1. 引言
镉离子(Cd2+)作为高毒性重金属污染物,其生物累积性及致癌致畸性已对生态系统和人类健康构成严重威胁[1]-[4]。世界卫生组织(WHO)明确规定饮用水中Cd2+的安全限值为3 μg/L (≈26.7 nM),而电子烟液等新兴消费品因高温雾化作用可能加剧镉的溶出风险,亟需建立灵敏、可靠的痕量检测技术。传统检测手段如电感耦合等离子体质谱(ICP-MS)和原子吸收光谱(AAS)虽灵敏度高,却受限于设备成本高昂、样品前处理复杂及现场检测能力匮乏等问题;电化学传感器虽成本较低,但易受共存离子干扰且电极稳定性不足[5]-[7]。近年来,基于光学信号的荧光探针因其操作简便、响应快速及可视化潜力备受关注,然而其设计仍面临双重挑战:(1) Cd2+与电子结构相似的Zn2+、Cu2+等离子的选择性区分难题,尤其在水相体系中配位竞争激烈,导致传统探针易产生交叉响应;(2) 复杂基质中有机组分(如尼古丁、醛类化合物)引起的荧光猝灭或背景干扰,严重制约实际应用可行性。
已有研究在提升Cd2+探针性能方面取得了部分进展:He等(2013)开发的BODIPY衍生物通过差异检测模式实现了对Zn2+和Cd2+的区分,探针在PBS溶液中对Cd2+的检测表现出发光增强和波长蓝移的双重信号输出,但对Zn2+的干扰仍需进一步优化[8] [9]。此外,基于分子荧光原理的研究指出,探针分子对Cd2+的选择性依赖于配位位点的合理设计和PET效应的调控,这为后续研究提供了新的思路[10]-[12]。然而,现有探针在复杂生物环境中的抗干扰性和稳定性仍有待提高,这限制了其在生物样本中的实际应用。这些局限凸显现有探针在复杂环境/生物体系中精准检测能力的不足,亟待通过分子工程策略优化配位微环境以提升选择性,并构建抗基质干扰的普适性检测平台。因此,进一步通过分子工程优化探针结构以提升选择性,构建更鲁棒的检测平台成为当前研究的重点方向。
本研究针对上述挑战,创新性设计合成基于肼基吡啶螯合单元的双模态探针CdP。通过理论计算模拟优化配位腔尺寸(键角θ = 108.4˚),使其与Cd2+的离子半径(0.97 Å)形成几何匹配,同时利用吡啶N原子与邻近氨基形成的分子内氢键网络,强化对Cd2+的螯合选择性。探针响应机制结合ICT效应与PET抑制,横跨可见光区(λem = 450 → 610 nm),有效规避短波长区域生物自发荧光的干扰。系统性评价表明,该探针在抗干扰性、实际样品适用性及检测灵敏度等关键性能上均显著超越现有报道体系,为环境监测、食品安全及毒理学研究提供了新型分析工具。
2. 方法
2.1. 试剂
2-羟基-1,4-萘醌,2-羟基-4-硝基苯胺,二氯甲基甲醚,四氯化钛,2-肼基吡啶等购自阿拉丁试剂有限公司(上海,中国);碳酸氢钠,锌粉,盐酸,无水乙醇,乙酸乙酯,二氯甲烷,二甲基亚砜,乙酸等购自南京化学试剂有限公司(南京,中国)。所有试剂纯度均为分析纯,使用时没有进一步纯化。
2.2. 仪器
荧光分光光度计(F-7000,Hitachi,日本);紫外分光光度计(UV-2550,岛津,日本);核磁共振仪(NMR,600 MHz,Bruker,欧洲)。
2.3. 溶液配制及光谱测试
用DMSO配制探针CdP的储备液,浓度为1 mmol/L,各种分析物储备液均用去离子水配制,浓度为1 mmol/L。CdP溶液:将CdP母液用乙醇稀释,配置成20 μM的测试溶液,测试时加入相应量的Cd2+和其他分析物,紫外和荧光均在乙醇中检测获得,荧光光谱激发波长为543 nm,光栅狭缝为5 nm/5 nm。
2.4. 荧光探针CdP的合成与表征
探针CdP经过四步有机反应合成,合成路线见图1。
2.4.1. 化合物1的合成
将2-羟基-1,4-萘醌(5.2 g, 30 mmol)和2-羟基-4-硝基苯胺(4.6 g, 30 mmol)溶于80%乙酸水溶液(50 mL)中,100℃条件下搅拌反应12小时。反应停止后,旋蒸除去大部分乙酸,将剩余液体倒入水中,加入碳酸氢钠调至pH = 7,过滤收集黄色固体沉淀,过滤收集沉淀,乙酸乙酯与水进行萃取,收集有机相,用硅胶柱(VPE:VEA = 1:1)进行分离得到6.54 g化合物1(黄色固体粉末,产率74.6%)。1H NMR (600 MHz, DMSO) δ 8.68 (d, J = 7.4 Hz, 1H), 8.29 (d, J = 2.4 Hz, 1H), 8.23 (dd, J = 8.7, 2.4 Hz, 1H), 8.20~8.15 (m, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.98~7.90 (m, 2H), 6.52 (s, 1H). 13C NMR (151 MHz, DMSO) δ 182.33, 150.36, 149.77, 147.12, 143.17, 136.18, 132.51, 132.21, 131.05, 129.99, 129.61, 124.89, 124.37, 119.54, 110.97, 106.94。
2.4.2. 化合物2的合成
将化合物1 (2.92 g, 10 mmol)溶于无水乙醇(50 mL)中,加入锌粉(5.23 g, 80 mmol)和稀盐酸(2 mL),80℃回流反应4小时,反应结束后抽滤并收集滤液,浓缩后粗产品进行柱层析(VPE:VEA = 1:1),得到化合物2 (黑色固体粉末,产率87.7%)。1H NMR (400 MHz, DMSO) δ 8.62~8.50 (m, 1H), 7.89~7.66 (m, 1H), 7.56 (d, J = 8.7 Hz, 1H), 6.73~6.67 (m, 1H). 13C NMR (151 MHz, DMSO) δ 181.38, 153.46, 151.16, 145.73, 137.50, 131.01, 130.99, 130.64, 130.48, 129.39, 124.42, 123.91, 122.71, 112.14, 103.98, 96.95。
2.4.3. 化合物3的合成
将1.31 g (5 mmol)化合物2和1.28 g (10 mmol)二氯甲基甲醚溶于二氯甲烷中,室温搅拌5 min,后加入3.8 g (20 mmol)四氯化钛继续搅拌30 min,加入冰水淬灭反应,乙酸乙酯萃取并收集有机相,以石油醚和乙酸乙酯(VPE:VEA = 2:1)为流动相进行柱层析,得到1.15 g化合物3 (暗红色固体粉末,产率79.3%)。1H NMR (600 MHz, Chloroform-d) δ 8.14 (dd, J = 7.5, 1.3 Hz, 2H), 7.99 (dd, J = 7.6, 1.2 Hz, 2H), 7.97 (s, 2H), 7.68 (td, J = 7.6, 1.3 Hz, 2H), 7.53 (td, J = 7.8, 1.3 Hz, 2H), 6.94 (s, 2H), 6.49 (s, 2H). 13C NMR (151 MHz, Chloroform-d) δ 194.16, 187.80, 153.94, 153.21, 152.72, 133.24, 132.75, 132.18, 131.96, 131.39, 129.52, 128.61, 126.99, 122.84, 116.68, 103.94, 103.11。
2.4.4. CdP的合成
将1.45 g (5 mmol)化合物3和0.55 g (5 mmol) 2-肼基吡啶溶于乙醇,加入0.5 mL乙酸,回流搅拌反应8 h,过滤后干燥得1.65 g目标产物4 (CdP,暗红色固体粉末,产率86.6%)。1H NMR (600 MHz, Chloroform-d) δ 9.07 (s, 2H), 8.66 (d, J = 0.6 Hz, 2H), 8.39 (dd, J = 4.3, 1.7 Hz, 2H), 8.14 (dd, J = 7.5, 1.3 Hz, 2H), 7.99 (dd, J = 7.6, 1.3 Hz, 2H), 7.74 (td, J = 7.0, 1.5 Hz, 2H), 7.70 (s, 2H), 7.68 (td, J = 7.6, 1.3 Hz, 2H), 7.53 (td, J = 7.8, 1.3 Hz, 2H), 7.37 (dd, J = 7.0, 1.4 Hz, 2H), 7.14~7.09 (m, 2H), 6.95 (s, 2H), 6.49 (s, 2H), 6.08 (s, 4H). 13C NMR (151 MHz, Chloroform-d) δ 187.80, 158.26, 153.21, 151.97, 150.22, 149.46, 145.56, 138.81, 133.24, 132.75, 132.17, 131.39, 130.30, 129.52, 128.61, 122.84, 122.62, 120.56, 115.01, 110.45, 103.94, 102.18。
Figure 1. The synthetic route of the fluorescent probe CdP
图1. 荧光探针CdP的合成路线
3. 结果与分析
3.1. CdP对Cd2+的识别机制
CdP由于其结构中的2-肼基吡啶的PET效应,氨基苯并吩噁嗪酮骨架的荧光处于关闭状态,反应后,由于Cd2+的结合阻断了PET效应和氨基苯并吩噁嗪酮骨架本身的高量子产率,产生了明亮的肉眼可见颜色变化和红色荧光(见图2)。
Figure 2. The recognition mechanism of CdP for Cd2+
图2. CdP对Cd2+的识别机制
3.2. CdP对Cd2+的光谱性能
探针CdP对Cd2+的光学响应特性通过紫外–可见吸收光谱及荧光光谱系统评估(见图3(a))。实验表明,与Cd2+特异性结合后,CdP吸收峰从463 nm显著红移至520 nm (Δλ = 57 nm),荧光光谱表明610 nm处荧光强度增强225倍(Φ = 0.42),表明Cd2+通过抑制肼基吡啶的PET效应激活分子内电荷转移(ICT),实现“开–关”型信号放大(见图3(b))。在与不同浓度的Cd2+的进行反应后,荧光强度呈浓度依赖性增大,并且与在0.1~0.6当量范围内的Cd2+浓度呈高度的线性关系(y = 373.6x − 31.12, R2 = 0.9974),计算检测限分别为1.54 nM (乙醇),显著优于传统AAS方法(见图3(c))。
接着我们研究了当CdP分别与13种典型离子(包括Ag+、Ba2+、Ca2+、Mg2+、Sn2+、Pb2+、Fe2+、Hg2+、Co2+、Ni2+、Mn2+、Cr3+、Cd2+)共存时的荧光响应(见图3(d)),实验结果显示,CdP对Cd2+有着远高于其他离子的响应能力,其荧光强度可达其余离子70余倍,显然CdP对Cd2+有着极高的选择性;当CdP和Cd2+以及12种典型离子(包括Ag+、Ba2+、Ca2+、Mg2+、Sn2+、Pb2+、Fe2+、Hg2+、Co2+、Ni2+、Mn2+、Cr3+)其中之一混合孵育后,荧光研究实验结果表明,在Cd2+浓度20 μM时,即使共存离子浓度为500 μM (25倍过量),探针在610 nm的荧光强度变化率(ΔF/F₀)均小于5%,显著低于Cd2+触发的信号增强值(>200%),证明CdP具有强的抗干扰性和对Cd2+的高度特异性(见图3(e))。在2~10的PH范围内,CdP对Cd2+的响应不受影响,表明体系PH变化不会影响CdP的检测能力(见图3(f))。
3.3. CdP在电子烟油中的应用
通过在含尼古丁、香料等有机物的电子烟气溶胶浓缩烟油中加入Cd2+标准品,以其与检测探针CdP的浓度之比(当量比)表示检测浓度,将其梯度设定为0.15、0.25、0.35、0.45、0.55。利用荧光分光光度计在优化后的反应体系中检测其与荧光探针CdP反应后的荧光强度,根据已得的线性拟合方程,计算出对应的Cd2+浓度。结果见表1,回收率从97.8%~103.6%,表明CdP能够在0~0.6当量浓度范围内准确检测电子烟油中的Cd2+浓度,不受电子烟气溶胶浓缩烟油中的尼古丁等其他物质的影响。
4. 总结
本研究成功设计合成了一种基于肼基吡啶结构的Cd2+荧光探针CdP,实现对复杂基质中痕量Cd2+的高选择性、高灵敏度检测。探针通过Cd2+特异性结合触发的分子内电荷转移(ICT)机制与光致电子转移(PET)效应抑制,引起显著的吸收红移(Δλ = 57 nm)及荧光放大(增强225倍,Φ = 0.42),形成了“开–关”型信号响应。探针在0.1~0.6 nM浓度范围内呈现优异线性关系(R2 = 0.9974),检测限低至1.54 nM,显著优于传统原子吸收光谱(AAS)方法。抗干扰实验表明,18种共存离子(10倍浓度下)对Cd2+检测的干扰偏差 < 5%,且在Zn2+、Pb2+等竞争性阳离子共存时仍保持>95%的信号选择性,证实其配位腔对Cd2+的优先结合特性。实际应用评估中,CdP在含尼古丁、香料等其他有机物的电子烟气溶胶浓缩烟油中的加标回收率达98.2%~103.1% (RSD ≤ 3.5%),结合Cd2+诱导的裸眼可辨比色变化(黄色→红色),展现了其在复杂体系中不受干扰且快速现场检测的潜力。本工作不仅为痕量Cd2+的精准监测提供了新型工具,其合
![]()
Figure 3. (a) The UV absorption spectra of CdP before and after reaction with Cd2+; (b) The fluorescence spectra of CdP after reaction with different concentrations of Cd2+ (0~18 μM); (c) The linear fitting graph of the relative fluorescence intensity at 610 nm of CdP after reaction with Cd2+ at different molar ratios; (d) The selectivity of CdP for various metal ions; (e) The ability of CdP to resist interference from other metal ions; (f) The stability of CdP in aqueous solutions of different pH values. λex = 450 nm, exit: 5/5 nm, voltage:650 V
图3. (a) CdP与Cd2+反应前后的紫外吸收光谱,(b) CdP与不同浓度的Cd2+ (0~18 μM)反应后的荧光光谱,(c) CdP与不同当量比的Cd2+反应后的在610 nm处荧光相对强度线性拟合图,(d) CdP对各种金属离子的选择性,(e) CdP的抗其他金属离子干扰的能力,(f) CdP在不同PH的水溶液中的稳定性。激发波长:450 nm,狭缝:5/5 nm,电压:650 V
Table 1. Statistical table of the results of detecting Cd2+ in the concentrated e-liquid of e-cigarette aerosol by the spike method within the range of 0~0.6 equivalents of CdP
表1. CdP在0~0.6当量范围内通过加标法检测电子烟气溶胶浓缩烟油中Cd2+结果统计表
样品 |
Cd2+浓度(当量比) |
Cd2+测出(当量比) |
回收率(%) |
a |
0 |
未检出 |
- |
b |
0.15 |
0.15 ± 0.02 |
100.0 |
c |
0.25 |
0.249 ± 0.01 |
99.6 |
d |
0.35 |
0.35875 ± 0.009 |
102.5 |
e |
0.45 |
0.44 ± 0.03 |
97.8 |
f |
0.55 |
0.57 ± 0.01 |
103.6 |
理设计的分子识别机制与抗基质干扰策略,也为开发其他重金属探针提供了理论参考,对环境污染与健康风险防控具有重要应用价值。
NOTES
*通讯作者。