|
[1]
|
汪凯, 董强, 崔梅, 等. 中国血管性认知障碍诊治指南(2024版) [J]. 中华医学杂志, 2024, 104(31): 2881-2894.
|
|
[2]
|
Graff-Radford, J. (2019) Vascular Cognitive Impairment. Continuum, 25, 147-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bogolepova, A.N. (2022) Vascular Cognitive Impairment. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 122, 17-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chen, T., Dai, Y., Hu, C., Lin, Z., Wang, S., Yang, J., et al. (2024) Cellular and Molecular Mechanisms of the Blood-Brain Barrier Dysfunction in Neurodegenerative Diseases. Fluids and Barriers of the CNS, 21, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, Z., Kelly, J.R., Morales, J.E., Sun, R.C., De, A., Burkin, D.J., et al. (2023) The α7 Integrin Subunit in Astrocytes Promotes Endothelial Blood-Brain Barrier Integrity. Development, 150, dev201356. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Barisano, G., Montagne, A., Kisler, K., Schneider, J.A., Wardlaw, J.M. and Zlokovic, B.V. (2022) Blood-Brain Barrier Link to Human Cognitive Impairment and Alzheimer’s Disease. Nature Cardiovascular Research, 1, 108-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shindo, A., Ishikawa, H., Ii, Y., Niwa, A. and Tomimoto, H. (2020) Clinical Features and Experimental Models of Cerebral Small Vessel Disease. Frontiers in Aging Neuroscience, 12, Article 109. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Moroni, F., Ammirati, E., Hainsworth, A.H. and Camici, P.G. (2020) Association of White Matter Hyperintensities and Cardiovascular Disease: The Importance of Microcirculatory Disease. Circulation: Cardiovascular Imaging, 13, e010460. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, M., Norman, J.E., Srinivasan, V.J., et al. (2016) Metabolic, Inflammatory, and Microvascular Determinants of White Matter Disease and Cognitive Decline. American Journal of Neurodegenerative Disease, 5, 171-177.
|
|
[10]
|
Ma, W., Yang, Y., Xie, T., Xu, Y., Liu, N. and Mo, X. (2022) Cerebral Small Vessel Disease: A Bibliometric Analysis. Journal of Molecular Neuroscience, 72, 2345-2359. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Cashion, J.M., Young, K.M. and Sutherland, B.A. (2023) How Does Neurovascular Unit Dysfunction Contribute to Multiple Sclerosis? Neurobiology of Disease, 178, Article ID: 106028. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Beishon, L., Clough, R.H., Kadicheeni, M., Chithiramohan, T., Panerai, R.B., Haunton, V.J., et al. (2021) Vascular and Haemodynamic Issues of Brain Ageing. Pflügers Archiv—European Journal of Physiology, 473, 735-751. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jung, H. and Kim, K. (2013) Blood Pressure Variability and Cognitive Function in the Elderly. Pulse, 1, 29-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, S., Tang, C., Liu, Y., Border, J.J., Roman, R.J. and Fan, F. (2022) Impact of Impaired Cerebral Blood Flow Autoregulation on Cognitive Impairment. Frontiers in Aging, 3, Article 1077302. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kaliman, P., Párrizas, M., Lalanza, J.F., Camins, A., Escorihuela, R.M. and Pallàs, M. (2011) Neurophysiological and Epigenetic Effects of Physical Exercise on the Aging Process. Ageing Research Reviews, 10, 475-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Stover, P.J. (2009) One-Carbon Metabolism-Genome Interactions in Folate-Associated Pathologies. The Journal of Nutrition, 139, 2402-2405. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Trattnig, S., Springer, E., Bogner, W., Hangel, G., Strasser, B., Dymerska, B., et al. (2018) Key Clinical Benefits of Neuroimaging at 7 T. NeuroImage, 168, 477-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Risacher, S.L. and Apostolova, L.G. (2023) Neuroimaging in Dementia. Continuum, 29, 219-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zeestraten, E.A., Lawrence, A.J., Lambert, C., Benjamin, P., Brookes, R.L., Mackinnon, A.D., et al. (2017) Change in Multimodal MRI Markers Predicts Dementia Risk in Cerebral Small Vessel Disease. Neurology, 89, 1869-1876. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Strain, J.F., Smith, R.X., Beaumont, H., Roe, C.M., Gordon, B.A., Mishra, S., et al. (2018) Loss of White Matter Integrity Reflects Tau Accumulation in Alzheimer Disease Defined Regions. Neurology, 91, e313-e318. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Madden, D.J., Bennett, I.J. and Song, A.W. (2009) Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging. Neuropsychology Review, 19, 415-435. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lindh-Rengifo, M., Jonasson, S.B., Ullén, S., Palmqvist, S., van Westen, D., Stomrud, E., et al. (2023) Effects of Brain Pathologies on Spatiotemporal Gait Parameters in Patients with Mild Cognitive Impairment. Journal of Alzheimer’s Disease, 96, 161-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rather, M.A., Khan, A., Jahan, S., Siddiqui, A.J. and Wang, L. (2024) Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer’s Disease. Neuroscience, 552, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hosoki, S., Hansra, G.K., Jayasena, T., Poljak, A., Mather, K.A., Catts, V.S., et al. (2023) Molecular Biomarkers for Vascular Cognitive Impairment and Dementia. Nature Reviews Neurology, 19, 737-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, P., Li, Y., Zhang, Z., Yang, Y., Rao, J., Xia, L., et al. (2020) Astroglial Mechanisms Underlying Chronic Insomnia Disorder: A Clinical Study. Nature and Science of Sleep, 12, 693-704. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Song, J. (2024) BDNF Signaling in Vascular Dementia and Its Effects on Cerebrovascular Dysfunction, Synaptic Plasticity, and Cholinergic System Abnormality. Journal of Lipid and Atherosclerosis, 13, 122-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xu, B., Yang, J., Kang, F., et al. (2015) The Inflammatory Response of Two Different Kinds of Anesthetics on Vascular Cognitive Impairment Rats and the Effect on Long Term Cognitive Function. International Journal of Clinical and Experimental Medicine, 8, 16694-16698.
|
|
[28]
|
Anita, N.Z., Zebarth, J., Chan, B., Wu, C., Syed, T., Shahrul, D., et al. (2022) Inflammatory Markers in Type 2 Diabetes with vs. without Cognitive Impairment; a Systematic Review and Meta-Analysis. Brain, Behavior, and Immunity, 100, 55-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Daniilidou, M., Holleman, J., Hagman, G., Kåreholt, I., Aspö, M., Brinkmalm, A., et al. (2024) Neuroinflammation, Cerebrovascular Dysfunction and Diurnal Cortisol Biomarkers in a Memory Clinic Cohort: Findings from the Co-Star Study. Translational Psychiatry, 14, Article No. 364. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
You, T., Wang, Y., Chen, S., Dong, Q., Yu, J. and Cui, M. (2024) Vascular Cognitive Impairment: Advances in Clinical Research and Management. Chinese Medical Journal, 137, 2793-2807. [Google Scholar] [CrossRef]
|
|
[31]
|
Zorbaz, T., Madrer, N. and Soreq, H. (2022) Cholinergic Blockade of Neuroinflammation: From Tissue to RNA Regulators. Neuronal Signaling, 6, NS20210035. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gaur, A., Gallagher, D., Herrmann, N., Chen, J.J., Marzolini, S., Oh, P., et al. (2024) Neurofilament Light Chain as a Biomarker of Global Cognition in Individuals with Possible Vascular Mild Cognitive Impairment. Journal of Geriatric Psychiatry and Neurology, 38, 62-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Santisteban, M.M. and Iadecola, C. (2018) Hypertension, Dietary Salt and Cognitive Impairment. Journal of Cerebral Blood Flow & Metabolism, 38, 2112-2128. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Huang, X., Deng, S., Xie, W. and Zheng, F. (2023) Time in Target Range of Systolic Blood Pressure and Cognitive Outcomes in Patients with Hypertension. Journal of the American Geriatrics Society, 72, 423-432. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Johnson, A.C. (2023) Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke, 54, 673-685. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Farkhani, S., Payab, M., Sharifi, F., Sharifi, Y., Mohammadi, S., Shadman, Z., et al. (2023) Association between Pre-Diabetes or Diabetes and Cognitive Impairment in a Community-Dwelling Older Population: Bushehr Elderly Health (BEH) Program. Journal of Diabetes & Metabolic Disorders, 23, 639-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sadekar, S.S., Bowen, M., Cai, H., Jamalian, S., Rafidi, H., Shatz‐Binder, W., et al. (2022) Translational Approaches for Brain Delivery of Biologics via Cerebrospinal Fluid. Clinical Pharmacology & Therapeutics, 111, 826-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Qu, Z., Luo, J., Li, Z., Yang, R., Zhao, J., Chen, X., et al. (2024) Advancements in Strategies for Overcoming the Blood-Brain Barrier to Deliver Brain-Targeted Drugs. Frontiers in Aging Neuroscience, 16, Article 1353003. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Bashyal, S., Thapa, C. and Lee, S. (2022) Recent Progresses in Exosome-Based Systems for Targeted Drug Delivery to the Brain. Journal of Controlled Release, 348, 723-744. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Huttunen, J., Peltokangas, S., Gynther, M., Natunen, T., Hiltunen, M., Auriola, S., et al. (2019) L-Type Amino Acid Transporter 1 (LAT1/Lat1)-Utilizing Prodrugs Can Improve the Delivery of Drugs into Neurons, Astrocytes and Microglia. Scientific Reports, 9, Article No. 12860. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Jiang, W., Gong, L., Liu, F. and Mu, J. (2020) Stem Cells and Vascular Dementia: From Basic Science to the Clinic. Cell and Tissue Banking, 21, 349-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhang, K. and Cheng, K. (2023) Stem Cell-Derived Exosome versus Stem Cell Therapy. Nature Reviews Bioengineering, 1, 608-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Fields, R.D., Araque, A., Johansen-Berg, H., Lim, S., Lynch, G., Nave, K., et al. (2013) Glial Biology in Learning and Cognition. The Neuroscientist, 20, 426-431. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chen, L., Zhen, Y., Wang, X., Wang, J. and Zhu, G. (2023) Neurovascular Glial Unit: A Target of Phytotherapy for Cognitive Impairments. Phytomedicine, 119, Article ID: 155009. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ben Achour, S. and Pascual, O. (2010) Glia: The Many Ways to Modulate Synaptic Plasticity. Neurochemistry International, 57, 440-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Linh, T.T.D., Hsieh, Y., Huang, L. and Hu, C. (2022) Clinical Trials of New Drugs for Vascular Cognitive Impairment and Vascular Dementia. International Journal of Molecular Sciences, 23, Article 11067. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Stefanski, M., Arora, Y., Cheung, M. and Dutta, A. (2024) Modal Analysis of Cerebrovascular Effects for Digital Health Integration of Neurostimulation Therapies—A Review of Technology Concepts. Brain Sciences, 14, Article 591. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Aloizou, A., Pateraki, G., Anargyros, K., Siokas, V., Bakirtzis, C., Sgantzos, M., et al. (2021) Repetitive Transcranial Magnetic Stimulation in the Treatment of Alzheimer’s Disease and Other Dementias. Healthcare, 9, Article 949. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Pan, W., Liu, P., Ma, D. and Yang, J. (2023) Advances in Photobiomodulation for Cognitive Improvement by Near-Infrared Derived Multiple Strategies. Journal of Translational Medicine, 21, Article No. 135. [Google Scholar] [CrossRef] [PubMed]
|