塑性变形对SiCp/Al复合材料微观组织与力学性能影响研究进展
Research Progress on the Effects of Plastic Deformation on the Microstructure and Mechanical Properties of SiCp/Al Composites
DOI: 10.12677/ms.2025.158167, PDF, HTML, XML,   
作者: 祁明明, 彭麟辉, 余垂有, 胡 娟*:湖南航天诚远精密机械有限公司,湖南 长沙
关键词: 铝基碳化硅塑性变形微观组织力学性能SiCp/Al Plastic Deformation Microstructure Mechanical Properties
摘要: 铝基碳化硅(SiCp/Al)复合材料因其具有优异的综合性能被广泛应用于航空航天、交通运输、国防军工、电子封装等领域。塑性变形可实现调控材料微观组织,显著提高材料的力学性能。本文针对现阶段国内外SiCp/Al复材塑性变形研究现状,综述了SiCp/Al复材在常规塑性变形和大塑性变形(SPD)条件下的微观组织演变及其力学性能影响。介绍了SiCp/Al复材在变形过程中晶粒尺寸、界面特征、动态再结晶(DRX)、增强颗粒分布及位错密度等组织特征。最后展望了SiCp/Al复材在塑性变形领域的科学研究和工业前景。
Abstract: Aluminum matrix silicon carbide (SiCp/Al) composites are widely used in aerospace, transportation, national defense and military, electronic packaging and other fields due to their excellent comprehensive properties. Plastic deformation can regulate the microstructure of materials and significantly improve their mechanical properties. This article reviews the microstructure evolution and mechanical property influence of SiCp/Al composites under conventional plastic deformation and severe plastic deformation (SPD) conditions based on the current research status both domestically and internationally. The microstructure characteristics, such as grain size, interface features, dynamic recrystallization (DRX), distribution of reinforcing particles and dislocation density during the deformation process of SiCp/Al composites are introduced. Finally, the scientific research and industrial prospects of SiCp/Al composites in the field of plastic deformation are prospected.
文章引用:祁明明, 彭麟辉, 余垂有, 胡娟. 塑性变形对SiCp/Al复合材料微观组织与力学性能影响研究进展[J]. 材料科学, 2025, 15(8): 1569-1582. https://doi.org/10.12677/ms.2025.158167

1. 引言

在金属基复合材料(metal matrix composites, MMCs)中铝基复合材料(aluminum matrix composites, AMCs)因其质轻、高强、耐磨等特性以及与金属兼容的可加工性,在航空航天、交通运输等领域的装备制造中具有广阔的应用前景[1]-[3]。颗粒增强铝基复合材料(particle-reinforced aluminum matrix composites, PAMCs)具备优异的弹性模量和比强度[4],是目前公认极具竞争力的金属基复合材料。SiC颗粒具有比铝合金更高的模量、硬度、热导率、较低的热膨胀系数以及成本低等优点,可作为铝基复合材料的增强颗粒[5] [6]。经过数年发展SiCp/Al复合材料制备方法主要有粉末冶金、无压渗透、喷射成形、搅拌熔铸等[7]。粉末冶金(Powder Metallurgy, PM)由于增强体颗粒选择灵活,颗粒团聚少,材料内部偏析相对较少,增强体与基体之间的比例调控方便,所制备的复合材料组织相对均匀,是一种较为成熟的复合材料制备技术;同时,该方法在液相线温度以下进行,有效避免了增强颗粒与基体之间的界面反应现象,很大程度上抑制Al4C3的生成,材料的综合性能得到改善[8]。但目前仍存在高温条件下组织粗化、内部组织疏松、脱气困难等问题[9],造成复合材料在承受外力过程中在缺陷处易形成裂纹源,影响材料力学性能。

通过塑性变形、热处理等工艺可有效改善材料内部组织,提高材料综合性能。因此,研究SiCp/Al复合材料在塑性变形和热处理过程中微观组织演变和力学性能,对满足工业生产中的需求具有重要意义[10] [11]。热挤压、轧制、锻造等热塑性变形能够有效降低复合材料内部缺陷,改善增强颗粒分布状态并细化基体晶粒尺寸,有效提高复材力学性能[12]-[14],此外大塑性变形(SPD)技术通过对材料施加较高的剪切力获得细晶或超细晶,是一种细化组织、强化材料力学性能的有效手段[15] [16],作为近年来研究SiCp/Al复材塑性变形热点之一,对于改善复材力学性能效果显著。基于SiCp/Al复材优异的综合性能和当前塑性变形技术的研究进展,本文综述了不同变形工艺的特点以及SiCp/Al复材在不同变形条件下微观组织演变和力学性能,浅析了SiCp/Al复材在变形过程中微观组织演变与力学性能的内在联系。

2. 铝基碳化硅复材塑性变形技术及机制研究

一般情况下受工业条件和工艺技术的影响,材料制备后存在内部缺陷或性能达不到工业要求等问题,因此需要进一步热塑性变形通过改善内部组织提高材料机械性能。

2.1. 挤压

挤压作为工业生产中常用的一种塑性变形技术,在挤压过程中材料受到强烈的三向压应力,通过改变挤压过程中的挤压参数(挤压温度、挤压比、挤压速度),有效消除坯料内部疏松组织、偏析等缺陷并改善复合材料界面结合情况,提高材料综合性能。复合材料界面的结合特征受热压条件的影响[17],导致热压后SiCp/Al复合材料中存在的气孔和界面结合较差等问题限制了增强效果。为研究热挤压对改善SiCp/Al复材界面结合情况,Nie等人[18]通过热等静压(hot isostatic pressing, HIP)结合热挤压(挤压温度470℃,挤压比14:1)制备出SiCp/2009 Al基复合材料。发现挤压后团簇基本消失,如图1所示中挤压后SiCp与2009 Al基体界面未观察到孔隙,界面结合良好,有效将载荷从基体传递至增强体颗粒,提高了复材力学性能。

Figure 1. TEM image of SiCp/Al 2009 interface of composites: (a) (b) hot isostatic pressing, (c) (d) hot extrusion [18]

1. 复合材料SiCp/Al 2009界面的TEM图:(a) (b) 热等静压,(c) (d) 热挤压[18]

为深入研究挤压对SiCp/Al复材微观组织演变及其对力学性能的影响,Wang [19]对挤压过程中SiCp/Al-Cu复材的组织进行了研究,在较高的三向压应力状态下材料内部大部分孔隙消除,组织得到明显改善,如图2所示挤压后晶粒细化、α-Al枝晶破碎、良好的界面结合、SiCp对位错钉扎等综合强化作用显著提高复合材料的力学性能,材料屈服强度和抗拉强度分别为373 MPa和527 MPa。另外Jin等人[20]的研究结果表明SiCp/Al复合材料在热挤压过程中颗粒团簇在剪切应力作用下破碎,基体中均匀分布的SiCp使裂纹发生偏转,通过降低裂纹尖端扩展所需的能量阻碍裂纹的扩展,材料塑性得到改善,同时挤压后材料孔隙的下降和位错密度的增大提高了其强度。不难看出通过热挤压可大幅度降低材料内部缺陷,调控内部组织实现材料力学性能的提升。

Figure 2. Microstructures of SiCp/Al-Cu composites with different SiC contents in as-cast and hot-extruded conditions: (a)~(d) as-cast, (e)~(f) extruded [19]

2. 不同SiC含量的SiCp/Al-Cu复合材料铸态、挤压组织:(a)~(d) 铸态,(e)~(f) 挤压态[19]

除界面对SiCp/Al复材性能的影响之外,在挤压过程中析出相数量和尺寸、位错密度等会显著提高复合材料的力学性能,Wang [21]对SiC/6092 Al复合材料进行热挤压变形,发现SiC/6092 Al在冷却过程中析出的Al4Cu2Mg8Si7相弥散分布在基体中并通过影响裂纹的扩展改善材料力学性能,SiCp通过阻碍位错运动减少晶界滑移,细晶强化、析出相强化、位错强化等共同作用下材料力学性能提高明显。而合理的挤压比亦能对复合材料的微观组织形成显著影响,在挤压过程中当变形量过大时复合材料中基体的位错密度快速增大,应力集中和加工硬化等易使其发生开裂,最终导致其成型性下降,但挤压比较小则复材的孔隙和团聚又难以完全消除、晶粒细化不明显等问题难以达到提高材料力学性能的目的,因此,合理的挤压比对改善材料塑性成型,提高力学性能是诸多学者研究的热点话题之一。Ramesh等人[22]的研究结果表明在保持挤压温度和挤压速度恒定(挤压温度500℃,挤压速度2 mm/s)的条件下,挤压比的增大使SiC增强颗粒在基体中分布更加均匀,SiCp/Al复合材料的耐磨性、硬度、强度均有所增加。而Hanada等人[23]的研究结果则显示挤压比的变化会显著影响SiCp/Al复合材料的组织,当挤压比持续增大后材料力学性能呈不升反降的趋势。500℃下挤压后SiCp弥散分布在Al-Li基体中并沿挤压方向呈流线型分布,随挤压比增大再结晶晶粒的增多细化了基体组织,但当挤压比增大至40时,材料内部温度快速升高导致再结晶晶粒粗化,碳化硅颗粒与基体界面结合受到破坏,降低材料力学性能。不难看出挤压参数的合理选择对调控材料微观组织,改善其力学性能具有重要影响。除挤压工艺参数对材料力学性能影响外,增强颗粒形貌、粒径等也会影响材料机械性能。Guo等人[24]采用热挤压实验研究了不同粒径的15 vol% SiCp增强2009 Al复合材料力学性能,该研究发现在热挤压过程中Mg原子向增强体/基体界面的偏析以及随后的界面反应形成Mg2Si导致基体硬度降低,此外还发现粒径较小的SiCp具有较高比表面积从而增强SiCp与基体之间的载荷传递,改善了材料的机械性能。

除此之外,复合材料热塑性变形过程中的再结晶行为也是一个值得深入研究的问题。动态再结晶晶粒通过细化组织、弱化织构、调控位错密度等方式改善材料组织,对材料力学性能的提升具有重要作用。铝合金由于较高的层错能,位错不易束集,热变形过程中形变储能不足以激发产生动态再结晶,有研究指出[25] [26]向铝合金中添加增强颗粒通过增加基体中的位错密度促进热变形期间再结晶晶粒的产生。因此铝基复合材料在塑性变形过程中的动态再结晶行为需要进一步研究。Wąsik [27]的研究发现热挤压过程中基体的增强相开裂并破碎,大量SiC颗粒和第二相作为再结晶晶粒形核位点,材料中产生再结晶晶粒改善了材料力学性能。Ramesh等人[28]发现Al 6061/SiCp在热挤压过程中硬质SiCp附近的基体亚晶粒发生转动,并在其周围形成不均匀变形区;EBSD结果显示粒径约5 μm的SiCp通过颗粒诱导形核(PSN)机制,在其周围观察到动态再结晶晶粒,说明PSN机制是Al 6061/SiCp复合材料再结晶的主要机制之一。此外Hao等人[29]的研究结果表明亚晶粒的合并和长大也是SiCp/Al复合材料在热变形过程中动态再结晶机制之一,变形过程中位错在亚晶粒中发生缠结、重组促进取向差较小的亚晶粒发生迁移、合并,在应力和热激活作用下,亚晶的活性增强转变为具有大角度晶界的再结晶晶粒。不难看出在发生热塑性变形过程中,材料的动态再结晶类型往往是多种再结晶机制共同主导达到结果。

2.2. 轧制

轧制作为工业生产中一种获得板材的重要加工方式,其通过轧辊对工件上下表面施加压力,实现板料尺寸沿厚度方向减小并沿轧制方向增加,达到改善材料内部组织的目的,具有十分广泛的应用。但由于增强颗粒的影响复合材料的延伸率相对较低,轧制过程中轧辊对工件的剪切力和板材侧边缘较大的变形区容易导致板材开裂,同时板材在轧制过程中温度下降较快等造成板材的成型性较差,因此有关铝基碳化硅复合材料在轧制方面的加工应用相对较少。

通过控制轧制过程中压下量、轧制温度、轧制速度、轧制道次等工艺参数达到调控材料内部晶粒尺寸、位错密度、析出相、织构分布等目的。同时能减少复合材料气孔并改善SiCp分布,实现材料的致密化[30],结合后期热处理工艺,实现板材力学性能的大幅度提高。El-Sabbagh等人[31]研究了Al 6061-SiCp复合材料在不同压下量下SiCp的分布状态,如图3所示轧制后SiCp团聚减少,并沿轧制方向排列重新分布,随压下量的增大SiCp在基体中分布更加均匀。El-Sabbagh等人[32]对Al6061-SiCp和Al7108-SiCp复合材料在450℃下连续热轧后铸态复材中的孔洞、SiCp团聚等铸造缺陷明显减少,随着SiCp体积分数的增加,材料的抗拉强度和弹性模量均有所提高。同样Sreeram [33]的研究结果发现轧制细化了基体的晶粒尺寸,材料内部孔隙减少,SiCp在基体中均匀分布,材料的抗拉强度、硬度提升明显。Li等人[34]结合放电等离子烧结(SPS)和热轧变形技术研究了AA6061-SiC复材的显微组织和力学性能。热轧过程中SiC层发生断裂、分离,SiCp碎片均匀镶嵌在Al基体中阻碍了软质Al基体的运动,基体–增强界面附近位错密度增大,同时SiCp阻碍了Al晶界的移动,热轧后晶粒细化、位错强化、第二相强化共同作用提高材料力学性能。Guo等人[35]发现热轧过程中流动塑性促进界面重新分布和间隙的填充,改善了SiCp/Al复材层间结合,如图4所示在Al基体中发生连续的动态再结晶,在Al-3% SiCp/Al夹层动态再结晶表现为SiCp刺激形核、长大进而改善复材微观组织,夹层结构和SiCp通过阻碍位错运动提高了复材力学性能。此外轧制能够有效控制颗粒–基体界面处的载荷传递改善内部组织,对提高材料蠕变性能具有显著效果。Bhattacharyya和Mitra [36]的研究结果发现在相对较低的温度下轧制基体中位错迁移能力低导致Al-5SiCp复合材料中位错密度较高,最终400℃轧制材料比600℃轧制材料具有较高的抗蠕变性能。

Figure 3. Microstructure of SiCp distribution in Al6061-20% SiCp under different conditions: (a) as cast, (b) 92% reduction rolling, (c) 96% reduction rolling [31]

3. 不同条件下Al6061-20% SiCp中SiCp分布显微组织图:(a) 铸态,(b) 92%压下量轧制,(c) 96%压下量轧制[31]

Figure 4. (a) and (b) respectively show the GOS distribution and grain boundary map of the Al-3% SiCp/Al interface; local magnification of the Al layer: (c) phase diagram, (c1) IPF map, (c2) KAM map, (c3) grain size distribution map; local magnification of the 3% SiCp/Al layer: (d) phase diagram, (d1) IPF map, (d2) KAM map, (d3) grain size distribution map [35]

4. (a) (b)分别为Al-3% SiCp/Al界面的GOS分布、晶界图;Al层局部放大图:(c) 相图、(c1) IPF图、(c2) KAM图、(c3) 晶粒尺寸分布图;3% SiCp/Al层的局部放大图:(d) 相图、(d1) IPF地图、(d2) KAM图、(d3) 晶粒尺寸分布图[35]

Figure 5. EBSD IPF diagram and grain boundary diagram of SiCp/A356 aluminum-based composites under different pressure amounts: (a)~(d) IPF diagram, (e)~(h) grain boundary diagram [37]

5. SiCp/A356铝基复材在不同压下量下EBSD IPF图和晶界图:(a)~(d) IPF图,(e)~(h) 晶界图[37]

为降低复合材料在轧制过程中的流动应力,轧制通常在较高的温度下进行,对于金属基复材在高温轧制过程中微观组织和力学性能的变化。Luo等人[37]研究了SiCp/A356铝基复材在500℃多道次热轧过程中微观组织演变及其对力学性能的影响,如图5所示随着压下量增大,材料内部有足够形变储能促进动态再结晶晶粒的形核和长大,基体中的大角度晶界(HAGB)增加,Al基体晶粒尺寸从106.2 μm细化至39.7 μm,轧制压下量为90%时复材抗拉强度(UTS)、屈服强度(YS)和断裂伸长率(EL)分别由铸态的133.7 MPa、115.8 MPa和2.8%提升至262.1 MPa、255.5 MPa和5.7%。由于SiCp/Al复材中存在孔隙及界面结合弱等缺陷限制了SiCp增强效果。对此Wang等人[38]采用轧制技术控制2009 Al/SiCp复合材料中Al/SiC界面的组织缺陷和状态并研究了轧制压下率对复材微观组织和力学性能的影响。如图6所示轧制过程有效地消除了孔隙并强化了界面,SiCp在基体中充当位错钉扎点阻碍位错运动,材料位错密度的显著增加,在位错强化、细晶强化作用下复合材料强度显著提升。Li等人[39]发现热轧后SiCp-Al与Al-碳纤维(CF)形成结合良好的半共格界面,裂纹尖端通过界面发生偏转或钝化,有利于变形过程中载荷的传递从而增加材料的韧性,此外热轧后SiCp与Al基体界面存在位错提高了材料的强度。

Figure 6. (a) and (b) Schematic diagrams of the evolution and interaction of dislocations and SiC particles at the grain boundaries before and after rolling; (c) Variation of hardness in the interface micro-region with distance before and after rolling [38]

6. (a) (b) 轧制前后位错、SiC颗粒的晶界演变和相互作用示意图;(c) 轧制前后界面微区的硬度随距离的变化[38]

2.3. 锻造

锻造作为材料热变形加工的主要方式之一,其利用锻锤或模具的压缩力实现材料的成型,具有生产率高、锻件组织致密、锻后机加工少等优势。在锻造过程中通过压缩应力作用使坯料发生剧烈变形,内部组织发生变化对于改善材料力学性能具有重要作用[40] [41]。依据材料不同选用锻造工艺可分为热锻(再结晶温度以上)、温锻(0.3~0.5 Tm)或冷锻工艺[42],在高温条件下材料流动应力显著降低且加工硬化现象改善[43],因此热锻工艺的优点是塑性变形过程中材料开裂少,有效减少孔隙率并降低坯料损坏。在热锻过程中材料产生从小角度晶界(LAGB)向大角度晶界(HAGB)转变现象,随变形程度增加最终形成具有随机取向的动态再结晶晶粒,同时增强颗粒也通过PSN机制诱导再结晶晶粒的产生达到细化晶粒的目的,增强颗粒也通过阻碍位错运动形成高密度位错区实现材料强塑性协同提升[44]。而冷锻的优点是材料的几何精度高、良好的表面光洁度和产品近净成形性好。Hanamantraygouda等人[45]研究了冷锻对Al/SiC复合材料显微组织和力学性能的影响,冷锻后复材组织更加均匀且气孔率降低,SiCp尺寸由铸态的25~30 µm细化至15~20 µm,材料力学性能得到提高,Al/10% SiC复材的抗拉强度由330 MPa提高到430 MPa。

另外在锻造过程中SiCp在Al基体中发生重新排列且分布更加均匀,材料致密度增大。Özdemir [46]等人发现压铸AlSi5/SiCp复材在500℃锻造后SiCp团簇消失,孔隙率显著降低,基体和增强体之间良好的界面结合共同作用下复材的弹性模量、屈服强度、抗拉强度均增加。Thimmarayan [47]的研究结果表明SiCp尺寸变化影响复合材料力学性能和疲劳性能,试样在锻造后密度增加,气孔率降低,随着SiCp颗粒尺寸的减小硬度略有增加,屈服强度增大,抗疲劳性能增加。

2.4. 大塑性变形

作为一种有效制备细晶甚至超细晶材料的主流技术,大塑性变形(SPD)通过对材料施加剪切力有效细化晶粒尺寸,改善金属材料的显微组织和力学性能,具有一定的工业应用潜力。现阶段的SPD技术包括累积轧制(ARB)、等径角挤压(ECAP)、高压扭转(HPT)等,此外还有搅拌摩擦(FSP)加工[48]-[50]

通过SPD技术可改善SiCp/Al复合材料制备过程中产生的颗粒团簇、孔隙、界面结合差等问题,显著提高SiCp/Al复合材料的力学性能。Alizadeh等[49]研究了SiC颗粒对铝合金累积叠轧过程中组织和力学性能的影响机制,如图7所示EBSD结果显示经过累积叠轧后的复材试样中SiCp分散在基体中,材料孔隙减少并形成以大角度晶界为主的超细晶粒,SiCp的存在增加了颗粒附近基体中的局部应变和位错密度,材料强度得到大幅度提高。同样Reihanian等人[51]采用ARB技术制备出耐磨性优良的超细晶(710 nm) Al/SiC-Gr复材并研究了Gr含量对晶界面结合性和耐磨性的影响,发现Gr含量增多时颗粒在界面处形成摩擦层厚度增加,阻碍了ARB过程中的粘合,当Al/SiC:Gr质量比为4:1复合材料的耐磨性最好。

Figure 7. EBSD maps of the composite after 1, 3, and 8 passes of accumulative roll bonding: (a) (c) (e) IPF maps, (b) (d) (f) distribution maps of large and small angle grain boundaries [49]

7. 经过1、3、8道次累积叠轧后复材EBSD图:(a) (c) (e) IPF图,(b) (d) (f) 大小角度晶界分布图[49]

除了累积叠轧外等径角挤压(ECAP)也作为一种大塑性变形技术,具有较高的静水压力和剪切应变,是制备超细晶组织的有效手段之一。通过ECAP技术可显著细化复合材料中Al基体的晶粒,降低材料孔隙并使增强体颗粒重新排布,显著提升材料硬度和耐磨性[52],同时在剪切区发生剧烈塑性变形和动态再结晶,晶粒的细化有效延迟了裂纹萌生和扩展,致密度更高的晶界形成位错运动的屏障,阻碍塑性变形并提高材料抗疲劳性[53]。Qian [54]的研究发现SiCp/Al复材中Al晶粒晶格累积应变随扭转道次数增加而增大,与此同时位错数量增加并从晶界向晶粒内部迁移,实现材料整体力学性能的提升。此外,发展剪切力更大的等径角挤压–扭转(ECAPT)工艺被认为是制备超细晶SiCp/Al复合材料的有效手段,如图8所示Li等人[55]发现在大剪切应变下SiCp团聚程度降低且材料中出现大量剪切变形带,沿变形方向被拉长的变形晶粒随变形道次增加转变为超细等轴晶,SiCp克服晶界阻碍发生重新排列并均匀分布于基体,位错在晶界和SiCp周围累积、缠结形成高密度位错区。Khoubrou等人[56]研究等径角挤压对合金微观组织的影响,发现在ECAP过程中原始晶粒和晶界的位错差异导致晶界附近产生项链状结构细晶粒,随ECAP道次增加形成更多数量的动态再结晶晶粒,组织表现为粗晶粒和动态再结晶晶粒组成的双峰组织。随着大塑性变形技术的持续发展和研究的不断深入,通过将多种大塑性变形技术结合用于制备综合性能优良的材料是一种新的研究方法。有研究指出[57] ECAP过程中析出的第二相颗粒有利于剪切带的形核,弱化了合金织构,FSP工艺减少了合金中第二相的含量,提高了材料的耐蚀性。在晶粒细化方面有研究指出ECAP技术主要以连续动态再结晶为主,而FSP技术的晶粒细化机制主要以几何动态再结晶为主[58]。尽管等径角挤压技术在改善复合材料微观组织方面作用显著,但在等径角挤压过程中的复材的不连续、尺寸小、成本高等问题还需要进一步解决。

与此同时,SiCp/Al复材大塑性变形后的界面特征是一个值得深入研究的话题,Xue等人[59]发现在高压扭转(HPT)较大剪切应变作用下引入的位错和空位加速原子的扩散,元素间的相互扩散导致在界面处产生反应,同时原界面发生固相反应,提高界面结合性能,材料中的超细晶、良好的界面结合性和较高的位错密度等因素实现强塑性协同提升。此外,Huang等人[60]采用PM + FSP法制备了致密化程度高、SiCp/Al界面结合良好、SiCp分布均匀的超细晶SiC/Al-Mg-Sc-Zr复合材料,如图9中EBSD结果所示经过FSP处理后复材晶粒发生显著细化,含量较高的SiCp抑制LAGB向HAGB的转变以及随后的晶粒长大;另外晶粒内部靠近SiCp处发生位错钉扎,FSP技术极大改善复材微观组织使得材料具有优越的力学性能。

Figure 8. Schematic diagram of equal channel angular pressing and torsion (ECAPT) [55]

8. 等径角度挤压–扭转(ECAPT)示意图[55]

Figuer 9. IPF maps, grain boundary maps, grain size distributions, and misorientation angle distributions of SiC/Al-Mg-Sc-Zr composites with varying SiCp mass fractions after FSP: (a1)~(a4) 0%, (b1)~(b4) 2.5%, (c1)~(c4) 5%, and (d1)~(d4) 10% [60]

9. SiCp质量分数不同的SiC/Al-Mg-Sc-Zr复材在FSP后样品的IPF图、晶界图、晶粒尺寸图和取向差角分布:(a1)~(a4) 0%、(b1)~(b4) 2.5%、(c1)~(c4) 5%和(d1)~(d4) 10% [60]

3. 结论

本文综述了不同塑性变形工艺对SiCp/Al复材微观组织和力学性能的研究现状,阐述了变形条件对SiCp/Al复材微观组织和力学性能的影响。总体而言,通过优化塑性变形过程中工艺参数达到调控材料内部组织的目的,很大程度上提高了SiCp/Al复材的综合性能。尽管目前SiCp/Al复材塑性变形技术研究成果显著,但在组织演变机理仍缺少完整理论指导,为深入刨析SiCp/Al复材塑性变形过程中组织演变规律和力学性能强化机制,仍需要从以下几个方面进行深入研究。

1) 挤压、轧制等塑性变形技术对SiCp/Al复材界面结合影响机制尚不完全清楚,基体在挤压和轧制等塑性变形过程中产生的织构类型、分布特征等因素对复材力学性能影响有待深入研究。

2) 塑性变形过程中SiCp/Al复材动态再结晶类型及形成过程,晶粒细化机制缺少系统研究;另外,材料微观组织演变对力学性能强化机制模型建立需要进一步完善。

3) 大塑性变形虽然能有效改善材料内部团簇,是一种制备细晶或超细晶的有效手段,能够显著提高复材机械性能。但基于当前技术条件限制只能用于小尺寸样品的制备,且制备周期长、工艺繁琐等问题导致成本增加,在工业化应用方面需要进一步探索。

NOTES

*通讯作者。

参考文献

[1] Wang, L., Yang, S., Wang, S., Pan, Y. and Xing, Y. (2025) Microstructure and Mechanical Properties of 6H-SiC/6092Al Composites Prepared by Powder Metallurgical Method. Journal of Materials Research and Technology, 35, 6007-6025.
https://doi.org/10.1016/j.jmrt.2025.02.243
[2] Cai, Y., Liu, K., Dong, Y., Hua, A., Su, Y., Ouyang, Q., et al. (2025) Enhanced Intragranular Precipitation Strengthening in Sc-Microalloyed Ultrafine-Grained SiCp/Al-Cu-Mg Composites via Retrogression and Re-Ageing Heat Treatment. Materials & Design, 252, Article ID: 113789.
https://doi.org/10.1016/j.matdes.2025.113789
[3] Koli, D.K., Agnihotri, G. and Purohit, R. (2015) Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields. Materials Today: Proceedings, 2, 3032-3041.
https://doi.org/10.1016/j.matpr.2015.07.290
[4] Hua, Z., Xiang, Y., Wang, C., Jiang, P., Zhang, M., Hu, Y., et al. (2024) Investigation of Ti Alloying for Microstructural Evolution and Strengthening Mechanism: Avoiding Al4C3 Formation in SiCp/Al Composites via Laser Directed Energy Deposition. Journal of Alloys and Compounds, 970, Article ID: 172371.
https://doi.org/10.1016/j.jallcom.2023.172371
[5] 王晓虹 冯培忠, 强颖怀, 等. SiCp增强铝基复合材料的制备与应用的研究进展[J]. 轻合金加工技术, 2022, 13(12): 9-11.
[6] Singh, K.K., Singh, S. and Shrivastava, A.K. (2017) Comparison of Wear and Friction Behavior of Aluminum Matrix Alloy (Al7075) and Silicon Carbide Based Aluminum Metal Matrix Composite under Dry Condition at Different Sliding Distance. Materials Today: Proceedings, 4, 8960-8970.
https://doi.org/10.1016/j.matpr.2017.07.248
[7] Senthil, S., Raguraman, M. and Thamarai Manalan, D. (2021) Manufacturing Processes & Recent Applications of Aluminium Metal Matrix Composite Materials: A Review. Materials Today: Proceedings, 45, 5934-5938.
https://doi.org/10.1016/j.matpr.2020.08.792
[8] Huang, Z.Y., Xiao, B.L. and Ma, Z.Y. (2023) Correlation of Hot Deformation Behaviors and Microstructures of 17 Vol% SiCp/Al-Cu-Mg Composite Fabricated by Powder Metallurgy. Materials Today Communications, 34, Article ID: 105304.
https://doi.org/10.1016/j.mtcomm.2022.105304
[9] 薛鹏鹏, 邓坤坤, 聂凯波, 等. SiCp分布对SiCp/2024Al复合材料组织和性能及变形行为的影响[J]. 材料工程, 2024, 52(4): 164-175.
[10] 傅定发, 彭克成, 陈爽, 等. SiC颗粒增强6013铝基复合材料时效析出行为及力学性能[J]. 湖南大学学报(自然科学版), 2023, 50(6): 137-143.
[11] 肖治同, 王方明, 颜泽华, 等. SiC含量对SiCp/2009Al复合材料微观组织及力学性能的影响[J]. 金属热处理, 2024, 49(6): 190-197.
[12] Li, Z., Chen, L., Tang, J., Sun, W., Zhao, G. and Zhang, C. (2021) Improving Mechanical Anisotropy and Corrosion Resistance of Extruded AA7075 Alloy by Warm Cross Rolling and Annealing. Journal of Alloys and Compounds, 863, Article ID: 158725.
https://doi.org/10.1016/j.jallcom.2021.158725
[13] Nitheeshwaran, K., Padmanathan, T., Sakthi Vignesh, S.M., Shri Anantha Sayan, M. and Phanibhushana, M.V. (2021) Study of Microstructure and Mechanical Properties of Metal Matrix Composites Subjected to Severe Plastic Deformation—A Review. Materials Today: Proceedings, 46, 799-805.
https://doi.org/10.1016/j.matpr.2020.12.768
[14] Xu, W., Chen, X., Zhu, G. and Pan, F. (2024) Preparation of Mg-6Zn-1Y-0.5Zr Alloy Sheet with Excellent Mechanical Properties and Electromagnetic Interference Shielding Effectiveness by Extrusion plus Rolling. Materials Characterization, 207, Article ID: 113461.
https://doi.org/10.1016/j.matchar.2023.113461
[15] Cui, L., Shao, S., Wang, H., Zhang, G., Zhao, Z. and Zhao, C. (2022) Recent Advances in the Equal Channel Angular Pressing of Metallic Materials. Processes, 10, Article No. 2181.
https://doi.org/10.3390/pr10112181
[16] Li, G., Xu, S., Wan, T., Liu, H., Xie, L., Zhang, M., et al. (2023) Effect of Intermediate-Temperature Severe Plastic Deformation on Microstructure Evolution, Mechanical Properties and Corrosion Behavior of an Al-Zn-Mg-Cu Alloy. Materials Characterization, 205, Article ID: 113248.
https://doi.org/10.1016/j.matchar.2023.113248
[17] 马国楠, 王东, 刘振宇, 等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[18] Nie, J., Fan, J., Zhang, S., Wei, S., Zuo, T., Ma, Z., et al. (2014) Tensile and Fracture Properties of 15 Vol% SiCp/2009Al Composites Fabricated by Hot Isostatic Pressing and Hot Extrusion Processes. Acta Metallurgica Sinica (English Letters), 27, 875-884.
https://doi.org/10.1007/s40195-014-0127-2
[19] Wang, L., Qiu, F., Zou, Q., Yang, D., Tang, J., Gao, Y., et al. (2017) Microstructures and Tensile Properties of Nano-Sized SiCp/Al-Cu Composites Fabricated by Semisolid Stirring Assisted with Hot Extrusion. Materials Characterization, 131, 195-200.
https://doi.org/10.1016/j.matchar.2017.07.013
[20] Jin, P., Xiao, B., Wang, Q., Ma, Z., Liu, Y. and Li, S. (2011) Effect of Hot Extrusion on Interfacial Microstructure and Tensile Properties of SiCp/2009Al Composites Fabricated at Different Hot Pressing Temperatures. Journal of Materials Science & Technology, 27, 518-524.
https://doi.org/10.1016/s1005-0302(11)60101-1
[21] Wang, L., Yang, S., Wang, S. and Pan, Y. (2025) Microstructure and Textile Reinforcement Mechanism of Extruded 6H-SiC/6092Al Composites. Vacuum, 233, Article ID: 114025.
https://doi.org/10.1016/j.vacuum.2025.114025
[22] Ramesh, C.S., Keshavamurthy, R. and Naveen, G.J. (2011) Effect of Extrusion Ratio on Wear Behaviour of Hot Extruded Al6061-SiCp (Ni-P Coated) Composites. Wear, 271, 1868-1877.
https://doi.org/10.1016/j.wear.2010.12.078
[23] Hanada, K., Murakoshi, Y., Negishi, H. and Sano, T. (1997) Microstructures and Mechanical Properties of Al-Li/SiCp Composite Produced by Extrusion Processing. Journal of Materials Processing Technology, 63, 405-410.
https://doi.org/10.1016/s0924-0136(96)02655-6
[24] Guo, X., Guo, Q., Nie, J., Liu, Z., Li, Z., Fan, G., et al. (2018) Particle Size Effect on the Interfacial Properties of SiC Particle-Reinforced Al-Cu-Mg Composites. Materials Science and Engineering: A, 711, 643-649.
https://doi.org/10.1016/j.msea.2017.11.068
[25] Liu, H., He, Y., Cai, Z., Peng, C., Wang, R. and Feng, Y. (2024) A Study on Hot Deformation Behaviors and Microstructures of 10 Vol% SiCp/Al-Cu-Mg-Ag Composite Prepared by Spray Co-Deposition and Extrusion. Journal of Materials Research and Technology, 33, 5755-5768.
https://doi.org/10.1016/j.jmrt.2024.10.198
[26] Xiao, B.L., Fan, J.Z., Tian, X.F., Zhang, W.Y. and Shi, L.K. (2005) Hot Deformation and Processing Map of 15% SiCp/2009Al Composite. Journal of Materials Science, 40, 5757-5762.
https://doi.org/10.1007/s10853-005-1292-5
[27] Wąsik, A., Leszczyńska-Madej, B. and Noga, P. (2024) Hot Extrusion of SiCp/Al-Cu Composites: Optimizing Mechanical Properties through Microstructural Control. The International Journal of Advanced Manufacturing Technology, 134, 3611-3620.
https://doi.org/10.1007/s00170-024-14329-6
[28] Ramesh, C.S., Keshavamurthy, R., Koppad, P.G. and Kashyap, K.T. (2013) Role of Particle Stimulated Nucleation in Recrystallization of Hot Extruded Al6061/SiCp Composites. Transactions of Nonferrous Metals Society of China, 23, 53-58.
https://doi.org/10.1016/s1003-6326(13)62428-0
[29] Hao, S.M., Liu, P.R. and Xie, J.P. (2023) Microstructure Evolution and Dynamic Recrystallization Nucleation Mechanism of Medium Volume Fraction SiCp/Al Composite during Hot Deformation. Journal of Materials Research and Technology, 23, 919-930.
https://doi.org/10.1016/j.jmrt.2023.01.033
[30] He, Y., Huan, C., Su, Q., Zuo, L., Feng, W., Ding, Y., et al. (2023) Densification of SiCp/Al-Fe-V-Si Composites by the Wedge Rolling Method. Materials, 16, Article No. 4290.
https://doi.org/10.3390/ma16124290
[31] El-Sabbagh, A., Soliman, M., Taha, M. and Palkowski, H. (2012) Hot Rolling Behaviour of Stir-Cast Al6061 and Al6082 Alloys—SiC Fine Particulates Reinforced Composites. Journal of Materials Processing Technology, 212, 497-508.
https://doi.org/10.1016/j.jmatprotec.2011.10.016
[32] El-Sabbagh, A.M., Soliman, M., Taha, M.A. and Palkowski, H. (2013) Effect of Rolling and Heat Treatment on Tensile Behaviour of Wrought Al-SiCp Composites Prepared by Stir-Casting. Journal of Materials Processing Technology, 213, 1669-1681.
https://doi.org/10.1016/j.jmatprotec.2013.04.013
[33] Sreeram, D., Pugazhenthi, R., Anbuchezhiyan, G., Saravanan, R. and Veeranjaneyulu, K. (2022) An Investigation of the Effects of Hot Rolling on the Microstructure and Mechanical Behavior of Nano-Sized SiC Particulates Reinforced Al6063 Alloy Composites. Materials Today: Proceedings, 64, 731-736.
https://doi.org/10.1016/j.matpr.2022.05.197
[34] Li, X.P., Liu, C.Y., Ma, M.Z. and Liu, R.P. (2016) Microstructures and Mechanical Properties of Aa6061-SiC Composites Prepared through Spark Plasma Sintering and Hot Rolling. Materials Science and Engineering: A, 650, 139-144.
https://doi.org/10.1016/j.msea.2015.10.015
[35] Guo, Y., Li, W., Liu, X., Wang, K. and Zhang, C. (2024) Interfacial Microstructure and Synergistic Enhancement Mechanism of Symmetric Gradient SiCp-Reinforced Aluminum Matrix Sandwich Structure. Materials Science and Engineering: A, 918, Article ID: 147452.
https://doi.org/10.1016/j.msea.2024.147452
[36] Bhattacharyya, J.J. and Mitra, R. (2012) Effect of Hot Rolling Temperature and Thermal Cycling on Creep and Damage Behavior of Powder Metallurgy Processed Al-SiC Particulate Composite. Materials Science and Engineering: A, 557, 92-105.
https://doi.org/10.1016/j.msea.2012.06.073
[37] Luo, Y., Yi, J., Chen, M., Zhou, L., Zhang, Z., Huang, Z., et al. (2024) Effect of Hot Rolling on Microstructures and Mechanical Properties of SiCp/A356 Aluminum Matrix Composites. Journal of Materials Research and Technology, 33, 1776-1784.
https://doi.org/10.1016/j.jmrt.2024.09.201
[38] Wang, Z., Liang, Z., Huang, Q., Li, Z. and Niu, X. (2024) Effects of Hot-Rolling Processes on the Fracture Behaviors and Mechanical Properties of 2009Al/SiCp Metal Matrix Composites. Materiali in Tehnologije, 58, 497-502.
https://doi.org/10.17222/mit.2024.1101
[39] Li, W., Guo, Y., Liu, X., Rusinov, P., Sugio, K., Suzuki, A.S., et al. (2024) Microstructure and Mechanical Properties of SiCp/CF/Al Hybrid Composites with Heterostructure Constructed by Macroscopic “Core-Shell” Structure. Materials Science and Engineering: A, 896, Article ID: 146201.
https://doi.org/10.1016/j.msea.2024.146201
[40] Wu, K., Deng, K., Nie, K., Wu, Y., Wang, X., Hu, X., et al. (2010) Microstructure and Mechanical Properties of SiCp/AZ91 Composite Deformed through a Combination of Forging and Extrusion Process. Materials & Design, 31, 3929-3932.
https://doi.org/10.1016/j.matdes.2010.03.021
[41] Yang, Z., Li, Z. and Zhang, L. (2024) Effect of SiC Particle Content on the Mechanical Behavior and Deformation Mechanism of SiCp/Al Composite under High-Frequency Dynamic Loading. Materials Science and Engineering: A, 903, Article ID: 146643.
https://doi.org/10.1016/j.msea.2024.146643
[42] Purohit, R., Qureshi, M. and Patil, S. (2018) An Overview on the Forging Behaviour of Aluminum Matrix Nano Composites. Materials Today: Proceedings, 5, 20124-20129.
https://doi.org/10.1016/j.matpr.2018.06.380
[43] Babu, P.K.A., Saraf, M.R., Vora, K.C., Chaurasiya, S.M. and Kuppan, P. (2015) Influence of Forging Parameters on the Mechanical Behavior and Hot Forgeability of Aluminium Alloy. Materials Today: Proceedings, 2, 3238-3244.
https://doi.org/10.1016/j.matpr.2015.07.132
[44] Tian, C., Chen, L., Chen, Y., Li, Z., Qian, L. and Zhao, G. (2023) Effects of Multi-Directional Forging on the Microstructure and Mechanical Properties of TiB2 Particulate Reinforced 6061Al Composite. Journal of Materials Research and Technology, 27, 1945-1957.
https://doi.org/10.1016/j.jmrt.2023.10.069
[45] Hanamantraygouda, M.B., Shivakumar, B.P., Siddappa, P.N., Sampathkumar, L. and Prashanth, L. (2018) Effect of Cold Forging on Microstructure and Mechanical Properties of Al/SiC Composites. IOP Conference Series: Materials Science and Engineering, 310, Article ID: 012072.
https://doi.org/10.1088/1757-899x/310/1/012072
[46] Özdemir, İ., Cöcen, Ü. and Önel, K. (2000) The Effect of Forging on the Properties of Particulate-Sic-Reinforced Aluminium-Alloy Composites. Composites Science and Technology, 60, 411-419.
https://doi.org/10.1016/s0266-3538(99)00140-2
[47] Thimmarayan, R. and Thanigaiyarasu, G. (2009) Effect of Particle Size, Forging and Ageing on the Mechanical Fatigue Characteristics of Al6082/SiCp Metal Matrix Composites. The International Journal of Advanced Manufacturing Technology, 48, 625-632.
https://doi.org/10.1007/s00170-009-2316-0
[48] Quang, P., Jeong, Y.G., Yoon, S.C., Hong, S.H. and Kim, H.S. (2007) Consolidation of 1vol.% Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing. Journal of Materials Processing Technology, 187, 318-320.
https://doi.org/10.1016/j.jmatprotec.2006.11.116
[49] Alizadeh, M., Paydar, M.H., Terada, D. and Tsuji, N. (2012) Effect of SiC Particles on the Microstructure Evolution and Mechanical Properties of Aluminum during ARB Process. Materials Science and Engineering: A, 540, 13-23.
https://doi.org/10.1016/j.msea.2011.12.026
[50] Basem, A., Jasim, D.J., Bansal, P., Qasim, M.T. and Brisset, B.J. (2024) Creep Properties of Bimetal Al/SiC/Cu Composites Fabricated via Accumulative Roll Bonding Process. Journal of Central South University, 31, 3807-3818.
https://doi.org/10.1007/s11771-024-5799-9
[51] Reihanian, M., Fayezipour, S. and Lari Baghal, S.M. (2017) Nanostructured Al/SiC-Graphite Composites Produced by Accumulative Roll Bonding: Role of Graphite on Microstructure, Wear and Tensile Behavior. Journal of Materials Engineering and Performance, 26, 1908-1919.
https://doi.org/10.1007/s11665-017-2608-8
[52] Xu, Q., Ma, A., Wang, J., Sun, J., Jiang, J., Li, Y., et al. (2018) Development of High-Performance SiCp/Al-Si Composites by Equal Channel Angular Pressing. Metals, 8, Article No. 738.
https://doi.org/10.3390/met8100738
[53] Sreearravind, M.R.B. and Ramesh Kumar, S. (2025) Low Cycle Fatigue Behaviour of Aluminium 6063 Alloy Processed by Equal Channel Angular Pressing at 90˚ and 120˚ Channel Angles. Materials Today Communications, 42, Article ID: 111401.
https://doi.org/10.1016/j.mtcomm.2024.111401
[54] Qian, C., Li, P. and Xue, K. (2015) Interface, Lattice Strain and Dislocation Density of SiCp/Al Composite Consolidated by Equal Channel Angular Pressing and Torsion. Transactions of Nonferrous Metals Society of China, 25, 1744-1751.
https://doi.org/10.1016/s1003-6326(15)63779-7
[55] Li, P., Zhang, X., Xue, K. and Li, X. (2012) Effect of Equal Channel Angular Pressing and Torsion on SiC-Particle Distribution of SiCp-Al Composites. Transactions of Nonferrous Metals Society of China, 22, s402-s407.
https://doi.org/10.1016/s1003-6326(12)61738-5
[56] Khoubrou, I., Nami, B., Miresmaeili, S.M. and Yazdani, M. (2024) Evolution of Microstructure, Texture and Mechanical Properties of ECAP-Processed ZK60 Magnesium Alloy. Metals and Materials International, 31, 227-236.
https://doi.org/10.1007/s12540-024-01730-9
[57] Gao, M., Etim, I.P., Yang, K., Tan, L. and Ma, Z. (2022) Enhancing Mechanical Property and Corrosion Resistance of Mg-Zn-Nd Alloy Wire by a Combination of SPD Techniques, Extrusion and Hot Drawing. Materials Science and Engineering: A, 829, Article ID: 142058.
https://doi.org/10.1016/j.msea.2021.142058
[58] Jiang, J., Jiang, F., Zhang, M. and Yi, K. (2023) Microstructure Evolution and Tensile Property of Deformed Al-Mg-Sc Alloy: Comparison of ECAP and FSP. Journal of Materials Research and Technology, 22, 2612-2626.
https://doi.org/10.1016/j.jmrt.2022.12.109
[59] Xue, K., Tian, Z., Xie, R. and Li, P. (2023) Effect of High Pressure Torsion on Interfaces and Mechanical Properties of SiC/Al Composite. Vacuum, 218, Article ID: 112647.
https://doi.org/10.1016/j.vacuum.2023.112647
[60] Huang, G., Wu, J., Hou, W., Ahmad Shah, L.H., Midawi, A.R.H., Cao, F., et al. (2021) A Novel Two-Step Method to Prepare Fine-Grained SiC/Al-Mg-Sc-Zr Nanocomposite: Processing, Microstructure and Mechanical Properties. Materials Science and Engineering: A, 823, Article ID: 141764.
https://doi.org/10.1016/j.msea.2021.141764