基于超声评价子宫形态(MUSA)建立子宫腺肌病超声评分系统
Developing an Ultrasound Scoring System for Adenomyosis Based on Morphological Uterus Sonographic Assessment (MUSA)
DOI: 10.12677/acm.2025.1582256, PDF, HTML, XML,    科研立项经费支持
作者: 胡艺璇, 宋金臻, 杨宗利*:青岛大学附属医院腹部超声科,山东 青岛;郭 琳:高密市妇幼保健院超声科,山东 高密
关键词: 子宫腺肌病超声检查诊断评分系统Adenomyosis Ultrasonography Diagnosis Scoring System
摘要: 目的:基于子宫形态学超声评估共识(Morphological Uterus Sonographic Assessment, MUSA)中描述的9种超声征象,构建并验证子宫腺肌病子宫超声评分系统。资料与方法:选取2023年1月~2024年6月于青岛大学附属医院因良性子宫肌层病变行全子宫切除术患者,收集其临床病理资料,评估二维经阴超声图像中9种MUSA征象的存在情况,计算各征象的敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)及对应的95%置信区间(95%CI)。将患者随机分为训练队列和测试队列(7:3),对训练队列通过Firth回归分析评估每种征象的回归系数并赋分,绘制受试者工作特征曲线(ROC),确定最佳截断值。随后应用Bootstrap方法在测试队列中进行内部验证。结果:岛样高回声、贯穿血流、JZ区中断或不规则的评分权重较高。训练队列中,ROC的曲线下面积(AUC)为0.907,敏感性为75.0%,特异性为89.9%,PPV为88.1%,NPV为78.4%;测试队列中,AUC为0.873,敏感性为79.6%,特异性为83.6%,PPV为82.7%,NPV为80.7%。结论:基于MUSA共识的超声评分系统对于子宫腺肌病具有较高的诊断性能,有利于统一术语和量化标准,提高超声诊断的一致性和准确性。
Abstract: Objective: To construct and validate a uterine ultrasound scoring system for adenomyosis, based on the nine sonographic features described in the Morphological Uterus Sonographic Assessment (MUSA) consensus. Materials and Methods: We retrospectively enrolled patients who underwent total hysterectomy for benign uterine myometrial lesions at The Affiliated Hospital of Qingdao University between January 2023 and June 2024. Clinical and pathological data were collected, and two-dimensional transvaginal ultrasound images were reviewed for the presence of each of the nine MUSA features. For each feature, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and their corresponding 95% confidence intervals (95%CI) were calculated. Patients were randomly split into a training cohort and a validation cohort (7:3). In the training cohort, Firth regression analysis was used to estimate regression coefficients for each feature, which were then converted into item scores. Receiver operating characteristic (ROC) curves were plotted to determine the optimal cut-off. Internal validation in the test cohort was performed using the Bootstrap method. Results: Islands of hyperechogenicity, penetrating vessels, and interruption or irregularity of the JZ zone carried the highest weighting in the scoring system. In the training cohort, the area under the ROC curve (AUC) was 0.907, with a sensitivity of 75.0%, specificity of 89.9%, PPV of 88.1%, and NPV of 78.4%. In the validation cohort, the AUC was 0.873, with a sensitivity of 79.6%, specificity of 83.6%, PPV of 82.7%, and NPV of 80.7%. Conclusion: The ultrasound scoring system for adenomyosis, derived from the MUSA consensus, demonstrates high diagnostic performance. It facilitates standardized terminology and quantitative assessment, thereby improving consistency and accuracy in sonographic diagnosis.
文章引用:胡艺璇, 郭琳, 宋金臻, 杨宗利. 基于超声评价子宫形态(MUSA)建立子宫腺肌病超声评分系统[J]. 临床医学进展, 2025, 15(8): 472-480. https://doi.org/10.12677/acm.2025.1582256

1. 引言

子宫腺肌病是常见的良性妇科疾病之一,病理特征为异位的子宫内膜腺体侵入子宫肌层,导致子宫平滑肌细胞增生、肥大。虽然该病为良性病变,但是具有浸润生长的特征,可引起痛经、月经过多、不孕等症状,严重影响患者的生活质量[1]-[3]。流行病学显示,子宫腺肌病的发病率在5%~30%之间,随诊断手段和人群差异而异[4]。经阴道超声(TVS)是诊断子宫腺肌病的首选辅助检查[5],近些年,有多位学者提出了子宫腺肌病的典型超声征象,2015年子宫形态学超声评估(Morphological Uterus Sonographic Assessment, MUSA) [6]描述了子宫腺肌病的9种超声征象,包括子宫肌层囊肿、内膜下芽样或线样高回声、子宫肌层岛样高回声、球形子宫、肌层不对称增厚、扇形阴影、贯穿性血流、JZ中断、JZ不规则,该共识在2022年修改,更新了每种征象的定义,并区分了直接和间接征象[7]。但是单一征象通常无法明确诊断[8],每种超声征象的诊断性能也不尽相同,最佳的诊断征象组合尚未明确,导致子宫腺肌病诊断较为主观。因此,本研究旨在建立统一的超声评分系统,提供超声征象量化标准,减少主观判断的误差,帮助临床医生尽早诊断。

2. 资料与方法

2.1. 研究对象

回顾性收集青岛大学附属医院2023年1月~2024年6月因良性子宫肌层病变行全子宫切除术的患者,收集纳入患者的临床资料。纳入标准:1) 绝经前的育龄期女性(末次月经距手术 < 12个月);2) 术前6个月内完成经阴道超声检查,且图像质量满足MUSA征象评估要求;3) 进行全子宫切除术患者。排除标准:1) 近期(<3个月)应用激素治疗患者;2) 恶性肿瘤患者;3) 临床资料或超声图像不完整的患者。

2.2. 仪器与方法

采用GE E8、GE E10及Mindray 8T超声仪,腔内探头频率5 MHz~9 MHz。已婚患者排空膀胱,均采用经阴道扫查,按照MUSA共识所描述的9种征象对超声图像进行评估,包括:1) 子宫肌层囊肿(子宫肌层内圆形或椭圆形无回声区);2) 子宫肌层高回声岛(肌层内与子宫内膜无关的强回声区);3) 子宫内膜下线样或芽样回声(子宫内膜下线样或芽样回声破坏交界区);4) 球形子宫(子宫弥漫性增大,呈球形);5) 不对称肌层增厚(前后壁厚度差 > 5 mm);6) 扇形阴影(病灶区域存在的线性低回声与高回声交替阴影);7) 贯穿血流(血流信号贯穿病灶);8) 不规则JZ (JZ厚度最大值与最小值差异显著);9) 中断JZ (JZ区在任何平面上无法完整显示) [7]。所有超声图像均由2名具有10年妇科超声经验的医师共同进行分析,分歧处由一位高级妇科超声医师决定,他们在评估图像前已对MUSA共识进行学习,并且对于患者临床信息及病理结果均不知情。详细记录每位患者超声图像存在的征象。子宫腺肌病的判断依据组织病理学结果。

2.3. 统计学分析

所有统计分析均在R软件(版本4.4.1)中完成。连续变量正态性通过Shapiro-Wilk检验结合直方图评估。正态分布变量数据以 x ¯ ±s 表示,非正态分布者以中位数(四分位数)表示;组间比较采用t检验或Mann‑Whitney U检验。分类变量以频数(%)表示,组间比较采用χ2检验或Fisher精确检验。统计学显著性设定为p < 0.05。评估每项征象的诊断性能,包括敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)及95%置信区间(CI)。将所有病例随机分为训练队列和测试队列(7:3)。训练队列中采用Firth校正的多因素Logistic回归分析,基于回归系数按比例赋分,最小绝对系数对应1分;汇总各征象得分构建评分系统,绘制工作者特征曲线(ROC)并确定最佳截断值。内部验证采用Bootstrap法(重复抽样1000次),评估模型在验证队列中的平均AUC及95%CI。观察者间一致性分析使用Cohen’s kappa法。

3. 结果

一般资料

本研究共纳入366名患者,其中子宫腺肌病组患者共182例,非子宫腺肌病患者共184例。纳入患者的临床特征如表1所示。

Table 1. Clinical characteristics of the included patients

1. 纳入患者的临床特征

临床特征

病理

p

子宫腺肌病(n = 182)

非子宫腺肌病(n = 184)

年龄(岁, x ¯ ±s )

47.6 ± 5.5

47.6 ± 6.0

0.559

产次(次, x ¯ ±s )

1.4 ± 0.6

1.2 ± 0.7

0.361

剖宫产史(例)

53

35

0.024

症状

痛经

148

69

<0.001

经量增多或延长(例)

155

86

<0.001

表2展示了MUSA定义的9种超声征象在子宫腺肌病诊断中的表现。直接征象中,岛样高回声(OR = 4.8)、贯穿血流(OR = 4.2)是强预测因子,但内膜下芽或线样回声的预测能力较差(OR = 1.3, p = 0.454)。间接征象的诊断价值有限,球形子宫、肌层不对称增厚、扇形阴影无显著组间差异(p > 0.05),JZ区改变虽然特异性较高(82.1%~89.7%)但是敏感性较低(37.9%~42.3%)。表3通过多因素回归和赋分策略,合理区分了各征象的重要性。JZ区中断、肌层岛样高回声、贯穿血流是较强的独立预测因子,赋分较高。内膜下芽或线样回声、子宫肌层不对称增厚、球形子宫单一预测力较弱,分值最低。

Table 2. Diagnostic performance of nine ultrasonic signs for adenomyosis

2. 九种超声征象对于子宫腺肌病的诊断性能

超声征象

准确性(%) 95%CI

敏感性(%)

95%CI

特异性(%) 95%CI

PPV (%)

95%CI

NPV (%)

95%CI

子宫肌层囊肿

68.3

50.0

(42.5~57.5)

86.4

(80.6~91.0)

78.4

(69.9~85.5)

63.6

(57.3~69.6)

内膜下芽或线样高回声

59.8

41.8

(34.5~49.3)

77.7

(71.0~83.5)

65.0

(55.6~73.5)

57.4

(51.0~63.7)

高回声岛

73.5

69.8

(62.5~76.4)

77.2

(70.4~83.0)

75.1

(67.9~81.5)

72.1

(65.3~78.2)

球形子宫

61.2

57.7

(50.2~65.0)

64.7

(57.3~71.6)

61.8

(54.0~69.1)

60.7

(53.5~67.6)

子宫肌层不对称增厚

60.7

50.5

(43.1~58.0)

70.7

(63.5~77.1)

63.0

(54.6~70.8)

59.1

(52.3~65.7)

扇形阴影

61.7

67.0

(59.7~73.8)

56.5

(49.0~63.8)

60.4

(53.3~67.2)

63.4

(55.5~70.8)

贯穿血流

67.2

53.8

(46.3~61.2)

80.4

(74.0~85.9)

73.1

(64.8~80.4)

63.8

(57.2~70.0)

JZ不规则

60.1

37.9

(30.8~45.4)

82.1

(75.7~87.3)

67.6

(57.7~76.6)

57.2

(51.0~63.2)

JZ中断

66.1

42.3

(35.0~49.8)

89.7

(84.3~93.7)

80.2

(70.8~87.6)

61.1

(55.0~67.0)

Table 3. Multifactor Firth regression and scoring

3. 多因素Firth回归及赋分

超声征象

子宫腺肌病

阳性率(%)

非子宫腺肌病阳性率(%)

p

OR (95%CI)

β

评分

内膜下芽或线样回声

42.7

22.3

0.454

1.3 (0.6~2.9)

0.294

1

岛样高回声

69.8

22.8

<0.001

4.8 (2.4~10.0)

1.581

5

肌层囊肿

50

13.6

0.002

3.2 (1.5~7.1)

1.174

4

球形子宫

57.7

35.3

0.338

1.4 (0.7~3.1)

0.370

1

子宫肌层不对称增厚

50.5

29.3

0.284

1.5 (0.7~3.3)

0.424

1

扇形阴影

67

43.4

0.111

1.8 (0.9~3.7)

0.584

2

贯穿血流

53.8

19.6

<0.001

4.2 (2.1~9.0)

1.445

5

JZ区中断

42.3

10.3

<0.001

10.4 (4.3~21.2)

2.347

8

JZ区不规则

37.9

17.9

<0.001

4.1 (1.9~9.2)

1.406

5

Table 4. Consistency analysis among observers

4. 观察者间一致性分析

超声征象

Cohen’s kappa

95%CI

p

内膜下芽或线样回声

0.447

0.35~0.55

<0.001

岛样高回声

0.635

0.56~0.71

<0.001

子宫肌层囊肿

0.735

0.66~0.81

<0.001

球形子宫

0.824

0.77~0.88

<0.001

子宫肌层不对称增厚

0.851

0.80~0.91

<0.001

扇形阴影

0.862

0.81~0.91

<0.001

贯穿血流

0.881

0.83~0.93

<0.001

JZ区中断

0.421

0.31~0.52

<0.001

JZ区不规则

0.511

0.41~0.61

<0.001

Figure 1. ROC curve of MUSA consensus scoring system for diagnosing adenomyosis: (A) Application of the scoring system in the training cohort for diagnosing adenomyosis (B) Application of the scoring system in the test cohort for diagnosing adenomyosis

1. MUSA共识评分系统诊断子宫腺肌病ROC曲线:(A) 在训练队列中应用评分系统诊断子宫腺肌病;(B) 在测试队列中应用评分系统诊断子宫腺肌病

图1展示了应用评分系统分别在训练队列和测试队列中诊断子宫腺肌病的ROC曲线,最佳诊断截断值为12.5,训练队列的AUC为90.7%,敏感性为79.6%,特异性为83.6%,PPV为82.7%,NPV为80.7%。测试队列的AUC为87.3%,敏感度为79.6%,特异度83.6%,PPV为82.7%,NPV为80.7%,准确率为81.7%,均显示出较好的诊断性能,并且显著优于所有单一征象。

图2展示了评分系统中的预测概率与实际发生率。在低风险区(预测概率 < 0.2),模型略微高估了腺肌病发生率;在中高风险区间(预测概率0.6~0.8)处,模型的实际事件比例略低于预测值。图3展示了不同分数在子宫腺肌病与非子宫腺肌病中的分布情况。子宫腺肌病患者的评分显著高于非子宫腺肌病患者。

Figure 2. MUSA consensus scoring system calibration curve

2. MUSA共识评分系统校准曲线

Figure 3. Score distribution of the MUSA consensus scoring system in the test set

3. MUSA共识评分系统在测试集中的评分分布

表4展示了观察间的一致性,内膜下芽或线样回声、JZ区改变具一般一致性(kappa值 = 0.4~0.6),岛样高回声、子宫肌层囊肿具有中等一致性(kappa值 = 0.6~0.8),球形子宫、子宫肌层不对称增厚及贯穿血流具有良好一致性(kappa值 = 0.8)。

4. 讨论

在TVS筛查子宫腺肌病时,可能会观察到多种典型超声征象,但各征象的诊断性能存在显著差异。单一征象中,高回声岛的诊断准确性最高,同时在多因素回归分析后得出的评分也较高。子宫肌层囊肿及JZ区中断或不规则,尽管具有高特异性(均>80%),但敏感性不足,易漏诊,需要结合其他征象诊断子宫腺肌病。而扇形阴影、球形子宫、子宫肌层不对称增厚敏感性特异性均较低,这些征象在患有子宫肌瘤时也可出现,这一研究结果也与Krentel等人的研究结果相似[9],单一的超声征象均未显示出优异的诊断性能。在最近的一篇综述中报道子宫内膜下芽或线样回声为最佳单一诊断征象[10],但是在本研究中并未得到相同的结论,可能是由于在本研究中该征象的敏感性较低,诊断效能较差,并且有研究提出该征象主观性较强,观察者差异较大[11],这可能也是导致结果不同的原因之一。贯穿血流可用于鉴别子宫肌瘤与子宫腺肌病[12],在本研究中,该征象也具有相对较高的诊断性能。需要注意的是,我们并未纳入子宫肌层的恶性病变,因此该结果可能有一定偏移。

基于上述差异,本研究创新性构建评分系统。该评分系统在验证队列中,AUC为0.873,校准曲线显示拟合良好,当最佳截断值定为12.5分时,PPV为82.7%,NPV为80.7%,显著优于单一征象。评分系统中,内膜下或线样回声由于低敏感性最终赋分较低,间接征象的特异性较差,因此球形子宫、肌层不对称增厚的诊断价值较低,这一结果恰好验证了MUSA共识中提到没有子宫肌层异常的情况下,间接征象不能确定子宫腺肌病的存在[8]

这九种征象尽管有一定临床价值,但是缺乏高敏感性和高特异性,限制了独立诊断的可靠性[13],因此联合多个超声征象诊断至关重要。通常2~3个超声征象对子宫腺肌病的准确性更高[14]。三种直接征象很难同时出现在同一个子宫中,间接征象大多容易识别,并且观察者一致性较高[15] [16],直接征象联合间接征象可能是更好的选择。Sam等人[17]的研究中,子宫增大和JZ区改变为最佳组合,本研究中最优组合为JZ中断 + 高回声岛 + 贯穿血流,这两种组合均达到了最佳诊断阈值。

本研究的优势在于建立了基于MUSA共识的子宫腺肌病超声评分系统,为临床提供了一种标准化、可量化的诊断工具。尽管对于最佳诊断组合尚有争议,但是通过评分系统,可根据具体临床情况进行分析,而不局限于某种或某一个征象组合,有效提高诊断效率。另外,子宫腺肌病的症状严重程度可能与超声征象的数量有关[15],因此,评分越高的患者可能症状会更加严重。未来还可进一步将评分系统与临床症状相联系,指导分层诊疗决策。

但该评分系统仅依赖于超声征象,有症状的子宫腺肌病与无症状的子宫腺肌病超声征象可能存在差异[18],对于早期无症状病例或征象不典型者仍有漏诊风险。另外,JZ区增厚或不规则是重要的超声指标[19],但在本研究中对于JZ区的评估基于二维超声图像,敏感性较低,三维成像能够更好地显示JZ区[20],将三维超声评估纳入评分系统可能一定程度上会影响赋分,并优化评分系统。还有部分征象可能与子宫腺肌病相关,如子宫增大、问号征等,但是未纳入MUSA共识,因此我们并未进行分析。本研究为回顾性研究,因此存在固有回顾性偏移。未来可进行多中心前瞻性研究,并纳入更多危险因素和超声征象,以解决这些问题。

5. 结论

本研究建立了子宫腺肌病诊断的评分系统,并且具有较高的诊断性能,有助于建立标准化超声诊断系统。

基金项目

本文章为山东省自然科学基金青年项目,基金号:ZR2022QH310。

声 明

本研究经过青岛大学附属医院伦理委员会批准(伦理批号:QDFY WZLL 29077)。

NOTES

*通讯作者。

参考文献

[1] Selntigia, A., Molinaro, P., Tartaglia, S., Pellicer, A., Galliano, D. and Cozzolino, M. (2024) Adenomyosis: An Update Concerning Diagnosis, Treatment, and Fertility. Journal of Clinical Medicine, 13, Article No. 5224.
https://doi.org/10.3390/jcm13175224
[2] 中国医师协会妇产科医师分会, 中华医学会妇产科学分会子宫内膜异位症协作组. 子宫内膜异位症诊治指南(第三版) [J]. 中华妇产科杂志, 2021, 56(12): 812-824.
[3] Etrusco, A., Barra, F., Chiantera, V., Ferrero, S., Bogliolo, S., Evangelisti, G., et al. (2023) Current Medical Therapy for Adenomyosis: From Bench to Bedside. Drugs, 83, 1595-1611.
https://doi.org/10.1007/s40265-023-01957-7
[4] Dessouky, R., Gamil, S.A., Nada, M.G., Mousa, R. and Libda, Y. (2019) Management of Uterine Adenomyosis: Current Trends and Uterine Artery Embolization as a Potential Alternative to Hysterectomy. Insights into Imaging, 10, Article No. 48.
https://doi.org/10.1186/s13244-019-0732-8
[5] Tellum, T., Nygaard, S. and Lieng, M. (2020) Noninvasive Diagnosis of Adenomyosis: A Structured Review and Meta-Analysis of Diagnostic Accuracy in Imaging. Journal of Minimally Invasive Gynecology, 27, 408-418.e3.
https://doi.org/10.1016/j.jmig.2019.11.001
[6] Van den Bosch, T., Dueholm, M., Leone, F.P.G., Valentin, L., Rasmussen, C.K., Votino, A., et al. (2015) Terms, Definitions and Measurements to Describe Sonographic Features of Myometrium and Uterine Masses: A Consensus Opinion from the Morphological Uterus Sonographic Assessment (MUSA) Group. Ultrasound in Obstetrics & Gynecology, 46, 284-298.
https://doi.org/10.1002/uog.14806
[7] Harmsen, M.J., Van den Bosch, T., de Leeuw, R.A., Dueholm, M., Exacoustos, C., Valentin, L., et al. (2022) Consensus on Revised Definitions of Morphological Uterus Sonographic Assessment (MUSA) Features of Adenomyosis: Results of Modified Delphi Procedure. Ultrasound in Obstetrics & Gynecology, 60, 118-131.
https://doi.org/10.1002/uog.24786
[8] Feferkorn, I. and Tulandi, T. (2023) Sonographic Diagnosis of Adenomyosis—Ultrasound That Cried Wolf? Fertility and Sterility, 119, 490-491.
https://doi.org/10.1016/j.fertnstert.2022.12.043
[9] Krentel, H., Keckstein, J., Füger, T., Hornung, D., Theben, J., Salehin, D., et al. (2023) Accuracy of Ultrasound Signs on Two‐Dimensional Transvaginal Ultrasound in Prediction of Adenomyosis: Prospective Multicenter Study. Ultrasound in Obstetrics & Gynecology, 62, 739-746.
https://doi.org/10.1002/uog.26197
[10] Liu, L., Li, W., Leonardi, M., Condous, G., Da Silva Costa, F., Mol, B.W., et al. (2021) Diagnostic Accuracy of Transvaginal Ultrasound and Magnetic Resonance Imaging for Adenomyosis: Systematic Review and Meta-Analysis and Review of Sonographic Diagnostic Criteria. Journal of Ultrasound in Medicine, 40, 2289-2306.
https://doi.org/10.1002/jum.15635
[11] Kadam, N., Khalid, S. and Jayaprakasan, K. (2025) How Reproducible Are the Ultrasound Features of Adenomyosis Defined by the Revised MUSA Consensus? Journal of Clinical Medicine, 14, Article No. 456.
https://doi.org/10.3390/jcm14020456
[12] 戴晴, 郑宇觐. 子宫腺肌病的超声诊断及进展[J]. 中国实用妇科与产科杂志, 2019, 35(5): 501-505.
[13] Dosunmu, S.D., Sarno, A., Lee, E., Mitchell, C., Wang, J. and Shaak, K. (2025) Validation of the Revised MUSA Criteria for Sonographic Detection of Adenomyosis. Abdominal Radiology.
https://doi.org/10.1007/s00261-025-05039-y
[14] Rasmussen, C.K., Hansen, E.S., Ernst, E. and Dueholm, M. (2019) Two-and Three-Dimensional Transvaginal Ultrasonography for Diagnosis of Adenomyosis of the Inner Myometrium. Reproductive BioMedicine Online, 38, 750-760.
https://doi.org/10.1016/j.rbmo.2018.12.033
[15] Naftalin, J., Hoo, W., Nunes, N., Holland, T., Mavrelos, D. and Jurkovic, D. (2016) Association between Ultrasound Features of Adenomyosis and Severity of Menstrual Pain. Ultrasound in Obstetrics & Gynecology, 47, 779-783.
https://doi.org/10.1002/uog.15798
[16] Yavuz, O., Akdöner, A., Özgozen, M.E., Ertan, B., Kurt, S., Ulukuş, E.C., et al. (2024) Prediction of Adenomyosis According to Revised Definitions of Morphological Uterus Sonographic Assessment Features. Frontiers in Medicine, 11, Article 1387515.
https://doi.org/10.3389/fmed.2024.1387515
[17] Sam, M., Raubenheimer, M., Manolea, F., Aguilar, H., Mathew, R.P., Patel, V.H., et al. (2019) Accuracy of Findings in the Diagnosis of Uterine Adenomyosis on Ultrasound. Abdominal Radiology, 45, 842-850.
https://doi.org/10.1007/s00261-019-02231-9
[18] Tellum, T., Matic, G.V., Dormagen, J.B., Nygaard, S., Viktil, E., Qvigstad, E., et al. (2019) Diagnosing Adenomyosis with MRI: A Prospective Study Revisiting the Junctional Zone Thickness Cutoff of 12 Mm as a Diagnostic Marker. European Radiology, 29, 6971-6981.
https://doi.org/10.1007/s00330-019-06308-3
[19] Matot, R., Blickstein, O., Leibner, G., Bar‐Peled, U., Borovich, A., Geron, Y., et al. (2025) Differences in the Sonographic Features of Adenomyosis and Concurrent Endometriosis Compared to Isolated Adenomyosis: A MUSA Criteria Analysis. Journal of Ultrasound in Medicine, 44, 1077-1084.
https://doi.org/10.1002/jum.16667
[20] 卢佳, 胡兵, 谢敏敏, 等. 三维超声联合三维能量多普勒超声评估子宫腺肌病不孕患者子宫内膜-肌层交界区预测体外受精-胚胎移植妊娠结局[J]. 中国介入影像与治疗学, 2023, 20(8): 473-477.