脑小血管病合并认知障碍
Cerebral Small Vessel Disease with Cognitive Impairment
摘要: 脑小血管病(cerebral small vessel disease, CSVD)是导致血管性认知障碍和痴呆的主要病因,但其病理机制复杂,临床管理仍面临诸多挑战。本文系统综述了CSVD合并认知障碍的最新研究进展,重点探讨影像学技术革新、多模态数据整合及干预策略优化。高分辨率神经影像技术(如7T MRI和动态功能磁共振)显著提升了微血管病变的早期检测能力,而人工智能驱动的多模态模型(融合影像、基因组和代谢数据)为揭示认知衰退的时空演变规律提供了新工具。在治疗层面,联合运动与认知训练、代谢管理(如二甲双胍联合生活方式干预)被证实可延缓认知功能恶化,但其疗效受限于个体异质性和长期依从性不足。本文进一步分析了当前研究的核心瓶颈,包括数据标准化缺失、模型可解释性不足及跨学科协作机制不完善。撰写本综述的目的在于整合CSVD领域的关键突破,强调从病理机制探索到临床转化的全链条视角,为开发精准干预方案提供理论框架,并推动神经科学、影像学与人工智能的深度融合,以改善患者认知结局。
Abstract: Cerebral small vessel disease (CSVD) is a leading cause of vascular cognitive impairment and dementia, yet its pathological mechanisms remain complex and clinical management faces significant challenges. This review synthesizes recent advancements in CSVD-related cognitive impairment, focusing on innovations in neuroimaging, multimodal data integration, and intervention strategies. High-resolution imaging techniques (e.g., 7T MRI and dynamic fMRI) have enhanced early detection of microvascular pathology, while artificial intelligence-driven multimodal models (integrating imaging, genomic, and metabolic data) offer new insights into the spatiotemporal dynamics of cognitive decline. Therapeutically, combined exercise-cognitive training and metabolic interventions (e.g., metformin with lifestyle modification) demonstrate efficacy in slowing cognitive deterioration, though their benefits are limited by individual heterogeneity and poor long-term adherence. We further analyze critical barriers, including lack of data standardization, limited model interpretability, and insufficient interdisciplinary collaboration. The purpose of this review is to consolidate key breakthroughs in CSVD research, emphasize a holistic perspective from mechanistic exploration to clinical translation, and provide a theoretical framework for developing precision interventions. By bridging neuroscience, imaging, and AI, this work aims to advance cross-disciplinary innovation and improve cognitive outcomes for patients.
文章引用:张国平, 杜茂. 脑小血管病合并认知障碍[J]. 临床个性化医学, 2025, 4(4): 201-208. https://doi.org/10.12677/jcpm.2025.44436

1. 引言

脑小血管病(Cerebral Small Vessel Disease, CSVD)是血管性认知障碍(Vascular Cognitive Impairment, VCI)和痴呆的主要病因,其病理特征包括白质高信号、腔隙性梗死和微出血等[1]。流行病学研究显示,CSVD占缺血性卒中的25%以上,并与45%的痴呆病例相关,尤其在老年人群中患病率显著上升[2]。神经影像学进展表明,CSVD的临床表现具有高度异质性,包括认知下降、步态障碍和情绪异常,且常与阿尔茨海默病等神经退行性疾病共存,增加了诊断和治疗的复杂性[3] [4]。此外,慢性脑缺血和血脑屏障破坏被认为是CSVD导致认知障碍的核心机制,而微血管内皮功能障碍和神经炎症进一步加速了这一进程[5]

近年研究揭示了CSVD的分子病理机制,例如NOTCH3、HTRA1和COL4A1/A2基因突变在单基因与散发型CSVD中的关键作用[6]。高分辨率神经影像技术(如7T MRI和扩散张量成像)显著提升了微血管病变的检测能力,并揭示了白质纤维束完整性破坏与认知功能下降的直接关联[7] [8]。然而,CSVD的早期诊断仍面临挑战,部分原因在于缺乏特异性的血液生物标志物,且现有影像学标准对亚临床病变的敏感性不足[9]。此外,尽管血压控制被证实可延缓白质高信号进展,但针对CSVD的特异性治疗手段仍十分有限[10] [11]

未来研究需整合多组学数据与临床表型,以阐明CSVD的分子网络和个体化干预靶点[12]。同时,结合人工智能的影像分析技术和新型血液标志物(如神经丝轻链蛋白)有望推动早期诊断和疗效监测[6] [9]。此外,针对血脑屏障修复、血管内皮保护及神经炎症调控的临床试验或将为CSVD治疗开辟新方向[13]

2. 脑小血管病(CSVD)概述

脑小血管病(Cerebral Small Vessel Disease, CSVD)是一组以脑小动脉、毛细血管及小静脉病变为核心的异质性疾病,其病理特征涵盖血管壁结构异常(如动脉硬化、纤维素样坏死)及神经影像标志(包括白质高信号、腔隙性梗死、微出血、血管周围间隙扩大等) [6] [11]。CSVD约占缺血性卒中的25%,是自发性脑出血的主要病因,同时也是血管性认知障碍和痴呆的重要驱动因素[3] [14]。流行病学研究表明,60岁以上人群中CSVD的神经影像学标志检出率超过50%,且与高血压、糖尿病、衰老等危险因素显著相关[15] [16]。值得注意的是,遗传因素(如NOTCH3、HTRA1、COL4A1/A2基因突变)在单基因型和散发性CSVD中均发挥关键作用,提示遗传–环境交互机制在疾病进展中的重要性[6] [17]

CSVD的病理机制涉及内皮功能障碍、血脑屏障通透性增加、血管炎症及神经血管单元失调等多重通路[5] [13]。内皮细胞损伤导致血管紧张素II介导的氧化应激和炎症因子释放,引发平滑肌细胞凋亡及周细胞退化,最终破坏微循环稳态[16]。动物模型显示,慢性低灌注和缺氧可诱导白质脱髓鞘及少突胶质细胞死亡,而类淋巴系统功能障碍进一步加剧代谢废物(如β-淀粉样蛋白)清除障碍[18]。近期研究发现,遗传性CSVD (如CADASIL和HTRA1突变相关疾病)患者的血脑屏障水交换率(kw)显著降低,且与认知评分下降呈负相关,提示血脑屏障完整性丧失是疾病进展的核心环节[17]。此外,血管周围巨噬细胞激活和基质金属蛋白酶(MMP-9)上调可能通过降解细胞外基质促进微出血发生[19]

临床上,CSVD的神经影像学标志(如脑白质高信号体积、腔隙数目)与执行功能减退、步态异常及情绪障碍密切相关[3] [14]。诊断主要依赖MRI技术,但新兴生物标志物(如血浆胶质纤维酸性蛋白、神经丝轻链)和高分辨率血管壁成像有望提升早期识别和亚型分类的精准性[9]。当前治疗策略以控制血管危险因素(如降压、降糖)为主,但针对特定病理机制的干预(如抗炎药物、内皮保护剂)仍处于探索阶段[20] [21]。例如,GLP-1受体激动剂通过抑制氧化应激和改善内皮功能,在动物模型中显示出减少白质损伤的潜力,但其临床转化需进一步验证[22]

3. CSVD相关认知障碍的临床和影像特征

3.1. 临床特征

脑小血管病(CSVD)相关的认知障碍以异质性临床表现为特征,主要表现为执行功能减退、信息处理速度下降以及注意力与工作记忆受损,而情节记忆相对保留[11]。这些症状通常呈隐匿性进展,早期可能仅表现为轻度认知功能下降,后期可能发展为血管性痴呆或混合性痴呆[5]。研究发现,基底节区及深部白质病变与执行功能障碍显著相关,而额叶–纹状体环路损伤可能通过破坏神经网络连接加剧认知衰退[13]。此外,CSVD患者常伴随步态异常和情绪障碍,如抑郁和淡漠,进一步影响日常生活能力[23]。值得注意的是,高血压和老龄化是CSVD认知障碍的主要危险因素,但其病理机制涉及内皮功能障碍、血脑屏障破坏及慢性炎症反应,这些因素共同导致神经元损伤和突触可塑性下降[11]

3.2. 影像特征

CSVD的影像学标志物包括白质高信号(WMH)、腔隙性脑梗死、脑微出血(CMBs)及扩大的血管周围间隙(EPVS),这些特征与认知障碍的严重程度密切相关[6]。WMH体积增加与信息处理速度减慢和执行功能下降显著相关,尤其在额叶和顶叶白质区域[24]。扩散张量成像(DTI)显示,白质微结构完整性(如各向异性分数降低)可预测认知衰退,提示轴突损伤和髓鞘脱失是重要机制[25]。此外,EPVS在基底节区的显著增多与执行功能减退相关,可能反映类淋巴系统清除功能障碍[26]。近期研究还发现,自由水分数(FW)升高和沿血管周围扩散指标(DTI-ALPS)降低可作为CSVD患者认知损伤的潜在生物标志物,提示类淋巴系统功能障碍在疾病进展中的作用[26]。多模态影像联合分析(如WMH、CMBs和脑萎缩)可提高对认知风险的预测准确性[11]

4. 脑小血管病(CSVD)导致认知障碍的机制

脑小血管病(CSVD)通过β淀粉样蛋白(Aβ)代谢紊乱、神经炎症及细胞清除机制障碍等多重途径引发认知功能下降。研究表明,Aβ寡聚体不仅与阿尔茨海默病(AD)密切相关,还通过破坏血管完整性、诱导内皮功能障碍直接参与CSVD的病理进程。Aβ聚集体会干扰脑血流调节,导致低灌注和白质损伤,而这两种现象正是CSVD的核心特征[27] [28]。小胶质细胞功能异常进一步加剧了这一过程:由于TAM受体(Tyro3, Axl, Mer)信号通路受损,这些细胞无法有效清除Aβ斑块。例如,介导Aβ吞噬的Axl和Mer受体在CSVD中表达下调,导致Aβ累积和神经毒性增强[29]。此外,衰老相关的PIEZO1通道活性降低会削弱小胶质细胞的机械感知能力,进而抑制其吞噬功能[30]

神经炎症是CSVD引发认知障碍的另一关键机制。慢性血管损伤激活星形胶质细胞并释放促炎因子,持续破坏血脑屏障(BBB)并损伤神经元。值得注意的是,Aβ本身可作为细胞因子,通过激活NF-κB信号通路放大炎症级联反应,形成神经毒性微环境[31]。这种炎症环境不仅加速Aβ沉积,还引发突触丢失和白质高信号,与CSVD患者的执行功能障碍和记忆衰退密切相关[27] [32]。针对Aβ清除的治疗策略(如超声刺激星形胶质细胞释放外泌体)在临床前模型中显示出潜力,其通过增强Aβ降解和减轻炎症反应改善认知功能[33]。然而,Aβ兼具神经毒性和血管稳态调节的双重角色,完全抑制其活性可能损害生理功能,这为治疗带来挑战[34]

近期生物标志物研究揭示了CSVD中Aβ病理与血管功能障碍的交互作用。尸检分析显示,Aβ42纤维与动脉硬化血管共定位,提示血管淀粉样变性直接导致微梗死和腔隙性卒中[35]。纵向研究表明,靶向Aβ的疗法(如抗Aβ抗体)虽能减少血管淀粉样负荷,但对认知改善效果有限,凸显了联合治疗(同时促进Aβ清除与血管修复)的必要性[36]。综上,CSVD是Aβ介导的血管损伤与神经炎症的交叉点,需通过恢复小胶质细胞功能、抑制炎症及保护血管完整性的精准策略干预。

5. 脑小血管病(CSVD)相关认知障碍早期检测的神经影像技术进展

近年来,神经影像技术的革新显著提升了脑小血管病(CSVD)及其认知损害的早期识别能力。功能磁共振成像(fMRI)技术的突破尤为突出,例如基于融合窗口注意力机制(Fused Window Attention)的BolT模型,通过分析多时间尺度的血氧依赖(BOLD)信号动态变化,能够捕捉与早期认知衰退相关的功能连接异常。BolT采用重叠时间窗口策略,在保留局部血流动力学特征的同时整合跨窗口信息,从而揭示CSVD患者白质–皮层网络交互的细微紊乱,这些异常常早于结构性病变的出现[37]。在静息态fMRI领域,结合受试者实时主观体验报告的实验范式,研究者发现默认模式网络(DMN)的动态活动与注意力波动、记忆碎片化等认知症状密切相关,为CSVD相关的亚临床认知损伤提供了敏感的生物标志物[38]。此外,超高场强(7T) fMRI技术的应用实现了对脑白质分层特异性连接的精准刻画,可检测胼胝体、脑室周围区域等CSVD易损区的微血管功能失调,这些区域的血流调节异常与执行功能下降存在显著关联[39]。在数据分析层面,改进的独立成分分析(ICA)通过模型阶数一致性评估(Consistency of Component Analysis, CoCA),有效区分生理性神经活动与噪声信号,提高了小血管病变相关异常网络检测的特异性[40]。值得关注的是,术中BOLD脑血管反应性(BOLD-CVR)技术首次实现了手术场景下脑血流调节能力的实时监测,为评估CSVD患者脑血管储备功能及术后认知预后提供了新工具[41]。这些技术进步不仅深化了对CSVD神经机制的理解,更为临床早期干预提供了多模态影像学依据。

6. 治疗与干预措施

本节对CSVD相关认知障碍干预措施有效性的总结,基于对现有主要临床研究的系统梳理。文献检索主要针对近五年(2019~2024)发表的随机对照试验(RCT)、系统评价(SR)和Meta分析(MA)。检索数据库包括PubMed、Embase、Cochrane Library。检索策略结合主题词(如“Cerebral Small Vessel Diseases”、“Cognitive Dysfunction”、“Dementia, Vascular”、“Exercise Therapy”、“Cognitive Training”、“Metformin”、“Life Style”、“Randomized Controlled Trial”)与自由词(如“CSVD”、“VCI”、“exercise”、“cognitive intervention”、“lifestyle modification”)。纳入标准:研究对象为明确诊断为CSVD或具有显著CSVD影像学标志物(如WMH)并伴有认知障碍(MCI或痴呆)的患者;干预措施为运动、认知训练、生活方式干预、药物(如二甲双胍)或其组合;主要结局指标包括认知功能评分(如MoCA、MMSE、ADAS-Cog、特定领域神经心理学测试)、影像学进展(如WMH体积变化)或日常生活能力。排除标准:研究对象仅为健康老年人或单一阿尔茨海默病患者(无显著CSVD证据);非干预性研究;个案报告;低质量研究(如样本量过小、方法学缺陷严重)。

纳入研究的偏倚风险评估采用Cochrane协作网的偏倚风险评估工具(RoB 2)针对RCT进行评估,重点关注随机序列生成、分配隐藏、参与者和研究者盲法、结果数据完整性、选择性结果报告等维度。对于系统评价/Meta分析,则使用AMSTAR 2工具评估其方法学质量。评估结果用于权衡证据强度,并作为解读研究发现的重要依据。最终纳入的研究经过筛选,代表了当前该领域相对高质量的证据。

脑小血管病(cerebral small vessel disease, CSVD)合并认知障碍的治疗需采取综合干预策略,重点围绕生活方式调整、运动训练及代谢管理展开。研究表明,联合运动与认知训练可显著延缓认知衰退。例如,一项针对轻度认知障碍(MCI)患者的随机对照试验发现,为期12个月的太极拳训练结合认知干预可改善整体认知功能和记忆能力,其效果优于单一认知训练,且功能性磁共振成像显示联合干预显著增强了脑区神经活动[42] (该研究报告了组间差异具有统计学显著性(p < 0.05),但未提供具体置信区间)。此外,Meta分析表明,同时进行有氧运动与认知训练的联合干预在改善执行功能和注意力方面具有叠加效应,尤其对早期CSVD患者的认知储备提升效果显著[43]。此类综合干预不仅通过促进脑血流和神经可塑性发挥作用,还可减轻血管性危险因素对脑组织的损伤[44]

生活方式干预在CSVD相关认知障碍的管理中同样至关重要。长期规律的有氧运动(如每周至少150分钟的中等强度运动)可改善血管内皮功能、降低炎症水平,并减缓白质病变进展[45]。代谢管理方面,一项针对糖耐量受损人群的多中心研究发现,二甲双胍联合生活方式干预(饮食控制与运动)较单一生活方式干预进一步降低糖尿病发生风险17%,提示代谢调节在血管保护中的重要性[46]。此外,针对高血压和肥胖的个性化饮食方案(如低盐、高纤维饮食)可有效控制CSVD危险因素,从而间接保护认知功能[47]。这些干预措施需通过多学科团队(如神经科医师、营养师及康复治疗师)协作实施,以确保长期依从性和效果可持续性。

7. 挑战与未来方向

7.1. 挑战

脑小血管病(CSVD)合并认知障碍的研究面临多重挑战。首先,CSVD的病理机制复杂,其影像学表现(如白质高信号、微出血)与认知功能衰退之间的关联具有高度异质性,传统单模态分析方法难以捕捉多维数据的非线性关联[48]。其次,现有的深度学习模型虽在影像分割与分类中表现优异,但其“黑箱”特性限制了临床医生对模型决策逻辑的信任,尤其在涉及多模态数据(如MRI、基因组学、临床指标)整合时,可解释性不足成为关键瓶颈[49]。此外,CSVD患者数据的标注成本高且样本量有限,导致模型易受过拟合影响,而不同医疗中心的数据标准化差异进一步降低了模型的泛化能力[50]。此外,部分已发表的干预性研究在报告关键疗效指标时未充分提供置信区间等反映估计精确度的信息,加之不同研究在结局测量工具、干预方案细节(如太极流派、训练强度)上存在差异,增加了跨研究比较和效应量合并的难度。

7.2. 未来方向

未来研究需聚焦多模态人工智能技术的创新与应用。通过融合病理影像、液体活检和代谢组学数据,可构建动态预测模型以识别早期认知衰退的生物标志物[51]。例如,基于自监督学习的预训练框架可缓解小样本问题,利用迁移学习将癌症多组学分析中的特征提取策略适配于CSVD研究[52]。同时,开发可解释性工具(如注意力机制、特征反演)可揭示关键影像特征(如白质病变的空间分布)与认知评分的因果关系,辅助临床决策[49]。此外,跨机构协作与联邦学习框架的推广有望突破数据孤岛,推动精准医学在CSVD领域的落地[53]。在干预研究领域,需要推动更严格的临床试验报告规范(如CONSORT声明),确保效应量和置信区间的完整呈现。利用个体参与者数据Meta分析(IPD-MA)技术整合高质量RCT数据,有助于克服研究间异质性,更精准地识别不同CSVD亚型或风险特征人群的最佳干预策略和效应大小。

NOTES

*通讯作者。

参考文献

[1] Chojdak-Łukasiewicz, J., Dziadkowiak, E., Zimny, A. and Paradowski, B. (2021) Cerebral Small Vessel Disease: A Review. Advances in Clinical and Experimental Medicine, 30, 349-356.
https://doi.org/10.17219/acem/131216
[2] Elahi, F.M., Alladi, S., Black, S.E., Claassen, J.A.H.R., DeCarli, C., Hughes, T.M., et al. (2023) Clinical Trials in Vascular Cognitive Impairment Following SPRINT-MIND: An International Perspective. Cell Reports Medicine, 4, Article ID: 101089.
https://doi.org/10.1016/j.xcrm.2023.101089
[3] Rost, N.S., Brodtmann, A., Pase, M.P., van Veluw, S.J., Biffi, A., Duering, M., et al. (2022) Post-Stroke Cognitive Impairment and Dementia. Circulation Research, 130, 1252-1271.
https://doi.org/10.1161/circresaha.122.319951
[4] Zanon Zotin, M.C., Sveikata, L., Viswanathan, A. and Yilmaz, P. (2021) Cerebral Small Vessel Disease and Vascular Cognitive Impairment: From Diagnosis to Management. Current Opinion in Neurology, 34, 246-257.
https://doi.org/10.1097/wco.0000000000000913
[5] Inoue, Y., Shue, F., Bu, G. and Kanekiyo, T. (2023) Pathophysiology and Probable Etiology of Cerebral Small Vessel Disease in Vascular Dementia and Alzheimer’s Disease. Molecular Neurodegeneration, 18, Article No. 46.
https://doi.org/10.1186/s13024-023-00640-5
[6] Dupré, N., Drieu, A. and Joutel, A. (2024) Pathophysiology of Cerebral Small Vessel Disease: A Journey through Recent Discoveries. Journal of Clinical Investigation, 134, e172841.
https://doi.org/10.1172/jci172841
[7] van den Brink, H., Doubal, F.N. and Duering, M. (2022) Advanced MRI in Cerebral Small Vessel Disease. International Journal of Stroke, 18, 28-35.
https://doi.org/10.1177/17474930221091879
[8] Duering, M., Biessels, G.J., Brodtmann, A., Chen, C., Cordonnier, C., de Leeuw, F., et al. (2023) Neuroimaging Standards for Research into Small Vessel Disease—Advances since 2013. The Lancet Neurology, 22, 602-618.
https://doi.org/10.1016/s1474-4422(23)00131-x
[9] Wu, L., Chai, Y.L., Cheah, I.K., Chia, R.S.L., Hilal, S., Arumugam, T.V., et al. (2024) Blood-Based Biomarkers of Cerebral Small Vessel Disease. Ageing Research Reviews, 95, Article ID: 102247.
https://doi.org/10.1016/j.arr.2024.102247
[10] Markus, H.S. and de Leeuw, F.E. (2022) Cerebral Small Vessel Disease: Recent Advances and Future Directions. International Journal of Stroke, 18, 4-14.
https://doi.org/10.1177/17474930221144911
[11] Hainsworth, A.H., Markus, H.S. and Schneider, J.A. (2024) Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension, 81, 75-86.
https://doi.org/10.1161/hypertensionaha.123.19943
[12] Bordes, C., Sargurupremraj, M., Mishra, A. and Debette, S. (2022) Genetics of Common Cerebral Small Vessel Disease. Nature Reviews Neurology, 18, 84-101.
https://doi.org/10.1038/s41582-021-00592-8
[13] Gao, Y., Li, D., Lin, J., Thomas, A.M., Miao, J., Chen, D., et al. (2022) Cerebral Small Vessel Disease: Pathological Mechanisms and Potential Therapeutic Targets. Frontiers in Aging Neuroscience, 14, Article 961661.
https://doi.org/10.3389/fnagi.2022.961661
[14] Ge, Y. (2024) Vascular Contributions to Healthy Aging and Dementia. Aging and Disease, 15, 1432-1437.
[15] Ungvari, Z., Toth, P., Tarantini, S., Prodan, C.I., Sorond, F., Merkely, B., et al. (2021) Hypertension-Induced Cognitive Impairment: From Pathophysiology to Public Health. Nature Reviews Nephrology, 17, 639-654.
https://doi.org/10.1038/s41581-021-00430-6
[16] Webb, A.J.S. and Werring, D.J. (2022) New Insights into Cerebrovascular Pathophysiology and Hypertension. Stroke, 53, 1054-1064.
https://doi.org/10.1161/strokeaha.121.035850
[17] Li, Y., Ying, Y., Yao, T., Jia, X., Liang, H., Tang, W., et al. (2023) Decreased Water Exchange Rate across Blood-Brain Barrier in Hereditary Cerebral Small Vessel Disease. Brain, 146, 3079-3087.
https://doi.org/10.1093/brain/awac500
[18] Tian, Y., Zhao, M., Chen, Y., Yang, M. and Wang, Y. (2022) The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease. Biomolecules, 12, Article 748.
https://doi.org/10.3390/biom12060748
[19] Shi, Y., Guo, L., Chen, Y., Xie, Q., Yan, Z., Liu, Y., et al. (2021) Risk Factors for Ischemic Stroke: Differences between Cerebral Small Vessel and Large Artery Atherosclerosis Aetiologies. Folia Neuropathologica, 59, 378-385.
https://doi.org/10.5114/fn.2021.112007
[20] Zietz, A., Gorey, S., Kelly, P.J., Katan, M. and McCabe, J.J. (2023) Targeting Inflammation to Reduce Recurrent Stroke. International Journal of Stroke, 19, 379-387.
https://doi.org/10.1177/17474930231207777
[21] Goldney, J., Sargeant, J.A. and Davies, M.J. (2023) Incretins and Microvascular Complications of Diabetes: Neuropathy, Nephropathy, Retinopathy and Microangiopathy. Diabetologia, 66, 1832-1845.
https://doi.org/10.1007/s00125-023-05988-3
[22] Mosenzon, O., Cheng, A.Y., Rabinstein, A.A. and Sacco, S. (2023) Diabetes and Stroke: What Are the Connections? Journal of Stroke, 25, 26-38.
https://doi.org/10.5853/jos.2022.02306
[23] Wan, S., Dandu, C., Han, G., Guo, Y., Ding, Y., Song, H., et al. (2022) Plasma Inflammatory Biomarkers in Cerebral Small Vessel Disease: A Review. CNS Neuroscience & Therapeutics, 29, 498-515.
https://doi.org/10.1111/cns.14047
[24] Zhang, W., Zhou, Y., Wang, J., Gong, X., Chen, Z., Zhang, X., et al. (2021) Glymphatic Clearance Function in Patients with Cerebral Small Vessel Disease. NeuroImage, 238, Article ID: 118257.
https://doi.org/10.1016/j.neuroimage.2021.118257
[25] Liu, Z., Chen, S., Shu, M., Zhai, F., Han, F., Zhou, L., et al. (2021) Association between Enlarged Perivascular Spaces and White Matter Microstructure. Stroke, 52, e744-e745.
https://doi.org/10.1161/strokeaha.121.036077
[26] Li, H., Jacob, M.A., Cai, M., Kessels, R.P.C., Norris, D.G., Duering, M., et al. (2024) Perivascular Spaces, Diffusivity along Perivascular Spaces, and Free Water in Cerebral Small Vessel Disease. Neurology, 102, e209306.
https://doi.org/10.1212/wnl.0000000000209306
[27] Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S.H., et al. (2021) The Amyloid-β Pathway in Alzheimer’s Disease. Molecular Psychiatry, 26, 5481-5503.
https://doi.org/10.1038/s41380-021-01249-0
[28] Ashe, K.H. (2020) The Biogenesis and Biology of Amyloid β Oligomers in the Brain. Alzheimers & Dementia, 16, 1561-1567.
https://doi.org/10.1002/alz.12084
[29] Huang, Y., Happonen, K.E., Burrola, P.G., O’Connor, C., Hah, N., Huang, L., et al. (2021) Microglia Use TAM Receptors to Detect and Engulf Amyloid Β Plaques. Nature Immunology, 22, 586-594.
https://doi.org/10.1038/s41590-021-00913-5
[30] Jäntti, H., Sitnikova, V., Ishchenko, Y., Shakirzyanova, A., Giudice, L., Ugidos, I.F., et al. (2022) Microglial Amyloid Beta Clearance Is Driven by PIEZO1 Channels. Journal of Neuroinflammation, 19, Article No. 147.
https://doi.org/10.1186/s12974-022-02486-y
[31] Weaver, D.F. (2024) β-Amyloid Is a Kinocidin Cytokine. ACS Chemical Neuroscience, 15, 1948-1950.
https://doi.org/10.1021/acschemneuro.4c00236
[32] Jung, H., Lee, S.Y., Lim, S., Choi, H.R., Choi, Y., Kim, M., et al. (2022) Anti-Inflammatory Clearance of Amyloid-β by a Chimeric Gas6 Fusion Protein. Nature Medicine, 28, 1802-1812.
https://doi.org/10.1038/s41591-022-01926-9
[33] Deng, Z., Wang, J., Xiao, Y., Li, F., Niu, L., Liu, X., et al. (2021) Ultrasound-Mediated Augmented Exosome Release from Astrocytes Alleviates Amyloid-β-Induced Neurotoxicity. Theranostics, 11, 4351-4362.
https://doi.org/10.7150/thno.52436
[34] Durrant, C.S. (2024) Is Amyloid-β a Friend or Foe? Nature Reviews Molecular Cell Biology, 25, 516-516.
https://doi.org/10.1038/s41580-024-00740-0
[35] Yang, Y., Arseni, D., Zhang, W., Huang, M., Lövestam, S., Schweighauser, M., et al. (2022) Cryo-EM Structures of Amyloid-β 42 Filaments from Human Brains. Science, 375, 167-172.
https://doi.org/10.1126/science.abm7285
[36] Ossenkoppele, R. and Teunissen, C.E. (2024) Fluid Biomarker Changes After Amyloid-β-Targeting Drugs. JAMA Neurology, 81, 579-581.
https://doi.org/10.1001/jamaneurol.2024.1103
[37] Bedel, H.A., Sivgin, I., Dalmaz, O., Dar, S.U.H. and Çukur, T. (2023) Bolt: Fused Window Transformers for fMRI Time Series Analysis. Medical Image Analysis, 88, Article ID: 102841.
https://doi.org/10.1016/j.media.2023.102841
[38] Gonzalez-Castillo, J., Kam, J.W.Y., Hoy, C.W. and Bandettini, P.A. (2021) How to Interpret Resting-State fMRI: Ask Your Participants. The Journal of Neuroscience, 41, 1130-1141.
https://doi.org/10.1523/jneurosci.1786-20.2020
[39] Raimondo, L., Oliveira, ĺ.A.F., Heij, J., Priovoulos, N., Kundu, P., Leoni, R.F., et al. (2021) Advances in Resting State fMRI Acquisitions for Functional Connectomics. NeuroImage, 243, Article ID: 118503.
https://doi.org/10.1016/j.neuroimage.2021.118503
[40] Zhao, W., Li, H., Hu, G., Hao, Y., Zhang, Q., Wu, J., et al. (2021) Consistency of Independent Component Analysis for fMRI. Journal of Neuroscience Methods, 351, Article ID: 109013.
https://doi.org/10.1016/j.jneumeth.2020.109013
[41] Muscas, G., van Niftrik, C.H.B., Sebök, M., Esposito, G., Regli, L. and Fierstra, J. (2021) Intraoperative Bold-fMRI Cerebrovascular Reactivity Assessment. In: Esposito, G., Regli, L., Cenzato, M., Kaku, Y., Tanaka, M. and Tsukahara, T., Eds., Trends in Cerebrovascular Surgery and Interventions, Springer, 139-143.
https://doi.org/10.1007/978-3-030-63453-7_20
[42] Li, B., Tang, H., He, G., Jin, Z., He, Y., Huang, P., et al. (2022) Tai Chi Enhances Cognitive Training Effects on Delaying Cognitive Decline in Mild Cognitive Impairment. Alzheimers & Dementia, 19, 136-149.
https://doi.org/10.1002/alz.12658
[43] Gavelin, H.M., Dong, C., Minkov, R., Bahar-Fuchs, A., Ellis, K.A., Lautenschlager, N.T., et al. (2021) Combined Physical and Cognitive Training for Older Adults with and without Cognitive Impairment: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Ageing Research Reviews, 66, Article ID: 101232.
https://doi.org/10.1016/j.arr.2020.101232
[44] Montero-Odasso, M., Zou, G., Speechley, M., Almeida, Q.J., Liu-Ambrose, T., Middleton, L.E., et al. (2023) Effects of Exercise Alone or Combined with Cognitive Training and Vitamin D Supplementation to Improve Cognition in Adults with Mild Cognitive Impairment: A Randomized Clinical Trial. JAMA Network Open, 6, e2324465.
https://doi.org/10.1001/jamanetworkopen.2023.24465
[45] Kanbay, M., Copur, S., Yildiz, A.B., Tanriover, C., Mallamaci, F. and Zoccali, C. (2023) Physical Exercise in Kidney Disease: A Commonly Undervalued Treatment Modality. European Journal of Clinical Investigation, 54, e14105.
https://doi.org/10.1111/eci.14105
[46] Zhang, L., Zhang, Y., Shen, S., Wang, X., Dong, L., Li, Q., et al. (2023) Safety and Effectiveness of Metformin Plus Lifestyle Intervention Compared with Lifestyle Intervention Alone in Preventing Progression to Diabetes in a Chinese Population with Impaired Glucose Regulation: A Multicentre, Open-Label, Randomised Controlled Trial. The Lancet Diabetes & Endocrinology, 11, 567-577.
https://doi.org/10.1016/s2213-8587(23)00132-8
[47] Juan, J. and Yang, H. (2020) Prevalence, Prevention, and Lifestyle Intervention of Gestational Diabetes Mellitus in China. International Journal of Environmental Research and Public Health, 17, Article 9517.
https://doi.org/10.3390/ijerph17249517
[48] Chen, R.J., Lu, M.Y., Williamson, D.F.K., Chen, T.Y., Lipkova, J., Noor, Z., et al. (2022) Pan-Cancer Integrative Histology-Genomic Analysis via Multimodal Deep Learning. Cancer Cell, 40, 865-878.e6.
https://doi.org/10.1016/j.ccell.2022.07.004
[49] van der Velden, B.H.M., Kuijf, H.J., Gilhuijs, K.G.A. and Viergever, M.A. (2022) Explainable Artificial Intelligence (XAI) in Deep Learning-Based Medical Image Analysis. Medical Image Analysis, 79, Article ID: 102470.
https://doi.org/10.1016/j.media.2022.102470
[50] Unger, M. and Kather, J.N. (2024) Deep Learning in Cancer Genomics and Histopathology. Genome Medicine, 16, Article No. 44.
https://doi.org/10.1186/s13073-024-01315-6
[51] Lipkova, J., Chen, R.J., Chen, B., Lu, M.Y., Barbieri, M., Shao, D., et al. (2022) Artificial Intelligence for Multimodal Data Integration in Oncology. Cancer Cell, 40, 1095-1110.
https://doi.org/10.1016/j.ccell.2022.09.012
[52] Mann, M., Kumar, C., Zeng, W. and Strauss, M.T. (2021) Artificial Intelligence for Proteomics and Biomarker Discovery. Cell Systems, 12, 759-770.
https://doi.org/10.1016/j.cels.2021.06.006
[53] Tran, K.A., Kondrashova, O., Bradley, A., Williams, E.D., Pearson, J.V. and Waddell, N. (2021) Deep Learning in Cancer Diagnosis, Prognosis and Treatment Selection. Genome Medicine, 13, Article No. 152.
https://doi.org/10.1186/s13073-021-00968-x