|
[1]
|
Edul, V.K. and Gutierrez, F.J. (2023) Devices for Assessing Microcirculation. Current Opinion in Critical Care, 29, 236-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Lazaridis, A., Triantafyllou, A., Mastrogiannis, K., Malliora, A., Doumas, M. and Gkaliagkousi, E. (2023) Assessing Skin Microcirculation in Patients at Cardiovascular Risk by Using Laser Speckle Contrast Imaging. A Narrative Review. Clinical Physiology and Functional Imaging, 43, 211-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hellmann, M., Kalinowski, L. and Cracowski, J.L. (2022) Laser Speckle Contrast Imaging to Assess Microcirculation. Cardiology Journal, 29, 1028-1030. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
张轶, 吴纪凯, 范雪颖. 渐进性松弛训练对心理应激状态人群甲襞微循环影响的研究[J]. 重庆医学, 2014, 43(19): 2410-2411+2414.
|
|
[5]
|
Nam, K. and Jeon, Y. (2022) Microcirculation during Surgery. Anesthesia and Pain Medicine, 17, 24-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
阎乃璐, 陆菡, 于布为. 围术期微循环的相关研究进展[J]. 上海交通大学学报(医学版), 2021, 41(1): 108-111.
|
|
[7]
|
De Cuyper, H. and Poelaert, J. (2024) Microcirculatory Alterations in Cardiac Surgery: A Comprehensive Guide. Journal of Cardiothoracic and Vascular Anesthesia, 38, 829-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ocak, I., Kara, A. and Ince, C. (2016) Monitoring Microcirculation. Best Practice & Research Clinical Anaesthesiology, 30, 407-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Pierce, R.W., Giuliano Jr, J.S. and Pober, J.S. (2017) Endothelial Cell Function and Dysfunction in Critically Ill Children. Pediatrics, 140, e20170355. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Uchimido, R., Schmidt, E.P. and Shapiro, N.I. (2019) The Glycocalyx: A Novel Diagnostic and Therapeutic Target in Sepsis. Critical Care, 23, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ince, C., Mayeux, P.R., Nguyen, T., Gomez, H., Kellum, J.A., Ospina-Tascón, G.A., et al. (2016) The Endothelium in Sepsis. Shock, 45, 259-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gutterman, D.D., Chabowski, D.S., Kadlec, A.O., et al. (2016) The Human Microcirculation: Regulation of Flow and beyond. Circulation Research, 118, 157-172.
|
|
[13]
|
Guven, G., Hilty, M.P. and Ince, C. (2019) Microcirculation: Physiology, Pathophysiology, and Clinical Application. Blood Purification, 49, 143-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Joffre, J. and Legrand, M. (2021) Microcirculation-Targeted Resuscitation in Septic Shock: Can Complex Problems Have Simple Answers? Annals of Intensive Care, 11, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yajnik, V. and Maarouf, R. (2022) Sepsis and the Microcirculation: The Impact on Outcomes. Current Opinion in Anaesthesiology, 35, 230-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Spanos, A., Jhanji, S., Vivian-Smith, A., Harris, T. and Pearse, R.M. (2010) Early Microvascular Changes in Sepsis and Severe Sepsis. Shock, 33, 387-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lelubre, C. and Vincent, J. (2018) Mechanisms and Treatment of Organ Failure in Sepsis. Nature Reviews Nephrology, 14, 417-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Favaron, E., Ince, C., Hilty, M.P., Ergin, B., van der Zee, P., Uz, Z., et al. (2021) Capillary Leukocytes, Microaggregates, and the Response to Hypoxemia in the Microcirculation of Coronavirus Disease 2019 Patients. Critical Care Medicine, 49, 661-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rovas, A., Osiaevi, I., Buscher, K., Sackarnd, J., Tepasse, P.R., Fobker, M., et al. (2020) Microvascular Dysfunction in COVID-19: The MYSTIC Study. Angiogenesis, 24, 145-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Pottecher, J., Deruddre, S., Teboul, J.L., Georger, J.F., Laplace, C., Benhamou, D., et al. (2010) Both Passive Leg Raising and Intravascular Volume Expansion Improve Sublingual Microcirculatory Perfusion in Severe Sepsis and Septic Shock Patients. Intensive Care Medicine, 36, 1867-1874. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Jongman, R.M., Zijlstra, J.G., Kok, W.F., van Harten, A.E., Mariani, M.A., Moser, J., et al. (2014) Off-Pump CABG Surgery Reduces Systemic Inflammation Compared with On-Pump Surgery but Does Not Change Systemic Endothelial Responses. Shock, 42, 121-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Onorati, F., Rubino, A.S., Nucera, S., Foti, D., Sica, V., Santini, F., et al. (2010) Off-Pump Coronary Artery Bypass Surgery versus Standard Linear or Pulsatile Cardiopulmonary Bypass: Endothelial Activation and Inflammatory Response. European Journal of Cardio-Thoracic Surgery, 37, 897-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kourliouros, A., Valencia, O., Phillips, S.D., Collinson, P.O., van Besouw, J. and Jahangiri, M. (2010) Low Cardiopulmonary Bypass Perfusion Temperatures Are Associated with Acute Kidney Injury Following Coronary Artery Bypass Surgery. European Journal of Cardio-Thoracic Surgery, 37, 704-709. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Presta, P., Onorati, F., Fuiano, L., Mastroroberto, P., Santarpino, G., Tozzo, C., et al. (2009) Can Pulsatile Cardiopulmonary Bypass Prevent Perioperative Renal Dysfunction during Myocardial Revascularization in Elderly Patients? Nephron Clinical Practice, 111, c229-c235. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Huybregts, R.A.J.M., de Vroege, R., Jansen, E.K., van Schijndel, A.W., Christiaans, H.M.T. and van Oeveren, W. (2009) The Association of Hemodilution and Transfusion of Red Blood Cells with Biochemical Markers of Splanchnic and Renal Injury during Cardiopulmonary Bypass. Anesthesia & Analgesia, 109, 331-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nam, K. and Jeon, Y. (2022) Microcirculation during Surgery. Anesthesia and Pain Medicine, 17, 24-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Trzeciak, S., Dellinger, R.P., Parrillo, J.E., Guglielmi, M., Bajaj, J., Abate, N.L., et al. (2007) Early Microcirculatory Perfusion Derangements in Patients with Severe Sepsis and Septic Shock: Relationship to Hemodynamics, Oxygen Transport, and Survival. Annals of Emergency Medicine, 49, 88-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kim, T.K., Cho, Y.J., Min, J.J., Murkin, J.M., Bahk, J., Hong, D.M., et al. (2015) Microvascular Reactivity and Clinical Outcomes in Cardiac Surgery. Critical Care, 19, Article No. 316. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Flick, M., Briesenick, L., Peine, S., Scheeren, T.W.L., Duranteau, J. and Saugel, B. (2021) The Effect of Moderate Intraoperative Blood Loss and Norepinephrine Therapy on Sublingual Microcirculatory Perfusion in Patients Having Open Radical Prostatectomy. European Journal of Anaesthesiology, 38, 459-467. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Flick, M., Schreiber, T.H., Montomoli, J., Krause, L., de Boer, H.D., Kouz, K., et al. (2022) Microcirculatory Tissue Perfusion during General Anaesthesia and Noncardiac Surgery. European Journal of Anaesthesiology, 39, 582-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bansch, P., Flisberg, P. and Bentzer, P. (2014) Changes in the Sublingual Microcirculation during Major Abdominal Surgery and Post-Operative Morbidity. Acta Anaesthesiologica Scandinavica, 58, 89-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Uz, Z., Ince, C., Guerci, P., Ince, Y., P. Araujo, R., Ergin, B., et al. (2018) Recruitment of Sublingual Microcirculation Using Handheld Incident Dark Field Imaging as a Routine Measurement Tool during the Postoperative De-Escalation Phase—A Pilot Study in Post ICU Cardiac Surgery Patients. Perioperative Medicine, 7, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Saugel, B. and Sessler, D.I. (2021) Perioperative Blood Pressure Management. Anesthesiology, 134, 250-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Dubin, A., Kanoore Edul, V.S., Caminos Eguillor, J.F. and Ferrara, G. (2020) Monitoring Microcirculation: Utility and Barriers—A Point-of-View Review. Vascular Health and Risk Management, 16, 577-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, B., Dai, Y., Cai, W., Sun, M. and Sun, J. (2025) Monitoring of Perioperative Tissue Perfusion and Impact on Patient Outcomes. Journal of Cardiothoracic Surgery, 20, Article No. 100. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ince, C. (2014) The Rationale for Microcirculatory Guided Fluid Therapy. Current Opinion in Critical Care, 20, 301-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Bruno, R.R., Wollborn, J., Fengler, K., Flick, M., Wunder, C., Allgäuer, S., et al. (2023) Direct Assessment of Microcirculation in Shock: A Randomized-Controlled Multicenter Study. Intensive Care Medicine, 49, 645-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhou, Q., Dai, C., Zhu, Y., Han, T., Zhou, J., Zhao, L., et al. (2021) The Effectiveness and Feasibility of Fluid Resuscitation Directed by Microcirculation Monitoring in Patients with Septic Shock: A Randomized Controlled Trial. Annals of Palliative Medicine, 10, 9069-9077. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
孙一, 邱林, 徐红党, 等. 心血管手术围术期舌下微循环最新研究进展[J]. 医药论坛杂志, 2021, 42(19): 135-139.
|
|
[40]
|
吴京朗, 马文凤, 王颖. 微循环监测在围术期管理中的应用进展[J]. 微循环学杂志, 2023, 33(2): 95-99.
|