[J]. 山东医药, 2024, 64(34): 108-111.
|
[43]
|
Lunn, J., Donovan, T., Litchfield, D., Lewis, C., Davies, R. and Crawford, T. (2016) Saccadic Eye Movement Abnormalities in Children with Epilepsy. PLOS ONE, 11, e0160508. https://doi.org/10.1371/journal.pone.0160508
|
[44]
|
Nagasawa, T., Matsuzaki, N., Juhász, C., Hanazawa, A., Shah, A., Mittal, S., et al. (2011) Occipital Gamma-Oscillations Modulated during Eye Movement Tasks: Simultaneous Eye Tracking and Electrocorticography Recording in Epileptic Patients. NeuroImage, 58, 1101-1109. https://doi.org/10.1016/j.neuroimage.2011.07.043
|
[45]
|
Sekar, A., Panouillères, M. and Kaski, D. (2024) Detecting Abnormal Eye Movements in Patients with Neurodegenerative Diseases—Current Insights. Eye and Brain, 16, 3-16. https://doi.org/10.2147/eb.s384769
|
[46]
|
Mosimann, U.P. (2004) Visual Exploration Behaviour during Clock Reading in Alzheimer’s Disease. Brain, 127, 431-438. https://doi.org/10.1093/brain/awh051
|
[47]
|
Parra, M.A., Della Sala, S., Logie, R.H. and Morcom, A.M. (2014) Neural Correlates of Shape-Color Binding in Visual Working Memory. Neuropsychologia, 52, 27-36. https://doi.org/10.1016/j.neuropsychologia.2013.09.036
|
[48]
|
Hannonen, S., Andberg, S., Kärkkäinen, V., Rusanen, M., Lehtola, J., Saari, T., et al. (2022) Shortening of Saccades as a Possible Easy-to-Use Biomarker to Detect Risk of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 88, 609-618. https://doi.org/10.3233/jad-215551
|
[49]
|
Kassavetis, P., Kaski, D., Anderson, T. and Hallett, M. (2022) Eye Movement Disorders in Movement Disorders. Movement Disorders Clinical Practice, 9, 284-295. https://doi.org/10.1002/mdc3.13413
|
[50]
|
Stuart, S., Lawson, R.A., Yarnall, A.J., Nell, J., Alcock, L., Duncan, G.W., et al. (2019) Pro‐Saccades Predict Cognitive Decline in Parkinson’s Disease: ICICLE‐PD. Movement Disorders, 34, 1690-1698. https://doi.org/10.1002/mds.27813
|
[51]
|
Riek, H.C., Brien, D.C., Coe, B.C., et al. (2023) Cognitive Correlates of Antisaccade Behaviour across Multiple Neurodegenerative Diseases. Brain Communications, 5, fcad049.
|
[52]
|
Pretegiani, E. and Optican, L.M. (2017) Eye Movements in Parkinson’s Disease and Inherited Parkinsonian Syndromes. Frontiers in Neurology, 8, Article 592. https://doi.org/10.3389/fneur.2017.00592
|
[53]
|
George, S., Rey, N.L., Tyson, T., Esquibel, C., Meyerdirk, L., Schulz, E., et al. (2019) Microglia Affect α-Synuclein Cell-to-Cell Transfer in a Mouse Model of Parkinson’s Disease. Molecular Neurodegeneration, 14, Article No. 34. https://doi.org/10.1186/s13024-019-0335-3
|
[54]
|
Zhu, H., Yang, H., Xu, S., Ma, Y., Zhu, S., Mao, Z., et al. (2024) Frequency-Encoded Eye Tracking Smart Contact Lens for Human-Machine Interaction. Nature Communications, 15, Article No. 3588. https://doi.org/10.1038/s41467-024-47851-y
|
[55]
|
Qi, Z., Liu, H., Jin, F., Wang, Y., Lu, X., Liu, L., et al. (2025) A Wearable Repetitive Transcranial Magnetic Stimulation Device. Nature Communications, 16, Article No. 2731. https://doi.org/10.1038/s41467-025-58095-9
|
[56]
|
Diotaiuti, P., Marotta, G., Di Siena, F., Vitiello, S., Di Prinzio, F., Rodio, A., et al. (2025) Eye Tracking in Parkinson’s Disease: A Review of Oculomotor Markers and Clinical Applications. Brain Sciences, 15, Article 362. https://doi.org/10.3390/brainsci15040362
|
[57]
|
Wang, C. and Munoz, D.P. (2015) A Circuit for Pupil Orienting Responses: Implications for Cognitive Modulation of Pupil Size. Current Opinion in Neurobiology, 33, 134-140. https://doi.org/10.1016/j.conb.2015.03.018
|
[58]
|
Tabashum, T., Zaffer, A., Yousefzai, R., Colletta, K., Jost, M.B., Park, Y., et al. (2021) Detection of Parkinson’s Disease through Automated Pupil Tracking of the Post-Illumination Pupillary Response. Frontiers in Medicine, 8, Article 645293. https://doi.org/10.3389/fmed.2021.645293
|
[59]
|
韦卓男, 樊响, 余可妍, 等. 结构MRI联合基于VR眼动追踪技术的计算机化认知评估在阿尔茨海默病早期诊断中的应用价值[J]. 磁共振成像, 2024, 15(6): 49-53.
|
[60]
|
程蓉, 赵众, 侯文文, 等. 不同意图场景眼动注视模式机器学习算法识别孤独症谱系障碍的研究[J]. 中国当代儿科杂志, 2024, 26(2): 151-157.
|
[61]
|
杨丽颖, 郑月, 康传依, 等. 眼动追踪技术应用于抑郁障碍患者注意偏向观察的研究进展[J]. 神经疾病与精神卫生, 2021, 21(10): 730-734.
|
[62]
|
王诗雅, 魏璇, 颜颖, 等. 多模态MRI在帕金森病快速眼动期睡眠行为障碍中综述应用的研究进展[J]. 临床和实验医学杂志, 2023, 22(2): 221-225.
|
[63]
|
杨燕楠, 宋天彬, 詹淑琴. 快眼动睡眠期行为障碍相关影像学研究进展[J]. 中风与神经疾病杂志, 2025, 42(3): 209-212, 192.
|
[64]
|
李嘉祺, 罗光丽, 陈星宇, 等. 信息技术对抑郁症心理调适的模式开发创新研究——基于VR沉浸技术的应用[J]. 电子质量, 2022(1): 62-66.
|
[65]
|
郭婧, 张一, 张瑜, 等. 眼动追踪测试与认知量表的相关性研究[C]//中国康复医学会. 2023中国康复医学会综合学术年会暨国际康复医疗产业博览会论文汇编. 常州: 常州市第一人民医院, 2023: 185-192.
|