[1]
|
Newton, K., Strasser, A., Kayagaki, N. and Dixit, V.M. (2024) Cell Death. Cell, 187, 235-256. https://doi.org/10.1016/j.cell.2023.11.044
|
[2]
|
马卓. 丙泊酚通过NLRP1-caspase-1通路抑制小鼠脑缺血再灌注后神经元细胞焦亡的研究[D]: [博士学位论文]. 长春: 吉林大学, 2021.
|
[3]
|
Gong, H., Wan, X., Zhang, Y. and Liang, S. (2021) Downregulation of HOTAIR Reduces Neuronal Pyroptosis by Targeting miR-455-3p/NLRP1 Axis in Propofol-Treated Neurons in Vitro. Neurochemical Research, 46, 1141-1150. https://doi.org/10.1007/s11064-021-03249-6
|
[4]
|
Chen, R., Chen, T., Chen, T., Lin, L., Chang, C., Chang, H., et al. (2005) Anti‐Inflammatory and Antioxidative Effects of Propofol on Lipopolysaccharide‐Activated Macrophages. Annals of the New York Academy of Sciences, 1042, 262-271. https://doi.org/10.1196/annals.1338.030
|
[5]
|
Ma, J., Xiao, W., Wang, J., Wu, J., Ren, J., Hou, J., et al. (2016) Propofol Inhibits NLRP3 Inflammasome and Attenuates Blast-Induced Traumatic Brain Injury in Rats. Inflammation, 39, 2094-2103. https://doi.org/10.1007/s10753-016-0446-8
|
[6]
|
Sun, L., Ma, W., Gao, W., Xing, Y., Chen, L., Xia, Z., et al. (2019) Propofol Directly Induces Caspase-1-Dependent Macrophage Pyroptosis through the NLRP3-ASC Inflammasome. Cell Death & Disease, 10, Article No. 542. https://doi.org/10.1038/s41419-019-1761-4
|
[7]
|
Sun, Y., Zhao, H., Wang, D. and Ma, D. (2018) Dexmedetomidine Alleviates LPS-Induced Pyroptosis in Astrocytes in Vitro. British Journal of Anaesthesia, 120, e8-e9. https://doi.org/10.1016/j.bja.2017.11.026
|
[8]
|
陆大浩, 高巨. 细胞焦亡在脓毒症急性肺损伤中作用的研究进展[J]. 临床麻醉学杂志, 2024, 40(4): 412-415.
|
[9]
|
殷越, 段玉珊, 万晓红. 细胞焦亡在脓毒症相关性脑病中的研究进展[J]. 重庆医学, 2024, 53(22): 3490-3494+3500.
|
[10]
|
Sun, Y., Zhao, H., Mu, D., Zhang, W., Cui, J., Wu, L., et al. (2019) Dexmedetomidine Inhibits Astrocyte Pyroptosis and Subsequently Protects the Brain in in Vitro and in Vivo Models of Sepsis. Cell Death & Disease, 10, Article No. 167. https://doi.org/10.1038/s41419-019-1416-5
|
[11]
|
Chen, Y., Wei, G., Feng, X., Lei, E. and Zhang, L. (2024) Dexmedetomidine Enhances Mitophagy via PINK1 to Alleviate Hippocampal Neuronal Pyroptosis and Improve Postoperative Cognitive Dysfunction in Elderly Rat. Experimental Neurology, 379, Article ID: 114842. https://doi.org/10.1016/j.expneurol.2024.114842
|
[12]
|
Sun, K., Zhang, J., Yang, Q., Zhu, J., Zhang, X., Wu, K., et al. (2021) Dexmedetomidine Exerts a Protective Effect on Ischemic Brain Injury by Inhibiting the P2X7R/NLRP3/Caspase-1 Signaling Pathway. Brain Research Bulletin, 174, 11-21. https://doi.org/10.1016/j.brainresbull.2021.05.006
|
[13]
|
Zhang, L., Xiao, F., Zhang, J., Wang, X., Ying, J., Wei, G., et al. (2021) Dexmedetomidine Mitigated NLRP3-Mediated Neuroinflammation via the Ubiquitin-Autophagy Pathway to Improve Perioperative Neurocognitive Disorder in Mice. Frontiers in Pharmacology, 12, Article ID: 646265. https://doi.org/10.3389/fphar.2021.646265
|
[14]
|
Zhong, Y., Li, Y., Yin, Y., Hu, B. and Gao, H. (2020) Dexmedetomidine Inhibits Pyroptosis by Down-Regulating miR-29b in Myocardial Ischemia Reperfusion Injury in Rats. International Immunopharmacology, 86, Article ID: 106768. https://doi.org/10.1016/j.intimp.2020.106768
|
[15]
|
Wang, L., Liu, J., Wang, Z., Qian, X., Zhao, Y., Wang, Q., et al. (2023) Dexmedetomidine Abates Myocardial Ischemia Reperfusion Injury through Inhibition of Pyroptosis via Regulation of miR-665/MEF2D/Nrf2 Axis. Biomedicine & Pharmacotherapy, 165, Article ID: 115255. https://doi.org/10.1016/j.biopha.2023.115255
|
[16]
|
Ding, X., Cao, Y., Li, L. and Zhao, G. (2021) Dexmedetomidine Reduces the Lidocaine-Induced Neurotoxicity by Inhibiting Inflammasome Activation and Reducing Pyroptosis in Rats. Biological and Pharmaceutical Bulletin, 44, 902-909. https://doi.org/10.1248/bpb.b20-00482
|
[17]
|
Wang, R., Liu, P., Li, F. and Qiao, H. (2023) Dexmedetomidine Protects against Ropivacaine-Induced Neuronal Pyroptosis via the Nrf2/HO-1 Pathway. The Journal of Toxicological Sciences, 48, 139-148. https://doi.org/10.2131/jts.48.139
|
[18]
|
Wang, X. and Wan, Z. (2023) Dexmedetomidine Alleviates Propofol-Induced Pyroptosis of Hippocampal Neurons through NLRP3 Inflammasome Pathway. NeuroReport, 34, 375-384. https://doi.org/10.1097/wnr.0000000000001897
|
[19]
|
Huang, L., Li, Q., Wen, R., Yu, Z., Li, N., Ma, L., et al. (2017) Rho-Kinase Inhibitor Prevents Acute Injury against Transient Focal Cerebral Ischemia by Enhancing the Expression and Function of GABA Receptors in Rats. European Journal of Pharmacology, 797, 134-142. https://doi.org/10.1016/j.ejphar.2017.01.021
|
[20]
|
Xia, Y., He, F., Wu, X., Tan, B., Chen, S., Liao, Y., et al. (2021) GABA Transporter Sustains IL-1β Production in Macrophages. Science Advances, 7, eabe9274. https://doi.org/10.1126/sciadv.abe9274
|
[21]
|
Zhang, Z., Xu, X., Ma, J., Wu, J., Wang, Y., Zhou, R., et al. (2013) Gene Deletion of gabarap Enhances Nlrp3 Inflammasome-Dependent Inflammatory Responses. The Journal of Immunology, 190, 3517-3524. https://doi.org/10.4049/jimmunol.1202628
|
[22]
|
Shi, M., Chen, J., Liu, T., Dai, W., Zhou, Z., Chen, L., et al. (2022) Protective Effects of Remimazolam on Cerebral Ischemia/Reperfusion Injury in Rats by Inhibiting of NLRP3 Inflammasome-Dependent Pyroptosis. Drug Design, Development and Therapy, 16, 413-423. https://doi.org/10.2147/dddt.s344240
|
[23]
|
Zhang, Z., Bai, H., Ma, X., Shen, M., Li, R., Qiu, D., et al. (2021) Blockade of the NLRP3/Caspase-1 Axis Attenuates Ketamine-Induced Hippocampus Pyroptosis and Cognitive Impairment in Neonatal Rats. Journal of Neuroinflammation, 18, Article No. 239. https://doi.org/10.1186/s12974-021-02295-9
|
[24]
|
Ye, Z., Li, Q., Guo, Q., Xiong, Y., Guo, D., Yang, H., et al. (2018) Ketamine Induces Hippocampal Apoptosis through a Mechanism Associated with the Caspase-1 Dependent Pyroptosis. Neuropharmacology, 128, 63-75. https://doi.org/10.1016/j.neuropharm.2017.09.035
|
[25]
|
何旋, 吴晓静, 陈鹤翔, 等. 艾司氯胺酮对内毒素性急性肺损伤大鼠肺组织细胞焦亡的影响[J]. 中华麻醉学杂志, 2021, 41(3): 331-334.
|
[26]
|
马扬, 刘静怡, 马子健, 等. 艾司氯胺酮调控Nrf2/HO-1信号通路对脂多糖诱导的小鼠肺泡巨噬细胞焦亡的影响[J]. 中国临床药理学杂志, 2023, 39(17): 2522-2526.
|
[27]
|
Zheng, X., Yang, Z., Yang, G., Huang, Y., Peng, J. and Wu, M. (2022) Lung Injury after Cardiopulmonary Bypass: Alternative Treatment Prospects. World Journal of Clinical Cases, 10, 753-761. https://doi.org/10.12998/wjcc.v10.i3.753
|
[28]
|
Zhang, J., Li, J., An, Z. and Qi, J. (2023) Hydromorphone Mitigates Cardiopulmonary Bypass-Induced Acute Lung Injury by Repressing Pyroptosis of Alveolar Macrophages. Shock, 60, 92-99. https://doi.org/10.1097/shk.0000000000002138
|
[29]
|
Carranza-Aguilar, C.J., Hernández-Mendoza, A., Mejias-Aponte, C., Rice, K.C., Morales, M., González-Espinosa, C., et al. (2020) Morphine and Fentanyl Repeated Administration Induces Different Levels of Nlrp3-Dependent Pyroptosis in the Dorsal Raphe Nucleus of Male Rats via Cell-Specific Activation of TLR4 and Opioid Receptors. Cellular and Molecular Neurobiology, 42, 677-694. https://doi.org/10.1007/s10571-020-00957-5
|
[30]
|
陈栋, 麻勇. 细胞焦亡在肝脏缺血再灌注损伤中的研究进展[J]. 中国普外基础与临床杂志, 2022, 29(2): 243-247.
|
[31]
|
李秀芳, 郝泉水, 高雄, 等. SIRT1-NLRP3轴介导的细胞焦亡在瑞芬太尼抗肝脏缺血-再灌注损伤中的作用研究[J]. 器官移植, 2024, 15(6): 895-902.
|
[32]
|
Yang, Y., Chen, C., Cui, C., Jiao, Y., Li, P., Zhu, L., et al. (2019) Indispensable Role of β-Arrestin2 in the Protection of Remifentanil Preconditioning against Hepatic Ischemic Reperfusion Injury. Scientific Reports, 9, Article No. 2087. https://doi.org/10.1038/s41598-018-38456-9
|
[33]
|
廖瑶, 涂婷, 曾惜羽, 等. 瑞芬太尼对椎间盘退变模型大鼠椎间盘的影响及机制[J]. 重庆医科大学学报, 2023, 48(7): 760-764.
|
[34]
|
刘忠涛, 孙天琪, 杨雅婷, 等. 舒芬太尼调节AMPK/TXNIP/NLRP3信号通路对脂多糖诱导的肺泡上皮细胞焦亡的影响[J]. 国际检验医学杂志, 2024, 45(12): 1419-1424.
|