水华藻类群落光合特性、环境调控机制及生态应用研究进展
Research Advances on the Photosynthetic Characteristics, Environmental Regulatory Mechanisms, and Ecological Applications of Harmful Algal Bloom Communities
摘要: 微囊藻和鱼腥藻等蓝藻因其卓越的光合能力和多样化的适应策略,在淡水与海洋生态系统中频繁导致有害藻华(HABs),威胁水质安全和生态平衡。本文基于近年来的相关研究,从以下4个方面综述了蓝藻光合特性及其环境响应:1) 光合色素与光能利用:探讨叶绿素a、类胡萝卜素和藻胆蛋白在有毒与无毒菌株之间的差异,并分析非光化学淬灭(NPQ)的调控机制。2) 电子传递与碳固定:阐述光合电子传递速率(ETR)、最大光合速率(Pmax)以及碳浓缩机制(CCM)在不同光照、二氧化碳浓度及营养条件下的调节过程及其对生长的影响。3) 环境因子的调控:总结光强、光谱、氮磷限制以及温度与紫外线交互作用对光合效率(Fv/Fm)、色素分布及群落竞争的影响。4) 群落动态与生态效应:分析蓝藻如何通过光利用策略驱动垂直分层与表层水华的形成,以及藻毒素释放、溶解氧波动和营养循环变动所引发的生态后果。此外,本文简要讨论了水华蓝藻在生物燃料、生物塑料(PHA)、废水净化和光生物电化学系统中的应用潜力,并展望了气候变化背景下二氧化碳浓度升高与紫外线增强对其光合特性与适应性演化的潜在影响。
Abstract: Bloom-forming algae, particularly cyanobacteria such as Microcystis and Oscillatoria, frequently trigger harmful algal blooms (HABs) in freshwater and marine systems due to their high photosynthetic efficiency and diverse adaptive strategies, posing serious threats to water quality and ecosystem stability. Drawing on recent literature, this review addresses their photosynthetic traits and environmental responses in four key areas: 1) Photosynthetic pigments and light utilization: a comparison of chlorophyll a, carotenoids and phycobiliproteins in toxic versus non-toxic strains, and the role of non-photochemical quenching (NPQ) in photoprotection. 2) Electron transport and carbon fixation: regulation of photosynthetic electron transport rate (ETR), maximum photosynthetic rate (Pmax) and carbon concentrating mechanisms (CCM) under varying light, CO₂ and nutrient regimes, and their effects on algal growth. 3) Environmental regulation: the impacts of light intensity, spectral quality, nitrogen/phosphorus limitation and temperature/UV interactions on photosynthetic efficiency (Fv/Fm), pigment composition and community competition. 4) Community dynamics and ecological effects: how light-use strategies drive vertical segregation and surface bloom formation, and the ecological consequences of toxin release, dissolved-oxygen fluctuations and altered nutrient cycling. In addition, we briefly review the potential biotechnological applications of bloom-forming algae in biofuel production, biodegradable plastics (PHA), wastewater treatment and photobiological electrochemical systems, and we discuss how rising CO₂ and enhanced UV under climate change may affect their photosynthetic performance and adaptive evolution.
文章引用:王丽艳, 黄文超, 王华, 骆昱春. 水华藻类群落光合特性、环境调控机制及生态应用研究进展[J]. 世界生态学, 2025, 14(3): 210-217. https://doi.org/10.12677/ije.2025.143026

1. 引言

水华藻类群落及其光合作用特性是淡水与海洋生态系统研究中的核心议题。近年来,蓝藻中的微囊藻和鱼腥藻等水华藻类在全球范围内频繁引发有害藻华(HABs),给水质、生态系统健康及水资源利用带来了深远影响[1] [2]。藻类的光合作用特性不仅直接决定其生长与竞争能力,还与光照、营养盐和温度等环境因素密切相关[1] [3] [4]。随着气候变化和人类活动的加剧,水华藻类的群落结构和光合特性发生显著变化,使水华现象变得更加复杂且难以预测[5] [6]。因此,深入探究水华藻类的光合特性及其对环境变化的响应机制,对于预测和防控有害藻华具有重要价值。

本文综述了水华藻类的光合特性、环境调控机制、群落动态及生态效应,并结合最新研究进展,深入探讨其在气候变化与人类活动背景下的适应策略。通过整合相关文献,本文旨在为水华藻类生态学研究提供系统性理论支持,同时为相关管理政策的科学制定奠定基础。

2. 水华藻类的光合特性

2.1. 光合色素与光能利用

水华藻类的光合特性与其色素组成密切相关。蓝藻中的微囊藻和鱼腥藻所含的叶绿素a、类胡萝卜素以及藻蓝蛋白和藻红蛋白等藻胆蛋白使其能够高效吸收不同波长的光能[7]。研究发现,有毒和无毒藻株在光合色素含量上存在显著差异,其中有毒藻株的叶绿素a和藻胆蛋白含量通常较高,这可能赋予其在低光环境下的竞争优势[1]。蓝藻能够通过调节色素比例适应不同光照条件,在强光下增加类胡萝卜素含量,以降低光抑制风险[7] [8]

藻胆蛋白的组成与含量显著影响蓝藻的光合作用效率。研究表明,鱼腥藻在红光和蓝光条件下的光合效率存在显著差异,这直接源于藻胆蛋白的光捕获能力[7]。蓝藻通过非光化学淬灭(NPQ)机制有效耗散多余光能,以保护光系统免受光损伤[9]。这些适应性策略使蓝藻在复杂多变的光环境中依然能够维持较高的光合效率,同时也为其在水华形成中的优势地位提供了重要的生理支持。

尽管多项研究一致指出有毒株(如Microcystis aeruginosa)在叶绿素a、藻胆蛋白含量上高于无毒株(如Anabaena circinalis) [1],但不同研究之间仍存在定量差异。Islam et al. (2017)基于溶剂提取法报告有毒株Chl a含量高出40%,而Bernát et al. (2021)用原位荧光技术测定时,仅观测到20%~25%的差值[7]。这类差异可能源于:①色素提取方法(有机溶剂vs.荧光探针)对定量的敏感性不同;②样本来源的生态型——湖泊底泥复苏的藻株与悬浮培养株在色素基因表达水平上或有系统差异;③环境预适应史——长期处于高光或阴暗环境的藻株,其光保护机制基因(cpcBA、apcABC等)表达基线不同。

从生态学角度看,色素含量更高的有毒株在低光或间歇阴影环境下能迅速恢复光合效率,从而在春秋季混合层浅化期抢占资源;但当光强极高(>1500 μmol·m–2·s–1)时,一些研究反而发现无毒株的非光化学淬灭(NPQ)能力更强,提示不同株系可能演化出相反的光适应策略[9]。要厘清这一矛盾,未来需结合转录组与蛋白组分析,明确光合色素合成途径(如CpcE/F介导的藻胆蛋白修饰)、光传感受器(如Cph1类光受体)与毒素合成途径(mcy基因簇)之间的分子互作。

2.2. 光合电子传递与碳固定

水华藻类的光合电子传递链(ETR)与碳固定效率是其生长速率的关键决定因素。研究表明,蓝藻的光合电子传递速率(ETRRCII)受光照强度和营养盐供应高度影响[9] [10]。在氮或磷缺乏的条件下,蓝藻的ETRRCII以及最大光合速率(Pmax)显著下降,从而可能抑制其生长[11]。蓝藻的碳浓缩机制(CCM)在低CO2环境中尤为重要。CCM通过提高细胞内CO2浓度促进核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)的羧化效率,进而增强其碳固定能力[12] [13]

不同藻类在碳固定策略上表现出显著差异。硅藻和蓝藻的碳浓缩机制(CCM)效率易受环境CO2浓度的影响,而早期进化的蓝藻则展现出更高的CCM可塑性,使其在低CO2条件下仍能保持较高的光合效率[12]。蓝藻通过采用同时利用有机和无机碳源混合营养策略,进一步提升其对复杂环境的适应能力[13]。这些特性赋予其在营养匮乏或CO2波动环境中的竞争优势,最终促进了水华的形成[12] [13]

3. 环境因子对水华藻类光合特性的调控

3.1. 光照强度与光谱组成

光照是影响水华藻类光合作用的重要环境因子之一。蓝藻对不同光照强度的反应表现出显著的种内与种间差异。有毒微囊藻和鱼腥藻藻株通常在较高光照强度下达到光饱和,而非毒藻株则在较低光照下即可达到饱和[1]。这一差异可能源于有毒藻株较高的光合色素含量,使其能够在强光条件下维持较高的光合效率[1] [7]。蓝藻还可通过调节光合系统的化学计量比(如PSII/PSI比例)优化光能利用。在红光环境中,它会增加PSII的比例,以提升光捕获能力[7]

光谱组成对蓝藻的光合特性具有显著影响。研究表明,蓝藻在蓝光和远红光条件下的光合效率较低,这可能与其色素对光的捕获能力有限有关[14]。能够利用远红光的蓝藻通过叶绿素d和叶绿素f等特殊色素在远红光下实现光合作用,从而获得在低光环境中生存的优势[14]。通过调控发光二极管人工光源的波长,不仅可以优化蓝藻的生物技术应用,还能显著提升生物燃料的产量[15] [16]

3.2. 营养盐限制与光合适应性

营养盐,尤其是氮和磷的可用性,直接决定了水华藻类的光合作用效率与生长速率。氮元素的缺乏通常会导致蓝藻光合系统II (PSII)效率(Fv/Fm)下降,同时显著抑制其碳固定能力[9] [11]。在红藻(Porphyridium cruentum)中,氮匮乏会严重损伤PSII供体侧的水分解系统,从而显著降低其光能转化效率[11]。磷限制也会削弱蓝藻的光合活性,但其作用机制与氮限制不同,主要表现为ATP合成受阻及电子传递链效率的下降[17]

营养盐的限制可能促发蓝藻的多样化适应策略。在氮素匮乏的条件下,鱼腥藻会通过营养细胞分化为异形胞,提升固氮能力并维持光合作用效率[18]。蓝藻还能够调整代谢通量,增加脂质积累或减少蛋白质合成,以应对营养不足的压力[19]。这些适应性调节不仅改变了蓝藻的光合特性,还可能重塑其在水华群落中的竞争地位。

3.3. 温度与光合作用的交互效应

温度是影响水华藻类光合特性的关键因素之一。研究显示,蓝藻的光合效率通常随温度升高而显著提升,但不同物种的耐受范围存在显著差异[20]。南极冰藻(Zygnematophycean)在低温条件下展现出卓越的光合作用效率,但其光系统在高温环境中容易受到光抑制[21]。相似地,温带微囊藻在高温(>25°C)下光合活性显著增强,这可能直接促成其在夏季水华中的优势地位[4] [5]

温度与紫外线辐射(UVR)之间可能存在协同或拮抗作用。高温可能加重UVR对蓝藻光合作用系统的损伤,鱼腥藻的某些藻株则能够提高类胡萝卜素的合成水平而增强光保护机制有效缓解损伤[6] [20]。温度波动可能对蓝藻群落结构产生显著影响。在北极湖泊中,垂直混合引发的光照与温度变化显著重塑了蓝藻与硅藻之间的竞争格局[22]。这些研究结果表明,温度与光照的交互作用在预测水华藻类动态方面具有重要意义。

4. 水华藻类群落的动态与生态效应

4.1. 群落结构与光利用策略

水华藻类群落的组成与结构密切关联其光能利用策略。在淡水生态系统中,蓝藻中的微囊藻和鱼腥藻常通过调节浮力或聚集形成表层水华,以获取最优的光照条件[1] [4]。此策略使其在分层水体中占据主导地位,尤以营养盐丰富的夏季表现尤为显著[4] [5]。相比之下,硅藻和绿藻的光合作用特性更适合于混合水体,其光饱和点较低,并能迅速响应光照的变化[23]

垂直混合引发的快速光变化等光照波动对藻类群落结构产生显著影响。在太湖富营养化水体中,垂直混合显著改变了蓝藻和硅藻的光能利用效率,从而影响其竞争优势[3]。类似地,在北极冰缘区,冰藻与浮游植物因光合特性差异,对光照变化的响应截然不同。冰藻表现出更强的光保护能力,而浮游植物在低光条件下的碳固定效率更为突出[21]。这些差异为预测水华藻类群落动态提供了关键依据。

4.2. 水华藻类的生态效应

水华藻类通过改变光合特性和群落结构,对生态系统产生深远影响。蓝藻水华通过释放微囊藻毒素等物质,抑制其他浮游植物的生长,从而巩固其竞争优势[24]。蓝藻因其高效的光合能力,可能加剧水体溶解氧的昼夜波动,进而威胁水生生物的生存[25]。在极地生态系统中,冰藻的光合作用会降低冰面的反照率,促使冰川加速融化,这一过程对全球气候反馈具有重要意义[26]

5. 水华藻类的生物技术应用

5.1. 生物燃料与高附加值产物

水华藻类,尤其是蓝藻,以其卓越的光合效率和灵活的代谢机制,在生物技术领域展现出广阔的应用潜力。蓝藻(聚球藻PCC 6803)能够通过光合作用合成聚羟基脂肪酸酯(PHA),这种可降解的生物塑料具有重要的应用价值[16] [19]。研究发现,在氮素受限的环境下,蓝藻的PHA积累量显著增加,这与其碳代谢通路的重新分配密切相关[19]。通过引入外源Flv基因的基因工程手段,蓝藻的光合电子传递效率可以显著提升,从而促进生物质的高效合成[27]

蓝藻在生物燃料生产领域正受到广泛关注。研究显示,通过采用蓝光或红光优化光照波长可以显著提升其脂质产量,这与蓝藻光合色素的吸收特性密切相关[15] [16]。利用虾养殖废水进行蓝藻培养,不仅为其生物质生产提供了低成本的底物,还同时实现了废水净化与资源回收的双重目标[28]。这些开发潜力充分展现了水华藻类在可持续生物经济中的重要应用价值。

5.1.1. 物种选择与生长潜力

Synechococcus elongatus UTEX 2973该菌株在35℃、1 000 μmol·m–2·s–1强光下,日均增长率可达0.8 d–1,干重中脂质含量可上升至30%~35% [29]。Synechocystis sp. PCC 6803:遗传学工具成熟,已成功过表达accD (乙酰辅酶A羧化酶)、fabH (酰基载体蛋白合成酶),使脂肪酸合成流量提升25% [30]。Botryococcus braunii:聚集高达70%干重的碳氢化合物(C28~C34烷烃),但生长速率较慢,适合作为高附加值烃类生产平台[31]

5.1.2. 工艺优化策略

两阶段培养模式:第一阶段在5% CO2、150 μmol·m–2·s–1中等光强下富营养培养,优先积累生物量。第二阶段实施氮或磷限制(N/P<1 mg·L–1),并提高光强至500~800 μmol·m–2·s–1,以诱导TAG(中性脂质)快速累积[32]。此模式在S. elongatus UTEX 2973中可使TAG占比从10%升至45%。光谱与光周期调控:红/蓝比(R:B)优化:LED以4:1 (630  nm:450  nm)比例照射,可使Synechocystis sp. PC 6803油脂产量提升15% [33]。间歇光(12 h光/12 h暗)配合短时高光脉冲(2 h × 1200 μmol·m–2·s–1)可进一步激发NPQ反应,减少光损伤并提升累积碳流向脂质。

5.1.3. 遗传工程改造

过表达tesA (酰基载体蛋白酯酶):提高细胞内游离脂肪酸水平,从而促进中性脂质聚合。RNAi或CRISPRi下调glgC (糖原合酶)与phaC (PHA合酶),实现向TAG通路的碳流重定向[33]。引入大豆DGAT1基因:使TAG的合成效率较野生型提升20%~30%。

5.1.4. 反应器与下游处理

平板式光生物反应器(PBR):与传统管式PBR相比,具有更高的光能利用效率,单位体积可将产能提高10%~20% [34]。原位溶剂萃取/酶解一体化:结合脂肪酶催化水解与稠环烷烃萃取技术,可在培养同时回收脂质,减少能耗30%以上[34]。浮选与低速离心:针对大型规模生产,采用pH值响应型聚合物絮凝+浅层离心相结合的方法,可将收率从85%提升至93%。

5.2. 环境修复与生态工程

水华藻类在环境修复中的应用也取得了显著进展。蓝藻能够通过光合作用固定CO2并去除水体中的氮、磷等污染物,从而改善水质[16] [27]。在重金属污染修复中,地管藻与蓝藻的联合体形成的蓝藻与真菌的共生体系表现出高效的金属吸附能力,这与其胞外聚合物和代谢活性密切相关[35]。蓝藻的光合特性还被用于开发光生物电化学系统(PBES),通过耦合光合作用和电子传递实现废水处理和能源回收。

6. 结论

水华藻类的光合特性是其生态竞争力和生物技术应用的重要基础。本文系统梳理了水华藻类在光合色素组成、电子传递效率以及碳固定策略上的多样性特征,并分析了光照、营养盐和温度等环境因子对其光合特性的调控机制。研究显示,蓝藻通过光保护机制、碳浓缩机制以及混合营养方式等多种适应性策略,能够在多变环境中保持较高的光合效率,从而为其在水华形成中的主导地位提供了关键生理支持。

未来研究应进一步聚焦气候变化背景下水华藻类的适应性演化,尤其是CO2浓度升高和紫外线辐射增强对其光合作用特性的影响。在水华藻类的生物燃料生产和环境修复生物技术应用领域,仍需大力提升其光合效率和代谢调控能力。多学科交叉研究将有助于揭示水华藻类的生态机制,并推动其资源化利用,为解决全球水环境问题提供全新思路。

基金项目

江西省林业科学院基础研究与人才科研专项“南昌艾溪湖等城市湖泊水华藻类产生生物学机制及预警”(2022510801)。

NOTES

*第一作者。

参考文献

[1] Islam, M. and Beardall, J. (2017) Growth and Photosynthetic Characteristics of Toxic and Non-Toxic Strains of the Cyanobacteria Microcystis aeruginosa and Anabaena circinalis in Relation to Light. Microorganisms, 5, Article 45.
https://doi.org/10.3390/microorganisms5030045
[2] Kazmi, S.S.U.H., Yapa, N., Karunarathna, S.C. and Suwannarach, N. (2022) Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems. Biology, 11, Article 852.
https://doi.org/10.3390/biology11060852
[3] Guislain, A., Beisner, B.E. and Köhler, J. (2018) Variation in Species Light Acquisition Traits under Fluctuating Light Regimes: Implications for Non-Equilibrium Coexistence. Oikos, 128, 716-728.
https://doi.org/10.1111/oik.05297
[4] Wu, H.M., Wu, X.Q., Rovelli, L., et al. (2024) Selection of Photosynthetic Traits by Turbulent Mixing Governs Formation of Cyanobacterial Blooms in Shallow Eutrophic Lakes. The ISME Journal, 18, wrae021.
[5] Sharabian, M., Sajjad, A. and Moses, K. (2018) Climate Change and Eutrophication: A Short Review. Engineering, Technology & Applied Science Research, 8, 3668-3672.
https://doi.org/10.48084/etasr.2392
[6] Gao, K.S., Beardall, J., Häder, D.P., et al. (2019) Effects of Ocean Acidification on Marine Photosynthetic Organisms under the Concurrent Influences of Warming, UV Radiation, and Deoxygenation. Frontiers in Marine Science, 6, Article 322.
https://doi.org/10.3389/fmars.2019.00322
[7] Bernát, G., Zavřel, T., Kotabová, E., Kovács, L., Steinbach, G., Vörös, L., et al. (2021) Photomorphogenesis in the Picocyanobacterium Cyanobium gracile Includes Increased Phycobilisome Abundance under Blue Light, Phycobilisome Decoupling under near Far-Red Light, and Wavelength-Specific Photoprotective Strategies. Frontiers in Plant Science, 12, Article 612302.
https://doi.org/10.3389/fpls.2021.612302
[8] Williamson, C.J., Cook, J., Tedstone, A., Yallop, M., McCutcheon, J., Poniecka, E., et al. (2020) Algal Photophysiology Drives Darkening and Melt of the Greenland Ice Sheet. Proceedings of the National Academy of Sciences, 117, 5694-5705.
https://doi.org/10.1073/pnas.1918412117
[9] Gorbunov, M.Y. and Falkowski, P.G. (2020) Using Chlorophyll Fluorescence Kinetics to Determine Photosynthesis in Aquatic Ecosystems. Limnology and Oceanography, 66, 1-13.
https://doi.org/10.1002/lno.11581
[10] Wei, Y.Q., Chen, Z., Guo, C.C., et al. (2020) Physiological and Ecological Responses of Photosynthetic Processes to Oceanic Properties and Phytoplankton Communities in the Oligotrophic Western Pacific Ocean. Frontiers in Microbiology, 11, Article 1774.
https://doi.org/10.3389/fmicb.2020.01774
[11] Zhao, L.S., Li, K., Wang, Q.M., et al. (2017) Nitrogen Starvation Impacts the Photosynthetic Performance of Porphyridium cruentum as Revealed by Chlorophyll a Fluorescence. Scientific Reports, 7, Article No. 8542.
https://doi.org/10.1038/s41598-017-08428-6
[12] Van de Waal, D.B., Brandenburg, K.M., Keuskamp, J., Trimborn, S., Rokitta, S., Kranz, S.A., et al. (2019) Highest Plasticity of Carbon-Concentrating Mechanisms in Earliest Evolved Phytoplankton. Limnology and Oceanography Letters, 4, 37-43.
https://doi.org/10.1002/lol2.10102
[13] Maberly, S.C. and Gontero, B. (2017) Ecological Imperatives for Aquatic CO2-Concentrating Mechanisms. Journal of Experimental Botany, 68, 3797-3814.
https://doi.org/10.1093/jxb/erx201
[14] Ko, J.‐T., Li, Y.Y., Chen, P.‐Y., et al. (2023) Use of 16S rRNA Gene Sequences to Identify Cyanobacteria That Can Grow in Far‐Red Light. Molecular Ecology Resources, 24, e13871.
https://doi.org/10.1111/1755-0998.13871
[15] Pooja, P., Lekshmi, K.E. and Pradeep, N.S. (2023) Biofuels from Cyanobacteria—A Metabolic Engineering Approach. Plant Science Today, 10, 288-296.
https://doi.org/10.14719/pst.2505
[16] George, D.M., Vincent, A.S. and Mackey, H.R. (2020) An Overview of Anoxygenic Phototrophic Bacteria and Their Applications in Environmental Biotechnology for Sustainable Resource Recovery. Biotechnology Reports, 28, e00563.
https://doi.org/10.1016/j.btre.2020.e00563
[17] Schoffman, H., Lis, H., Shaked, Y. and Keren, N. (2016) Iron-Nutrient Interactions within Phytoplankton. Frontiers in Plant Science, 7, Article 1223.
https://doi.org/10.3389/fpls.2016.01223
[18] He, H.L., Miao, R.Y., Huang, L.L., et al. (2021) Vegetative Cells May Perform Nitrogen Fixation Function under Nitrogen Deprivation in Anabaena Sp. Strain PCC 7120 Based on Genome-Wide Differential Expression Analysis. PLOS ONE, 16, e0248155.
https://doi.org/10.1371/journal.pone.0248155
[19] Krasaesueb, N., Incharoensakdi, A. and Khetkorn, W. (2019) Utilization of Shrimp Wastewater for Poly-β-Hydroxybutyrate Production by Synechocystis Sp. PCC 6803 Strain ΔSphU Cultivated in Photobioreactor. Biotechnology Reports, 23, e00345.
https://doi.org/10.1016/j.btre.2019.e00345
[20] Islam, M.A., Beardall, J. and Cook, P. (2018) Intra-Strain Variability in the Effects of Temperature on UV-B Sensitivity of Cyanobacteria. Photochemistry and Photobiology, 95, 306-314.
https://doi.org/10.1111/php.13014
[21] Kvernvik, A.C., Hoppe, C.J.M., Greenacre, M., et al. (2021) Arctic Sea Ice Algae Differ Markedly from Phytoplankton in Their Ecophysiological Characteristics. Marine Ecology Progress Series, 666, 31-55.
https://doi.org/10.3354/meps13675
[22] Ardyna, M., Mundy, C.J., Mayot, N., Matthes, L.C., Oziel, L., Horvat, C., et al. (2020) Under-Ice Phytoplankton Blooms: Shedding Light on the “Invisible” Part of Arctic Primary Production. Frontiers in Marine Science, 7, Article 608032.
https://doi.org/10.3389/fmars.2020.608032
[23] Borics, G., Abonyi, A., Salmaso, N. and Ptacnik, R. (2020) Freshwater Phytoplankton Diversity: Models, Drivers and Implications for Ecosystem Properties. Hydrobiologia, 848, 53-75.
https://doi.org/10.1007/s10750-020-04332-9
[24] Qu, J.Q., Shen, L.P., Zhao, M., et al. (2018) Determination of the Role of Microcystis aeruginosa in Toxin Generation Based on Phosphoproteomic Profiles. Toxins, 10, Article 304.
https://doi.org/10.3390/toxins10070304
[25] Vineis, J.H. (2022) Nutrient Influence on Microbial Structure and Function within Salt Marsh Sediments. Doctoral Dissertation, Northeastern University.
[26] Bryant, J.A., Clemente, T.M., Viviani, D.A., Fong, A.A., Thomas, K.A., Kemp, P., et al. (2016) Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. mSystems, 1, e00024-16.
[27] Al-Jabri, H., Das, P., Khan, S., Thaher, M. and AbdulQuadir, M. (2020) Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review. Water, 13, Article 27.
https://doi.org/10.3390/w13010027
[28] Tula, S., Shahinnia, F., Melzer, M., Rutten, T., Gómez, R., Lodeyro, A.F., et al. (2020) Providing an Additional Electron Sink by the Introduction of Cyanobacterial Flavodiirons Enhances Growth of A. Thaliana under Various Light Intensities. Frontiers in Plant Science, 11, Article 902.
https://doi.org/10.3389/fpls.2020.00902
[29] Cui, J.Y., Sun, T., Chen, L., et al. (2021) Salt-Tolerant Synechococcus elongatus UTEX 2973 Obtained via Engineering of Heterologous Synthesis of Compatible Solute Glucosylglycerol. Frontiers in Microbiology, 12, Article 650217.
https://doi.org/10.3389/fmicb.2021.650217
[30] Yu, J.J., Liberton, M., Cliften, P.F., Head, R.D., Jacobs, J.M., Smith, R.D., et al. (2015) Synechococcus elongatus UTEX 2973, a Fast Growing Cyanobacterial Chassis for Biosynthesis Using Light and CO2. Scientific Reports, 5, Article No. 8132.
https://doi.org/10.1038/srep08132
[31] Metzger, P. and Largeau, C. (2004) Botryococcus braunii: A Rich Source for Hydrocarbons and Related Ether Lipids. Applied Microbiology and Biotechnology, 66, 486-496.
https://doi.org/10.1007/s00253-004-1779-z
[32] Chen, D., Yuan, X., Liang, L.M., et al. (2019) Overexpression of Acetyl-Coa Carboxylase Increases Fatty Acid Production in the Green Alga Chlamydomonas Reinhardtii. Biotechnology Letters, 41, 1133-1145.
https://doi.org/10.1007/s10529-019-02715-0
[33] Feng, Y.B., Wang, Y.Y., Liu, J., et al. (2017) Structural Insight into Acyl-ACP Thioesterase toward Substrate Specificity Design. ACS Chemical Biology, 12, 2830-2836.
https://doi.org/10.1021/acschembio.7b00641
[34] Cho, S.H., Jeong, Y.J., Hong, S.J., et al. (2021) Different Regulatory Modes of Synechocystis sp. PCC 6803 in Response to Photosynthesis Inhibitory Conditions. mSystems, 6, e0094321.
[35] Wojtczak, G. and Janik, P. (2016) Phytoremediation with Geosiphon-Like Symbiosis? Environmental Science and Pollution Research, 23, 5992-5994.
https://doi.org/10.1007/s11356-016-6135-1