[1]
|
Chojdak-Łukasiewicz, J., Dziadkowiak, E., Zimny, A. and Paradowski, B. (2021) Cerebral Small Vessel Disease: A Review. Advances in Clinical and Experimental Medicine, 30, 349-356. https://doi.org/10.17219/acem/131216
|
[2]
|
Elahi, F.M., Alladi, S., Black, S.E., Claassen, J.A.H.R., DeCarli, C., Hughes, T.M., et al. (2023) Clinical Trials in Vascular Cognitive Impairment Following SPRINT-MIND: An International Perspective. Cell Reports Medicine, 4, Article ID: 101089. https://doi.org/10.1016/j.xcrm.2023.101089
|
[3]
|
Rost, N.S., Brodtmann, A., Pase, M.P., van Veluw, S.J., Biffi, A., Duering, M., et al. (2022) Post-Stroke Cognitive Impairment and Dementia. Circulation Research, 130, 1252-1271. https://doi.org/10.1161/circresaha.122.319951
|
[4]
|
Zanon Zotin, M.C., Sveikata, L., Viswanathan, A. and Yilmaz, P. (2021) Cerebral Small Vessel Disease and Vascular Cognitive Impairment: From Diagnosis to Management. Current Opinion in Neurology, 34, 246-257. https://doi.org/10.1097/wco.0000000000000913
|
[5]
|
Inoue, Y., Shue, F., Bu, G. and Kanekiyo, T. (2023) Pathophysiology and Probable Etiology of Cerebral Small Vessel Disease in Vascular Dementia and Alzheimer’s Disease. Molecular Neurodegeneration, 18, Article No. 46. https://doi.org/10.1186/s13024-023-00640-5
|
[6]
|
Dupré, N., Drieu, A. and Joutel, A. (2024) Pathophysiology of Cerebral Small Vessel Disease: A Journey through Recent Discoveries. Journal of Clinical Investigation, 134, e172841. https://doi.org/10.1172/jci172841
|
[7]
|
van den Brink, H., Doubal, F.N. and Duering, M. (2022) Advanced MRI in Cerebral Small Vessel Disease. International Journal of Stroke, 18, 28-35. https://doi.org/10.1177/17474930221091879
|
[8]
|
Duering, M., Biessels, G.J., Brodtmann, A., Chen, C., Cordonnier, C., de Leeuw, F., et al. (2023) Neuroimaging Standards for Research into Small Vessel Disease—Advances since 2013. The Lancet Neurology, 22, 602-618. https://doi.org/10.1016/s1474-4422(23)00131-x
|
[9]
|
Wu, L., Chai, Y.L., Cheah, I.K., Chia, R.S.L., Hilal, S., Arumugam, T.V., et al. (2024) Blood-Based Biomarkers of Cerebral Small Vessel Disease. Ageing Research Reviews, 95, Article ID: 102247. https://doi.org/10.1016/j.arr.2024.102247
|
[10]
|
Markus, H.S. and de Leeuw, F.E. (2022) Cerebral Small Vessel Disease: Recent Advances and Future Directions. International Journal of Stroke, 18, 4-14. https://doi.org/10.1177/17474930221144911
|
[11]
|
Hainsworth, A.H., Markus, H.S. and Schneider, J.A. (2024) Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension, 81, 75-86. https://doi.org/10.1161/hypertensionaha.123.19943
|
[12]
|
Bordes, C., Sargurupremraj, M., Mishra, A. and Debette, S. (2022) Genetics of Common Cerebral Small Vessel Disease. Nature Reviews Neurology, 18, 84-101. https://doi.org/10.1038/s41582-021-00592-8
|
[13]
|
Gao, Y., Li, D., Lin, J., Thomas, A.M., Miao, J., Chen, D., et al. (2022) Cerebral Small Vessel Disease: Pathological Mechanisms and Potential Therapeutic Targets. Frontiers in Aging Neuroscience, 14, Article 961661. https://doi.org/10.3389/fnagi.2022.961661
|
[14]
|
Ge, Y. (2024) Vascular Contributions to Healthy Aging and Dementia. Aging and Disease, 15, 1432-1437.
|
[15]
|
Ungvari, Z., Toth, P., Tarantini, S., Prodan, C.I., Sorond, F., Merkely, B., et al. (2021) Hypertension-Induced Cognitive Impairment: From Pathophysiology to Public Health. Nature Reviews Nephrology, 17, 639-654. https://doi.org/10.1038/s41581-021-00430-6
|
[16]
|
Webb, A.J.S. and Werring, D.J. (2022) New Insights into Cerebrovascular Pathophysiology and Hypertension. Stroke, 53, 1054-1064. https://doi.org/10.1161/strokeaha.121.035850
|
[17]
|
Li, Y., Ying, Y., Yao, T., Jia, X., Liang, H., Tang, W., et al. (2023) Decreased Water Exchange Rate across Blood-Brain Barrier in Hereditary Cerebral Small Vessel Disease. Brain, 146, 3079-3087. https://doi.org/10.1093/brain/awac500
|
[18]
|
Tian, Y., Zhao, M., Chen, Y., Yang, M. and Wang, Y. (2022) The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease. Biomolecules, 12, Article 748. https://doi.org/10.3390/biom12060748
|
[19]
|
Shi, Y., Guo, L., Chen, Y., Xie, Q., Yan, Z., Liu, Y., et al. (2021) Risk Factors for Ischemic Stroke: Differences between Cerebral Small Vessel and Large Artery Atherosclerosis Aetiologies. Folia Neuropathologica, 59, 378-385. https://doi.org/10.5114/fn.2021.112007
|
[20]
|
Zietz, A., Gorey, S., Kelly, P.J., Katan, M. and McCabe, J.J. (2023) Targeting Inflammation to Reduce Recurrent Stroke. International Journal of Stroke, 19, 379-387. https://doi.org/10.1177/17474930231207777
|
[21]
|
Goldney, J., Sargeant, J.A. and Davies, M.J. (2023) Incretins and Microvascular Complications of Diabetes: Neuropathy, Nephropathy, Retinopathy and Microangiopathy. Diabetologia, 66, 1832-1845. https://doi.org/10.1007/s00125-023-05988-3
|
[22]
|
Mosenzon, O., Cheng, A.Y., Rabinstein, A.A. and Sacco, S. (2023) Diabetes and Stroke: What Are the Connections? Journal of Stroke, 25, 26-38. https://doi.org/10.5853/jos.2022.02306
|
[23]
|
Wan, S., Dandu, C., Han, G., Guo, Y., Ding, Y., Song, H., et al. (2022) Plasma Inflammatory Biomarkers in Cerebral Small Vessel Disease: A Review. CNS Neuroscience & Therapeutics, 29, 498-515. https://doi.org/10.1111/cns.14047
|
[24]
|
Zhang, W., Zhou, Y., Wang, J., Gong, X., Chen, Z., Zhang, X., et al. (2021) Glymphatic Clearance Function in Patients with Cerebral Small Vessel Disease. NeuroImage, 238, Article ID: 118257. https://doi.org/10.1016/j.neuroimage.2021.118257
|
[25]
|
Liu, Z., Chen, S., Shu, M., Zhai, F., Han, F., Zhou, L., et al. (2021) Association between Enlarged Perivascular Spaces and White Matter Microstructure. Stroke, 52, e744-e745. https://doi.org/10.1161/strokeaha.121.036077
|
[26]
|
Li, H., Jacob, M.A., Cai, M., Kessels, R.P.C., Norris, D.G., Duering, M., et al. (2024) Perivascular Spaces, Diffusivity along Perivascular Spaces, and Free Water in Cerebral Small Vessel Disease. Neurology, 102, e209306. https://doi.org/10.1212/wnl.0000000000209306
|
[27]
|
Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S.H., et al. (2021) The Amyloid-β Pathway in Alzheimer’s Disease. Molecular Psychiatry, 26, 5481-5503. https://doi.org/10.1038/s41380-021-01249-0
|
[28]
|
Ashe, K.H. (2020) The Biogenesis and Biology of Amyloid β Oligomers in the Brain. Alzheimer’s & Dementia, 16, 1561-1567. https://doi.org/10.1002/alz.12084
|
[29]
|
Huang, Y., Happonen, K.E., Burrola, P.G., O’Connor, C., Hah, N., Huang, L., et al. (2021) Microglia Use TAM Receptors to Detect and Engulf Amyloid Β Plaques. Nature Immunology, 22, 586-594. https://doi.org/10.1038/s41590-021-00913-5
|
[30]
|
Jäntti, H., Sitnikova, V., Ishchenko, Y., Shakirzyanova, A., Giudice, L., Ugidos, I.F., et al. (2022) Microglial Amyloid Beta Clearance Is Driven by PIEZO1 Channels. Journal of Neuroinflammation, 19, Article No. 147. https://doi.org/10.1186/s12974-022-02486-y
|
[31]
|
Weaver, D.F. (2024) β-Amyloid Is a Kinocidin Cytokine. ACS Chemical Neuroscience, 15, 1948-1950. https://doi.org/10.1021/acschemneuro.4c00236
|
[32]
|
Jung, H., Lee, S.Y., Lim, S., Choi, H.R., Choi, Y., Kim, M., et al. (2022) Anti-Inflammatory Clearance of Amyloid-β by a Chimeric Gas6 Fusion Protein. Nature Medicine, 28, 1802-1812. https://doi.org/10.1038/s41591-022-01926-9
|
[33]
|
Deng, Z., Wang, J., Xiao, Y., Li, F., Niu, L., Liu, X., et al. (2021) Ultrasound-Mediated Augmented Exosome Release from Astrocytes Alleviates Amyloid-β-Induced Neurotoxicity. Theranostics, 11, 4351-4362. https://doi.org/10.7150/thno.52436
|
[34]
|
Durrant, C.S. (2024) Is Amyloid-β a Friend or Foe? Nature Reviews Molecular Cell Biology, 25, 516-516. https://doi.org/10.1038/s41580-024-00740-0
|
[35]
|
Yang, Y., Arseni, D., Zhang, W., Huang, M., Lövestam, S., Schweighauser, M., et al. (2022) Cryo-EM Structures of Amyloid-β 42 Filaments from Human Brains. Science, 375, 167-172. https://doi.org/10.1126/science.abm7285
|
[36]
|
Ossenkoppele, R. and Teunissen, C.E. (2024) Fluid Biomarker Changes After Amyloid-β-Targeting Drugs. JAMA Neurology, 81, 579-581. https://doi.org/10.1001/jamaneurol.2024.1103
|
[37]
|
Bedel, H.A., Sivgin, I., Dalmaz, O., Dar, S.U.H. and Çukur, T. (2023) Bolt: Fused Window Transformers for fMRI Time Series Analysis. Medical Image Analysis, 88, Article ID: 102841. https://doi.org/10.1016/j.media.2023.102841
|
[38]
|
Gonzalez-Castillo, J., Kam, J.W.Y., Hoy, C.W. and Bandettini, P.A. (2021) How to Interpret Resting-State fMRI: Ask Your Participants. The Journal of Neuroscience, 41, 1130-1141. https://doi.org/10.1523/jneurosci.1786-20.2020
|
[39]
|
Raimondo, L., Oliveira, ĺ.A.F., Heij, J., Priovoulos, N., Kundu, P., Leoni, R.F., et al. (2021) Advances in Resting State fMRI Acquisitions for Functional Connectomics. NeuroImage, 243, Article ID: 118503. https://doi.org/10.1016/j.neuroimage.2021.118503
|
[40]
|
Zhao, W., Li, H., Hu, G., Hao, Y., Zhang, Q., Wu, J., et al. (2021) Consistency of Independent Component Analysis for fMRI. Journal of Neuroscience Methods, 351, Article ID: 109013. https://doi.org/10.1016/j.jneumeth.2020.109013
|
[41]
|
Muscas, G., van Niftrik, C.H.B., Sebök, M., Esposito, G., Regli, L. and Fierstra, J. (2021) Intraoperative Bold-fMRI Cerebrovascular Reactivity Assessment. In: Esposito, G., Regli, L., Cenzato, M., Kaku, Y., Tanaka, M. and Tsukahara, T., Eds., Trends in Cerebrovascular Surgery and Interventions, Springer, 139-143. https://doi.org/10.1007/978-3-030-63453-7_20
|
[42]
|
Li, B., Tang, H., He, G., Jin, Z., He, Y., Huang, P., et al. (2022) Tai Chi Enhances Cognitive Training Effects on Delaying Cognitive Decline in Mild Cognitive Impairment. Alzheimer’s & Dementia, 19, 136-149. https://doi.org/10.1002/alz.12658
|
[43]
|
Gavelin, H.M., Dong, C., Minkov, R., Bahar-Fuchs, A., Ellis, K.A., Lautenschlager, N.T., et al. (2021) Combined Physical and Cognitive Training for Older Adults with and without Cognitive Impairment: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Ageing Research Reviews, 66, Article ID: 101232. https://doi.org/10.1016/j.arr.2020.101232
|
[44]
|
Montero-Odasso, M., Zou, G., Speechley, M., Almeida, Q.J., Liu-Ambrose, T., Middleton, L.E., et al. (2023) Effects of Exercise Alone or Combined with Cognitive Training and Vitamin D Supplementation to Improve Cognition in Adults with Mild Cognitive Impairment: A Randomized Clinical Trial. JAMA Network Open, 6, e2324465. https://doi.org/10.1001/jamanetworkopen.2023.24465
|
[45]
|
Kanbay, M., Copur, S., Yildiz, A.B., Tanriover, C., Mallamaci, F. and Zoccali, C. (2023) Physical Exercise in Kidney Disease: A Commonly Undervalued Treatment Modality. European Journal of Clinical Investigation, 54, e14105. https://doi.org/10.1111/eci.14105
|
[46]
|
Zhang, L., Zhang, Y., Shen, S., Wang, X., Dong, L., Li, Q., et al. (2023) Safety and Effectiveness of Metformin Plus Lifestyle Intervention Compared with Lifestyle Intervention Alone in Preventing Progression to Diabetes in a Chinese Population with Impaired Glucose Regulation: A Multicentre, Open-Label, Randomised Controlled Trial. The Lancet Diabetes & Endocrinology, 11, 567-577. https://doi.org/10.1016/s2213-8587(23)00132-8
|
[47]
|
Juan, J. and Yang, H. (2020) Prevalence, Prevention, and Lifestyle Intervention of Gestational Diabetes Mellitus in China. International Journal of Environmental Research and Public Health, 17, Article 9517. https://doi.org/10.3390/ijerph17249517
|
[48]
|
Chen, R.J., Lu, M.Y., Williamson, D.F.K., Chen, T.Y., Lipkova, J., Noor, Z., et al. (2022) Pan-Cancer Integrative Histology-Genomic Analysis via Multimodal Deep Learning. Cancer Cell, 40, 865-878.e6. https://doi.org/10.1016/j.ccell.2022.07.004
|
[49]
|
van der Velden, B.H.M., Kuijf, H.J., Gilhuijs, K.G.A. and Viergever, M.A. (2022) Explainable Artificial Intelligence (XAI) in Deep Learning-Based Medical Image Analysis. Medical Image Analysis, 79, Article ID: 102470. https://doi.org/10.1016/j.media.2022.102470
|
[50]
|
Unger, M. and Kather, J.N. (2024) Deep Learning in Cancer Genomics and Histopathology. Genome Medicine, 16, Article No. 44. https://doi.org/10.1186/s13073-024-01315-6
|
[51]
|
Lipkova, J., Chen, R.J., Chen, B., Lu, M.Y., Barbieri, M., Shao, D., et al. (2022) Artificial Intelligence for Multimodal Data Integration in Oncology. Cancer Cell, 40, 1095-1110. https://doi.org/10.1016/j.ccell.2022.09.012
|
[52]
|
Mann, M., Kumar, C., Zeng, W. and Strauss, M.T. (2021) Artificial Intelligence for Proteomics and Biomarker Discovery. Cell Systems, 12, 759-770. https://doi.org/10.1016/j.cels.2021.06.006
|
[53]
|
Tran, K.A., Kondrashova, O., Bradley, A., Williams, E.D., Pearson, J.V. and Waddell, N. (2021) Deep Learning in Cancer Diagnosis, Prognosis and Treatment Selection. Genome Medicine, 13, Article No. 152. https://doi.org/10.1186/s13073-021-00968-x
|