[1]
|
汪凯, 董强, 崔梅, 等. 中国血管性认知障碍诊治指南(2024版) [J]. 中华医学杂志, 2024, 104(31): 2881-2894.
|
[2]
|
Graff-Radford, J. (2019) Vascular Cognitive Impairment. Continuum, 25, 147-164. https://doi.org/10.1212/con.0000000000000684
|
[3]
|
Bogolepova, A.N. (2022) Vascular Cognitive Impairment. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 122, 17-23. https://doi.org/10.17116/jnevro202212210117
|
[4]
|
Chen, T., Dai, Y., Hu, C., Lin, Z., Wang, S., Yang, J., et al. (2024) Cellular and Molecular Mechanisms of the Blood-Brain Barrier Dysfunction in Neurodegenerative Diseases. Fluids and Barriers of the CNS, 21, Article No. 60. https://doi.org/10.1186/s12987-024-00557-1
|
[5]
|
Chen, Z., Kelly, J.R., Morales, J.E., Sun, R.C., De, A., Burkin, D.J., et al. (2023) The α7 Integrin Subunit in Astrocytes Promotes Endothelial Blood-Brain Barrier Integrity. Development, 150, dev201356. https://doi.org/10.1242/dev.201356
|
[6]
|
Barisano, G., Montagne, A., Kisler, K., Schneider, J.A., Wardlaw, J.M. and Zlokovic, B.V. (2022) Blood-Brain Barrier Link to Human Cognitive Impairment and Alzheimer’s Disease. Nature Cardiovascular Research, 1, 108-115. https://doi.org/10.1038/s44161-021-00014-4
|
[7]
|
Shindo, A., Ishikawa, H., Ii, Y., Niwa, A. and Tomimoto, H. (2020) Clinical Features and Experimental Models of Cerebral Small Vessel Disease. Frontiers in Aging Neuroscience, 12, Article 109. https://doi.org/10.3389/fnagi.2020.00109
|
[8]
|
Moroni, F., Ammirati, E., Hainsworth, A.H. and Camici, P.G. (2020) Association of White Matter Hyperintensities and Cardiovascular Disease: The Importance of Microcirculatory Disease. Circulation: Cardiovascular Imaging, 13, e010460. https://doi.org/10.1161/circimaging.120.010460
|
[9]
|
Wang, M., Norman, J.E., Srinivasan, V.J., et al. (2016) Metabolic, Inflammatory, and Microvascular Determinants of White Matter Disease and Cognitive Decline. American Journal of Neurodegenerative Disease, 5, 171-177.
|
[10]
|
Ma, W., Yang, Y., Xie, T., Xu, Y., Liu, N. and Mo, X. (2022) Cerebral Small Vessel Disease: A Bibliometric Analysis. Journal of Molecular Neuroscience, 72, 2345-2359. https://doi.org/10.1007/s12031-022-02070-2
|
[11]
|
Cashion, J.M., Young, K.M. and Sutherland, B.A. (2023) How Does Neurovascular Unit Dysfunction Contribute to Multiple Sclerosis? Neurobiology of Disease, 178, Article ID: 106028. https://doi.org/10.1016/j.nbd.2023.106028
|
[12]
|
Beishon, L., Clough, R.H., Kadicheeni, M., Chithiramohan, T., Panerai, R.B., Haunton, V.J., et al. (2021) Vascular and Haemodynamic Issues of Brain Ageing. Pflügers Archiv—European Journal of Physiology, 473, 735-751. https://doi.org/10.1007/s00424-020-02508-9
|
[13]
|
Jung, H. and Kim, K. (2013) Blood Pressure Variability and Cognitive Function in the Elderly. Pulse, 1, 29-34. https://doi.org/10.1159/000348622
|
[14]
|
Wang, S., Tang, C., Liu, Y., Border, J.J., Roman, R.J. and Fan, F. (2022) Impact of Impaired Cerebral Blood Flow Autoregulation on Cognitive Impairment. Frontiers in Aging, 3, Article 1077302. https://doi.org/10.3389/fragi.2022.1077302
|
[15]
|
Kaliman, P., Párrizas, M., Lalanza, J.F., Camins, A., Escorihuela, R.M. and Pallàs, M. (2011) Neurophysiological and Epigenetic Effects of Physical Exercise on the Aging Process. Ageing Research Reviews, 10, 475-486. https://doi.org/10.1016/j.arr.2011.05.002
|
[16]
|
Stover, P.J. (2009) One-Carbon Metabolism-Genome Interactions in Folate-Associated Pathologies. The Journal of Nutrition, 139, 2402-2405. https://doi.org/10.3945/jn.109.113670
|
[17]
|
Trattnig, S., Springer, E., Bogner, W., Hangel, G., Strasser, B., Dymerska, B., et al. (2018) Key Clinical Benefits of Neuroimaging at 7 T. NeuroImage, 168, 477-489. https://doi.org/10.1016/j.neuroimage.2016.11.031
|
[18]
|
Risacher, S.L. and Apostolova, L.G. (2023) Neuroimaging in Dementia. Continuum, 29, 219-254. https://doi.org/10.1212/con.0000000000001248
|
[19]
|
Zeestraten, E.A., Lawrence, A.J., Lambert, C., Benjamin, P., Brookes, R.L., Mackinnon, A.D., et al. (2017) Change in Multimodal MRI Markers Predicts Dementia Risk in Cerebral Small Vessel Disease. Neurology, 89, 1869-1876. https://doi.org/10.1212/wnl.0000000000004594
|
[20]
|
Strain, J.F., Smith, R.X., Beaumont, H., Roe, C.M., Gordon, B.A., Mishra, S., et al. (2018) Loss of White Matter Integrity Reflects Tau Accumulation in Alzheimer Disease Defined Regions. Neurology, 91, e313-e318. https://doi.org/10.1212/wnl.0000000000005864
|
[21]
|
Madden, D.J., Bennett, I.J. and Song, A.W. (2009) Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging. Neuropsychology Review, 19, 415-435. https://doi.org/10.1007/s11065-009-9113-2
|
[22]
|
Lindh-Rengifo, M., Jonasson, S.B., Ullén, S., Palmqvist, S., van Westen, D., Stomrud, E., et al. (2023) Effects of Brain Pathologies on Spatiotemporal Gait Parameters in Patients with Mild Cognitive Impairment. Journal of Alzheimer’s Disease, 96, 161-171. https://doi.org/10.3233/jad-221303
|
[23]
|
Rather, M.A., Khan, A., Jahan, S., Siddiqui, A.J. and Wang, L. (2024) Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer’s Disease. Neuroscience, 552, 1-13. https://doi.org/10.1016/j.neuroscience.2024.05.042
|
[24]
|
Hosoki, S., Hansra, G.K., Jayasena, T., Poljak, A., Mather, K.A., Catts, V.S., et al. (2023) Molecular Biomarkers for Vascular Cognitive Impairment and Dementia. Nature Reviews Neurology, 19, 737-753. https://doi.org/10.1038/s41582-023-00884-1
|
[25]
|
Zhang, P., Li, Y., Zhang, Z., Yang, Y., Rao, J., Xia, L., et al. (2020) Astroglial Mechanisms Underlying Chronic Insomnia Disorder: A Clinical Study. Nature and Science of Sleep, 12, 693-704. https://doi.org/10.2147/nss.s263528
|
[26]
|
Song, J. (2024) BDNF Signaling in Vascular Dementia and Its Effects on Cerebrovascular Dysfunction, Synaptic Plasticity, and Cholinergic System Abnormality. Journal of Lipid and Atherosclerosis, 13, 122-138. https://doi.org/10.12997/jla.2024.13.2.122
|
[27]
|
Xu, B., Yang, J., Kang, F., et al. (2015) The Inflammatory Response of Two Different Kinds of Anesthetics on Vascular Cognitive Impairment Rats and the Effect on Long Term Cognitive Function. International Journal of Clinical and Experimental Medicine, 8, 16694-16698.
|
[28]
|
Anita, N.Z., Zebarth, J., Chan, B., Wu, C., Syed, T., Shahrul, D., et al. (2022) Inflammatory Markers in Type 2 Diabetes with vs. without Cognitive Impairment; a Systematic Review and Meta-Analysis. Brain, Behavior, and Immunity, 100, 55-69. https://doi.org/10.1016/j.bbi.2021.11.005
|
[29]
|
Daniilidou, M., Holleman, J., Hagman, G., Kåreholt, I., Aspö, M., Brinkmalm, A., et al. (2024) Neuroinflammation, Cerebrovascular Dysfunction and Diurnal Cortisol Biomarkers in a Memory Clinic Cohort: Findings from the Co-Star Study. Translational Psychiatry, 14, Article No. 364. https://doi.org/10.1038/s41398-024-03072-x
|
[30]
|
You, T., Wang, Y., Chen, S., Dong, Q., Yu, J. and Cui, M. (2024) Vascular Cognitive Impairment: Advances in Clinical Research and Management. Chinese Medical Journal, 137, 2793-2807. https://doi.org/10.1097/CM9.0000000000003220
|
[31]
|
Zorbaz, T., Madrer, N. and Soreq, H. (2022) Cholinergic Blockade of Neuroinflammation: From Tissue to RNA Regulators. Neuronal Signaling, 6, NS20210035. https://doi.org/10.1042/ns20210035
|
[32]
|
Gaur, A., Gallagher, D., Herrmann, N., Chen, J.J., Marzolini, S., Oh, P., et al. (2024) Neurofilament Light Chain as a Biomarker of Global Cognition in Individuals with Possible Vascular Mild Cognitive Impairment. Journal of Geriatric Psychiatry and Neurology, 38, 62-72. https://doi.org/10.1177/08919887241254469
|
[33]
|
Santisteban, M.M. and Iadecola, C. (2018) Hypertension, Dietary Salt and Cognitive Impairment. Journal of Cerebral Blood Flow & Metabolism, 38, 2112-2128. https://doi.org/10.1177/0271678x18803374
|
[34]
|
Huang, X., Deng, S., Xie, W. and Zheng, F. (2023) Time in Target Range of Systolic Blood Pressure and Cognitive Outcomes in Patients with Hypertension. Journal of the American Geriatrics Society, 72, 423-432. https://doi.org/10.1111/jgs.18641
|
[35]
|
Johnson, A.C. (2023) Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke, 54, 673-685. https://doi.org/10.1161/strokeaha.122.038263
|
[36]
|
Farkhani, S., Payab, M., Sharifi, F., Sharifi, Y., Mohammadi, S., Shadman, Z., et al. (2023) Association between Pre-Diabetes or Diabetes and Cognitive Impairment in a Community-Dwelling Older Population: Bushehr Elderly Health (BEH) Program. Journal of Diabetes & Metabolic Disorders, 23, 639-646. https://doi.org/10.1007/s40200-023-01325-y
|
[37]
|
Sadekar, S.S., Bowen, M., Cai, H., Jamalian, S., Rafidi, H., Shatz‐Binder, W., et al. (2022) Translational Approaches for Brain Delivery of Biologics via Cerebrospinal Fluid. Clinical Pharmacology & Therapeutics, 111, 826-834. https://doi.org/10.1002/cpt.2531
|
[38]
|
Qu, Z., Luo, J., Li, Z., Yang, R., Zhao, J., Chen, X., et al. (2024) Advancements in Strategies for Overcoming the Blood-Brain Barrier to Deliver Brain-Targeted Drugs. Frontiers in Aging Neuroscience, 16, Article 1353003. https://doi.org/10.3389/fnagi.2024.1353003
|
[39]
|
Bashyal, S., Thapa, C. and Lee, S. (2022) Recent Progresses in Exosome-Based Systems for Targeted Drug Delivery to the Brain. Journal of Controlled Release, 348, 723-744. https://doi.org/10.1016/j.jconrel.2022.06.011
|
[40]
|
Huttunen, J., Peltokangas, S., Gynther, M., Natunen, T., Hiltunen, M., Auriola, S., et al. (2019) L-Type Amino Acid Transporter 1 (LAT1/Lat1)-Utilizing Prodrugs Can Improve the Delivery of Drugs into Neurons, Astrocytes and Microglia. Scientific Reports, 9, Article No. 12860. https://doi.org/10.1038/s41598-019-49009-z
|
[41]
|
Jiang, W., Gong, L., Liu, F. and Mu, J. (2020) Stem Cells and Vascular Dementia: From Basic Science to the Clinic. Cell and Tissue Banking, 21, 349-360. https://doi.org/10.1007/s10561-020-09829-0
|
[42]
|
Zhang, K. and Cheng, K. (2023) Stem Cell-Derived Exosome versus Stem Cell Therapy. Nature Reviews Bioengineering, 1, 608-609. https://doi.org/10.1038/s44222-023-00064-2
|
[43]
|
Fields, R.D., Araque, A., Johansen-Berg, H., Lim, S., Lynch, G., Nave, K., et al. (2013) Glial Biology in Learning and Cognition. The Neuroscientist, 20, 426-431. https://doi.org/10.1177/1073858413504465
|
[44]
|
Chen, L., Zhen, Y., Wang, X., Wang, J. and Zhu, G. (2023) Neurovascular Glial Unit: A Target of Phytotherapy for Cognitive Impairments. Phytomedicine, 119, Article ID: 155009. https://doi.org/10.1016/j.phymed.2023.155009
|
[45]
|
Ben Achour, S. and Pascual, O. (2010) Glia: The Many Ways to Modulate Synaptic Plasticity. Neurochemistry International, 57, 440-445. https://doi.org/10.1016/j.neuint.2010.02.013
|
[46]
|
Linh, T.T.D., Hsieh, Y., Huang, L. and Hu, C. (2022) Clinical Trials of New Drugs for Vascular Cognitive Impairment and Vascular Dementia. International Journal of Molecular Sciences, 23, Article 11067. https://doi.org/10.3390/ijms231911067
|
[47]
|
Stefanski, M., Arora, Y., Cheung, M. and Dutta, A. (2024) Modal Analysis of Cerebrovascular Effects for Digital Health Integration of Neurostimulation Therapies—A Review of Technology Concepts. Brain Sciences, 14, Article 591. https://doi.org/10.3390/brainsci14060591
|
[48]
|
Aloizou, A., Pateraki, G., Anargyros, K., Siokas, V., Bakirtzis, C., Sgantzos, M., et al. (2021) Repetitive Transcranial Magnetic Stimulation in the Treatment of Alzheimer’s Disease and Other Dementias. Healthcare, 9, Article 949. https://doi.org/10.3390/healthcare9080949
|
[49]
|
Pan, W., Liu, P., Ma, D. and Yang, J. (2023) Advances in Photobiomodulation for Cognitive Improvement by Near-Infrared Derived Multiple Strategies. Journal of Translational Medicine, 21, Article No. 135. https://doi.org/10.1186/s12967-023-03988-w
|