[1]
|
Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. https://doi.org/10.3322/caac.21820
|
[2]
|
Chen, Y., Qi, Y. and Wang, K. (2023) Neoadjuvant Chemotherapy for Breast Cancer: An Evaluation of Its Efficacy and Research Progress. Frontiers in Oncology, 13, Article ID: 1169010. https://doi.org/10.3389/fonc.2023.1169010
|
[3]
|
Wang, L., Luo, R., Lu, Q., Jiang, K., Hong, R., Lee, K., et al. (2021) Miller-Payne Grading and 70-Gene Signature Are Associated with Prognosis of Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Early-Stage Breast Cancer after Neoadjuvant Chemotherapy. Frontiers in Oncology, 11, Article ID: 735670. https://doi.org/10.3389/fonc.2021.735670
|
[4]
|
Panico, C., Ferrara, F., Woitek, R., D’Angelo, A., Di Paola, V., Bufi, E., et al. (2022) Staging Breast Cancer with MRI, the T. A Key Role in the Neoadjuvant Setting. Cancers, 14, Article No. 5786. https://doi.org/10.3390/cancers14235786
|
[5]
|
Wang, H. and Mao, X. (2020) Evaluation of the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Drug Design, Development and Therapy, 14, 2423-2433. https://doi.org/10.2147/dddt.s253961
|
[6]
|
Romeo, V., Accardo, G., Perillo, T., Basso, L., Garbino, N., Nicolai, E., et al. (2021) Assessment and Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Comparison of Imaging Modalities and Future Perspectives. Cancers (Basel), 13, Article No. 3521. https://doi.org/10.3390/cancers13143521
|
[7]
|
Wekking, D., Porcu, M., De Silva, P., Saba, L., Scartozzi, M. and Solinas, C. (2023) Breast MRI: Clinical Indications, Recommendations, and Future Applications in Breast Cancer Diagnosis. Current Oncology Reports, 25, 257-267. https://doi.org/10.1007/s11912-023-01372-x
|
[8]
|
张昉, 徐鹏. 影像学检查在乳腺癌新辅助化疗疗效评估中的应用研究进展[J]. 人民军医, 2021, 64(10): 1021-1024.
|
[9]
|
秦赛梅, 文琼, 项飞翔. 超声弹性成像及超声造影评估乳腺癌新辅助化疗疗效的研究进展[J]. 医学影像学杂志, 2024, 34(1): 109-112.
|
[10]
|
Marino, M.A., Helbich, T., Baltzer, P. and Pinker‐Domenig, K. (2017) Multiparametric MRI of the Breast: A Review. Journal of Magnetic Resonance Imaging, 47, 301-315. https://doi.org/10.1002/jmri.25790
|
[11]
|
Chen, X., Luo, Y., Xie, Z., Wen, Y., Mou, F. and Zeng, W. (2025) Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer: Integrating Multimodal Imaging and Clinical Features. BMC Medical Imaging, 25, Article No. 118. https://doi.org/10.1186/s12880-025-01631-2
|
[12]
|
Kostopoulos, S.A., Vassiou, K.G., Lavdas, E.N., Cavouras, D.A., Kalatzis, I.K., Asvestas, P.A., et al. (2017) Computer-Based Automated Estimation of Breast Vascularity and Correlation with Breast Cancer in DCE-MRI Images. Magnetic Resonance Imaging, 35, 39-45. https://doi.org/10.1016/j.mri.2016.08.007
|
[13]
|
Wu, M., Lu, L., Zhang, Q., Guo, Q., Zhao, F., Li, T., et al. (2016) Relating Doses of Contrast Agent Administered to TIC and Semi-Quantitative Parameters on DCE-MRI: Based on a Murine Breast Tumor Model. PLOS ONE, 11, e0149279. https://doi.org/10.1371/journal.pone.0149279
|
[14]
|
El Khouli, R.H., Macura, K.J., Kamel, I.R., Jacobs, M.A. and Bluemke, D.A. (2011) 3-T Dynamic Contrast-Enhanced MRI of the Breast: Pharmacokinetic Parameters versus Conventional Kinetic Curve Analysis. American Journal of Roentgenology, 197, 1498-1505. https://doi.org/10.2214/ajr.10.4665
|
[15]
|
Liu, Y., Wu, M., Tan, W., Gong, J. and Ma, J. (2022) Efficacy Evaluation of Neoadjuvant Chemotherapy in Breast Cancer by MRI. Contrast Media & Molecular Imaging, 2022, Article ID: 4542288. https://doi.org/10.1155/2022/4542288
|
[16]
|
杜丹, 刘兴家, 刘银凤, 等. DCE-MRI定量数据预测乳腺癌新辅助化疗疗效的价值[J]. 中国CT和MRI杂志, 2025, 23(3): 115-118.
|
[17]
|
Deike-Hofmann, K., Kuder, T., König, F., Paech, D., Dreher, C., Delorme, S., et al. (2018) Diffusion-Weighted Breast Imaging. Der Radiologe, 58, 14-19. https://doi.org/10.1007/s00117-018-0423-3
|
[18]
|
Minarikova, L., Bogner, W., Pinker, K., Valkovič, L., Zaric, O., Bago-Horvath, Z., et al. (2016) Investigating the Prediction Value of Multiparametric Magnetic Resonance Imaging at 3 T in Response to Neoadjuvant Chemotherapy in Breast Cancer. European Radiology, 27, 1901-1911. https://doi.org/10.1007/s00330-016-4565-2
|
[19]
|
Che, S., Zhao, X., OU, Y., Li, J., Wang, M., Wu, B., et al. (2016) Role of the Intravoxel Incoherent Motion Diffusion Weighted Imaging in the Pre-Treatment Prediction and Early Response Monitoring to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer. Medicine (Baltimore), 95, e2420. https://doi.org/10.1097/md.0000000000002420
|
[20]
|
李相生, 冯瑞, 王东, 等. 比较扩散加权成像单指数模型和扩散峰度成像模型在预测局部晚期乳腺癌新辅助化疗疗效中的价值[J]. 中华放射学杂志, 2019, 53(1): 26-32.
|
[21]
|
程龙, 张义臣, 王成伟. 磁共振体素内不相干运动和扩散峰度成像在乳腺癌新辅助化疗早期疗效的评估[J]. 影像研究与医学应用, 2022, 6(16): 19-21.
|
[22]
|
Fardanesh, R., Marino, M.A., Avendano, D., Leithner, D., Pinker, K. and Thakur, S.B. (2019) Proton MR Spectroscopy in the Breast: Technical Innovations and Clinical Applications. Journal of Magnetic Resonance Imaging, 50, 1033-1046. https://doi.org/10.1002/jmri.26700
|
[23]
|
Bolan, P.J. (2013) Magnetic Resonance Spectroscopy of the Breast: Current Status. Magnetic Resonance Imaging Clinics of North America, 21, 625-639. https://doi.org/10.1016/j.mric.2013.04.008
|
[24]
|
章蓉, 刘瑜琳, 刘代洪, 等. 功能磁共振成像技术评估乳腺癌新辅助化疗疗效的研究进展[J]. 磁共振成像, 2019, 10(8): 620-624.
|
[25]
|
Zhou, J., Payen, J., Wilson, D.A., Traystman, R.J. and van Zijl, P.C.M. (2003) Using the Amide Proton Signals of Intracellular Proteins and Peptides to Detect pH Effects in MRI. Nature Medicine, 9, 1085-1090. https://doi.org/10.1038/nm907
|
[26]
|
Krikken, E., van der Kemp, W.J.M., Khlebnikov, V., van Dalen, T., Los, M., van Laarhoven, H.W.M., et al. (2019) Contradiction between Amide‐CEST Signal and Ph in Breast Cancer Explained with Metabolic MRI. NMR in Biomedicine, 32, e4110. https://doi.org/10.1002/nbm.4110
|
[27]
|
Liang, X., Chen, X., Yang, Z., Liao, Y., Wang, M., Li, Y., et al. (2022) Early Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy Combining DCE-MRI and Apparent Diffusion Coefficient Values in Breast Cancer. BMC Cancer, 22, Article No. 1250. https://doi.org/10.1186/s12885-022-10315-x
|
[28]
|
Acharya, U.R., Hagiwara, Y., Sudarshan, V.K., Chan, W.Y. and Ng, K.H. (2018) Towards Precision Medicine: From Quantitative Imaging to Radiomics. Journal of Zhejiang University-SCIENCE B, 19, 6-24. https://doi.org/10.1631/jzus.b1700260
|
[29]
|
Bian, T., Wu, Z., Lin, Q., Wang, H., Ge, Y., Duan, S., et al. (2020) Radiomic Signatures Derived from Multiparametric MRI for the Pretreatment Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer. The British Journal of Radiology, 93, Article ID: 20200287. https://doi.org/10.1259/bjr.20200287
|
[30]
|
Liu, Z., Li, Z., Qu, J., Zhang, R., Zhou, X., Li, L., et al. (2019) Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study. Clinical Cancer Research, 25, 3538-3547. https://doi.org/10.1158/1078-0432.ccr-18-3190
|
[31]
|
Herrero Vicent, C., Tudela, X., Moreno Ruiz, P., Pedralva, V., Jiménez Pastor, A., Ahicart, D., et al. (2022) Machine Learning Models and Multiparametric Magnetic Resonance Imaging for the Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers, 14, Article No. 3508. https://doi.org/10.3390/cancers14143508
|
[32]
|
Li, C., Lu, N., He, Z., Tan, Y., Liu, Y., Chen, Y., et al. (2022) A Noninvasive Tool Based on Magnetic Resonance Imaging Radiomics for the Preoperative Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Annals of Surgical Oncology, 29, 7685-7693.
|
[33]
|
Shin, H., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., et al. (2016) Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 35, 1285-1298. https://doi.org/10.1109/tmi.2016.2528162
|
[34]
|
Joo, S., Ko, E.S., Kwon, S., Jeon, E., Jung, H., Kim, J., et al. (2021) Multimodal Deep Learning Models for the Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer. Scientific Reports, 11, Article No. 18800. https://doi.org/10.1038/s41598-021-98408-8
|
[35]
|
El Adoui, M., Drisis, S. and Benjelloun, M. (2020) Multi-Input Deep Learning Architecture for Predicting Breast Tumor Response to Chemotherapy Using Quantitative MR Images. The International Journal of Computer Assisted Radiology and Surgery, 15, 1491-1500.
|
[36]
|
Zhou, Z., Adrada, B.E., Candelaria, R.P., Elshafeey, N.A., Boge, M., Mohamed, R.M., et al. (2023) Prediction of Pathologic Complete Response to Neoadjuvant Systemic Therapy in Triple Negative Breast Cancer Using Deep Learning on Multiparametric MRI. Scientific Reports, 13, Article No. 1171. https://doi.org/10.1038/s41598-023-27518-2
|
[37]
|
Savioli, F., Morrow, E.S., Dolan, R.D., Romics, L., Lannigan, A., Edwards, J., et al. (2022) Prognostic Role of Preoperative Circulating Systemic Inflammatory Response Markers in Primary Breast Cancer: Meta-Analysis. British Journal of Surgery, 109, 1206-1215. https://doi.org/10.1093/bjs/znac319
|
[38]
|
Lusho, S., Durando, X., Mouret-Reynier, M., Kossai, M., Lacrampe, N., Molnar, I., et al. (2021) Platelet-to-Lymphocyte Ratio Is Associated with Favorable Response to Neoadjuvant Chemotherapy in Triple Negative Breast Cancer: A Study on 120 Patients. Frontiers in Oncology, 11, Article ID: 678315. https://doi.org/10.3389/fonc.2021.678315
|
[39]
|
Hong, Z., Chen, S., Peng, X., Li, J., Yang, J. and Wu, S. (2022) Nomograms for Prediction of Breast Cancer in Breast Imaging Reporting and Data System (BI-RADS) Ultrasound Category 4 or 5 Lesions: A Single-Center Retrospective Study Based on Radiomics Features. Frontiers in Oncology, 12, Article ID: 894476. https://doi.org/10.3389/fonc.2022.894476
|
[40]
|
Yin, F., Wang, S., Hou, C., Zhang, Y., Yang, Z. and Wang, X. (2022) Development and Validation of Nomograms for Predicting Overall Survival and Cancer Specific Survival in Locally Advanced Breast Cancer Patients: A SEER Population-Based Study. Frontiers in Public Health, 10, Article ID: 969030. https://doi.org/10.3389/fpubh.2022.969030
|
[41]
|
胡欣, 程雪, 徐民. 联合MRI、外周血炎症指标及临床病理特征预测乳腺癌新辅助化疗疗效[J]. 温州医科大学学报, 2025, 55(7): 558-564+572.
|
[42]
|
张倩. 联合MRI和临床病理指标的列线图在预测乳腺癌新辅助化疗后病理完全缓解中的价值[J]: [硕士学位论文]. 兰州: 兰州大学, 2022.
|
[43]
|
Zhang, Z., Zeng, Y. and Liu, W. (2024) The Role of Systemic Immune-Inflammation Index in Predicting Pathological Complete Response of Breast Cancer after Neoadjuvant Therapy and the Establishment of Related Predictive Model. Frontiers in Oncology, 14, Article ID: 1437140. https://doi.org/10.3389/fonc.2024.1437140
|
[44]
|
Ma, R., Wei, W., Ye, H., Dang, C., Li, K. and Yuan, D. (2023) A Nomogram Based on Platelet-to-Lymphocyte Ratio for Predicting Pathological Complete Response of Breast Cancer after Neoadjuvant Chemotherapy. BMC Cancer, 23, Article No. 245. https://doi.org/10.1186/s12885-023-10703-x
|
[45]
|
杨曦文, 陈洁. 新辅助化疗对乳腺癌手术治疗的影响[J]. 中国普外基础与临床杂志, 2024, 31(9): 1025-1032.
|
[46]
|
刘振宇, 范志民. 乳腺癌新辅助化疗后行保乳手术值得关注的问题[J]. 中国实用外科杂志, 2021, 41(11): 1226-1230.
|