[1]
|
López, O.L. and DeKosky, S.T. (2008) Clinical Symptoms in Alzheimer’s Disease. Handbook of Clinical Neurology, 89, 207-216. https://doi.org/10.1016/s0072-9752(07)01219-5
|
[2]
|
Villemagne, V.L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K.A., Salvado, O., et al. (2013) Amyloid β Deposition, Neurodegeneration, and Cognitive Decline in Sporadic Alzheimer’s Disease: A Prospective Cohort Study. The Lancet Neurology, 12, 357-367. https://doi.org/10.1016/s1474-4422(13)70044-9
|
[3]
|
Jack, C.R., Lowe, V.J., Weigand, S.D., Wiste, H.J., Senjem, M.L., Knopman, D.S., et al. (2009) Serial PIB and MRI in Normal, Mild Cognitive Impairment and Alzheimer’s Disease: Implications for Sequence of Pathological Events in Alzheimer’s Disease. Brain, 132, 1355-1365. https://doi.org/10.1093/brain/awp062
|
[4]
|
Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R.C., Ritchie, K., Broich, K., et al. (2006) Mild Cognitive Impairment. The Lancet, 367, 1262-1270. https://doi.org/10.1016/s0140-6736(06)68542-5
|
[5]
|
Hodson, R. (2018) Alzheimer’s Disease. Nature, 559, S1. https://doi.org/10.1038/d41586-018-05717-6
|
[6]
|
Busche, M.A. and Hyman, B.T. (2020) Synergy between Amyloid-β and Tau in Alzheimer’s Disease. Nature Neuroscience, 23, 1183-1193. https://doi.org/10.1038/s41593-020-0687-6
|
[7]
|
Selkoe, D.J. (2008) Biochemistry and Molecular Biology of Amyloid β‐Protein and the Mechanism of Alzheimer’s Disease. Handbook of Clinical Neurology, 89, 245-260. https://doi.org/10.1016/s0072-9752(07)01223-7
|
[8]
|
Panza, F., Lozupone, M., Logroscino, G. and Imbimbo, B.P. (2019) A Critical Appraisal of Amyloid-β-Targeting Therapies for Alzheimer Disease. Nature Reviews Neurology, 15, 73-88. https://doi.org/10.1038/s41582-018-0116-6
|
[9]
|
Small, S.A. and Duff, K. (2008) Linking Aβ and Tau in Late-Onset Alzheimer’s Disease: A Dual Pathway Hypothesis. Neuron, 60, 534-542. https://doi.org/10.1016/j.neuron.2008.11.007
|
[10]
|
Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., et al. (2014) Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. New England Journal of Medicine, 370, 322-333. https://doi.org/10.1056/nejmoa1304839
|
[11]
|
Digma, L.A., Madsen, J.R., Reas, E.T., Dale, A.M., Brewer, J.B. and Banks, S.J. (2019) Tau and Atrophy: Domain-Specific Relationships with Cognition. Alzheimer’s Research & Therapy, 11, Article No. 65. https://doi.org/10.1186/s13195-019-0518-8
|
[12]
|
Lowe, V.J., Bruinsma, T.J., Wiste, H.J., Min, H., Weigand, S.D., Fang, P., et al. (2019) Cross-Sectional Associations of Tau-Pet Signal with Cognition in Cognitively Unimpaired Adults. Neurology, 93, [page]. https://doi.org/10.1212/wnl.0000000000007728
|
[13]
|
Weigand, A.J., Thomas, K.R., Bangen, K.J., Eglit, G.M.L., Delano‐Wood, L., Gilbert, P.E., et al. (2020) APOE Interacts with Tau PET to Influence Memory Independently of Amyloid PET in Older Adults without Dementia. Alzheimer’s & Dementia, 17, 61-69. https://doi.org/10.1002/alz.12173
|
[14]
|
Bertram, L., McQueen, M.B., Mullin, K., Blacker, D. and Tanzi, R.E. (2007) Systematic Meta-Analyses of Alzheimer Disease Genetic Association Studies: The Alzgene Database. Nature Genetics, 39, 17-23. https://doi.org/10.1038/ng1934
|
[15]
|
Kim, J., Basak, J.M. and Holtzman, D.M. (2009) The Role of Apolipoprotein E in Alzheimer’s Disease. Neuron, 63, 287-303. https://doi.org/10.1016/j.neuron.2009.06.026
|
[16]
|
Shi, Y., Yamada, K., Liddelow, S.A., Smith, S.T., Zhao, L., Luo, W., et al. (2017) ApoE4 Markedly Exacerbates Tau-Mediated Neurodegeneration in a Mouse Model of Tauopathy. Nature, 549, 523-527. https://doi.org/10.1038/nature24016
|
[17]
|
Futch, H.S., Croft, C.L., Truong, V.Q., Krause, E.G. and Golde, T.E. (2017) Targeting Psychologic Stress Signaling Pathways in Alzheimer’s Disease. Molecular Neurodegeneration, 12, Article No. 49. https://doi.org/10.1186/s13024-017-0190-z
|
[18]
|
Karran, E. and De Strooper, B. (2022) The Amyloid Hypothesis in Alzheimer Disease: New Insights from New Therapeutics. Nature Reviews Drug Discovery, 21, 306-318. https://doi.org/10.1038/s41573-022-00391-w
|
[19]
|
Agadjanyan, M.G., Zagorski, K., Petrushina, I., Davtyan, H., Kazarian, K., Antonenko, M., et al. (2017) Humanized Monoclonal Antibody Armanezumab Specific to N-Terminus of Pathological Tau: Characterization and Therapeutic Potency. Molecular Neurodegeneration, 12, Article No. 33. https://doi.org/10.1186/s13024-017-0172-1
|
[20]
|
Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S., et al. (1993) Apolipoprotein E: High-Avidity Binding to Beta-Amyloid and Increased Frequency of Type 4 Allele in Late-Onset Familial Alzheimer Disease. Proceedings of the National Academy of Sciences of the United States of America, 90, 1977-1981. https://doi.org/10.1073/pnas.90.5.1977
|
[21]
|
Holtzman, D.M., Herz, J. and Bu, G. (2012) Apolipoprotein E and Apolipoprotein E Receptors: Normal Biology and Roles in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2, a006312. https://doi.org/10.1101/cshperspect.a006312
|
[22]
|
Strittmatter, W.J., Saunders, A.M., Goedert, M., Weisgraber, K.H., Dong, L.M., Jakes, R., et al. (1994) Isoform-Specific Interactions of Apolipoprotein E with Microtubule-Associated Protein Tau: Implications for Alzheimer Disease. Proceedings of the National Academy of Sciences of the United States of America, 91, 11183-11186. https://doi.org/10.1073/pnas.91.23.11183
|
[23]
|
Josephs, K.A., Whitwell, J.L., Ahmed, Z., Shiung, M.M., Weigand, S.D., Knopman, D.S., et al. (2008) β‐Amyloid Burden Is Not Associated with Rates of Brain Atrophy. Annals of Neurology, 63, 204-212. https://doi.org/10.1002/ana.21223
|
[24]
|
Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T. and Hyman, B.T. (1992) Neurofibrillary Tangles but Not Senile Plaques Parallel Duration and Severity of Alzheimer’s Disease. Neurology, 42, 631-631. https://doi.org/10.1212/wnl.42.3.631
|
[25]
|
Williams, D.R., Holton, J.L., Strand, C., Pittman, A., de Silva, R., Lees, A.J., et al. (2007) Pathological Tau Burden and Distribution Distinguishes Progressive Supranuclear Palsy-Parkinsonism from Richardson’s Syndrome. Brain, 130, 1566-1576. https://doi.org/10.1093/brain/awm104
|
[26]
|
Brecht, W.J., Harris, F.M., Chang, S., Tesseur, I., Yu, G., Xu, Q., et al. (2004) Neuron-Specific Apolipoprotein E4 Proteolysis Is Associated with Increased Tau Phosphorylation in Brains of Transgenic Mice. The Journal of Neuroscience, 24, 2527-2534. https://doi.org/10.1523/jneurosci.4315-03.2004
|
[27]
|
Deming, Y., Li, Z., Kapoor, M., Harari, O., Del-Aguila, J.L., Black, K., et al. (2017) Genome-Wide Association Study Identifies Four Novel Loci Associated with Alzheimer’s Endophenotypes and Disease Modifiers. Acta Neuropathologica, 133, 839-856. https://doi.org/10.1007/s00401-017-1685-y
|
[28]
|
Mishra, A., Ferrari, R., Heutink, P., Hardy, J., Pijnenburg, Y. and Posthuma, D. (2017) Gene-Based Association Studies Report Genetic Links for Clinical Subtypes of Frontotemporal Dementia. Brain, 140, 1437-1446. https://doi.org/10.1093/brain/awx066
|
[29]
|
Stevens, M., van Duijn, C.M., de Knijff, P., van Broeckhoven, C., Heutink, P., Oostra, B.A., et al. (1997) Apolipoprotein E Gene and Sporadic Frontal Lobe Dementia. Neurology, 48, 1526-1529. https://doi.org/10.1212/wnl.48.6.1526
|
[30]
|
Agosta, F., Vossel, K.A., Miller, B.L., Migliaccio, R., Bonasera, S.J., Filippi, M., et al. (2009) Apolipoprotein E ε4 Is Associated with Disease-Specific Effects on Brain Atrophy in Alzheimer’s Disease and Frontotemporal Dementia. Proceedings of the National Academy of Sciences of the United States of America, 106, 2018-2022. https://doi.org/10.1073/pnas.0812697106
|
[31]
|
Engelborghs, S., Dermaut, B., Marien, P., Symons, A., Vloeberghs, E., Maertens, K., et al. (2006) Dose Dependent Effect of APOE Ɛ4 on Behavioral Symptoms in Frontal Lobe Dementia. Neurobiology of Aging, 27, 285-292. https://doi.org/10.1016/j.neurobiolaging.2005.02.005
|