肥胖与乳腺癌风险关联及发生机制的研究进展
Research Progress on the Association between Obesity and Breast Cancer Risk and Its Mechanism
DOI: 10.12677/jcpm.2025.44438, PDF, HTML, XML,   
作者: 李一航*, 吴耀禄#:延安大学附属医院腺体血管外科,陕西 延安
关键词: 乳腺癌肥胖流行病学机制Breast Cancer Obesity Epidemiology Mechanism
摘要: 乳腺癌作为全球第二高发的癌症具有高度异质性。肥胖被认为是多种癌症的危险因素同样与乳腺癌之间存在复杂关联,这种关联因人种、绝经状态和肿瘤分子分型等因素表现出显著差异。此前,大量研究证实肥胖促进乳腺癌的发生是通过多种途径实现的。本综述旨在系统阐述肥胖与乳腺癌关系的流行病学特征、潜在生物学机制为乳腺癌的精准预防提供理论依据。
Abstract: Breast cancer, as the second most common cancer in the world, is highly heterogeneous. Obesity is considered as a risk factor for many cancers. There is also a complex association between obesity and breast cancer. This association shows significant differences due to race, menopausal status, tumor molecular typing and other factors. A large number of studies have previously confirmed that obesity promotes the occurrence and development of breast cancer through a variety of ways. This review aims to systematically elaborate the epidemiological characteristics and potential biological mechanisms of the relationship between obesity and breast cancer, and provide a theoretical basis for the precise prevention of breast cancer.
文章引用:李一航, 吴耀禄. 肥胖与乳腺癌风险关联及发生机制的研究进展[J]. 临床个性化医学, 2025, 4(4): 218-225. https://doi.org/10.12677/jcpm.2025.44438

1. 肥胖与乳腺癌流行病学背景

2022年全球恶性肿瘤统计报告显示女性乳腺癌位于所有癌症发病率第二位,同样是中国女性第二高发病率的癌症类型,与此同时,肥胖在全球范围内已达到流行病的程度,39%的成年人被归类为超重,其中超过6亿人在2020年已达到临床肥胖症程度。在中国,超重与肥胖的患病率超过50%,这对中国的公共卫生系统是一个巨大的挑战[1]

此外,肥胖与患多种癌症的风险增加有关,并可降低患者生活质量、促进癌症进展和复发[2]。长期以来,研究提示肥胖与乳腺癌之间存在复杂关联,并且可能受多重因素影响。肥胖增加与乳腺癌预后恶化之间的联系有几种可能的解释,包括荷尔蒙、炎症和免疫系统影响[3]。本综述旨在通过不同角度阐述肥胖与乳腺癌发生的风险差异肥胖对乳腺癌的促癌机制,以期实现乳腺癌的精准预防与早期诊断。

2. 肥胖与乳腺癌风险的关联特征

2.1. 绝经前后女性的风险差异

绝经前后女性肥胖与患乳腺癌风险表现出明显的差异性,这一现象成为当前研究的重点领域。

在绝经前女性中,一项研究体重指数和年龄与绝经前妇女随后患乳腺癌风险的相关性大型前瞻性研究[4]在分析了75,859名绝经前女性乳腺癌患者(中位年龄40.6岁;四分位距35.2~45.5岁)后发现BMI与乳腺癌风险呈负线性关联并且乳腺癌风险呈年龄依赖性降低,其中BMI每增加5个单位:18~24岁女性风险降低23%;25~34岁女性降低15%;35~44岁女性降低13%;45~54岁女性降低12%。与此同时,一项对20个数据集(包括>250万女性和7930例绝经前乳腺癌)的大型荟萃分析[5]表明,BMI每增加5个单位,患绝经前乳腺癌的风险降低约8% (RR, 0.92; 95%CI, 0.88~0.97 [P < 0.01])。该荟萃分析纳入的研究类型为前瞻性队列研究,提供了比病例对照研究更强的证据等级。

在绝经后女性中,肥胖与乳腺癌风险呈现显著的正相关关系,一项研究体重指数与22种特定癌症风险的针对5.24万英国成年人的队列研究[6]发现每5 kg/m2 BMI的增加与绝经后女性患乳腺癌的风险呈正相关关系(HR, 1.05; 99% CI, 1.03~1.0.7)。同样,对34项研究[5] (包括>250万名女性,包括23,909例绝经后乳腺癌)的荟萃分析表明,绝经后乳腺癌风险与每5 kg/m2 BMI的增加呈正相关(RR, 1.12; 95%CI, 1.08~1.16 [P < 0.01])。除了BMI以外,同样有证据表明腰围与绝经后乳腺癌存在风险关联[7],这提示我们对于绝经后女性不能仅仅只通过BMI来评估其患乳腺癌的风险。

2.2. 种族与地域差异

值得注意的是,肥胖与乳腺癌风险的关联存在明显的种族和地域差异。西方国家的广泛研究表明,绝经后和绝经前妇女的BMI与乳腺癌分别呈正相关和负相关。一项包含中国华北与东北1439例乳腺癌病例的病例对照研究结果显示:体重指数和腰臀比与总体乳腺癌风险呈正相关,与绝经状态无关[8]。这一现象与西方研究结果相反。研究者认为这可能与两种因素有关:亚洲女性普遍较瘦,脂肪量的微小变化可能产生更大影响;亚洲肥胖女性以向心性肥胖为主,而西方女性更常见的肥胖类型为外周型肥胖。同样,一项剂量反应荟萃分析也支持亚洲人群BMI与绝经前乳腺癌风险之间存在显著的正相关[9]。然而,另一项基于前瞻性观察研究的系统评价[5]显示,亚太地区人群中BMI与绝经前(风险比[RR] = 1.16, 95%CI: 1.01~1.32)和绝经后乳腺癌患病风险(RR = 1.31, 95%CI: 1.15~1.48)均呈正相关。

这些关于体型指标对乳腺癌风险影响的明显差异可能部分是由于种族、地区和研究设计的差异,但也可能反映了乳腺癌作为一种具有复杂异质性疾病的性质。流行病学研究还表明,体脂与乳腺癌风险之间的关联还可能因ER/PR状态而异[10]

2.3. 分子亚型特异性

乳腺癌的分子亚型在肥胖相关风险中也表现出重要差异,在许多前瞻性队列研究和病例对照研究中[11] [12],肥胖与绝经后ER/PR阳性乳腺癌风险的相关性最强,此外,挪威的一项全国性前瞻性研究[13]中指出:体脂与绝经后ER/PR阳性乳腺癌呈正相关,具体表现为超重的持续时间增加ER/PR阳性乳腺癌患病风险(每10年超重持续时间HR 1.09;95%CI 1.04~1.13)。然而一项包括35项观察性研究,共涉及41,049名绝经前乳腺癌患者的荟萃分析[14]的研究结果表明超重(OR = 0.74; 95%CI = 0.56~0.97; P = 0.032) 和肥胖(OR = 0.70; 95%CI = 0.50~0.98; P = 0.037)都可以降低ER/PR阳性乳腺癌的风险。

关于体重状况如何影响HER2+乳腺癌风险有研究表明,过多的脂肪堆积往往会增加HER2蛋白水平,并通过胰岛素受体和IGF-1受体轴等机制以及瘦素相关途径和脂质代谢导致HER2+乳腺癌的不良预后[15] [16]。一项前瞻性队列研究[11]表明肥胖与绝经后HER2+乳腺癌风险存在较强相关性,并且Suleyman等人的研究表明BMI和HER2+乳腺癌之间有一定关联[17],然而前文中的一项荟萃分析研究[14]提供了证据表明体重过轻是绝经前HER2+乳腺癌的危险因素(OR = 1.44; 95%CI = 1.28~1.63; P < 0.0001)。但也有研究表明,超重或肥胖与绝经前HER2+乳腺癌之间没有相关性[18]。这表明仍需要质量更高更可靠的研究来探索肥胖与HER2+乳腺癌(特别是不同绝经状态下)的风险效应。

三阴性乳腺癌缺乏ER、PR和人表皮生长因子受体2 (HER2)的表达,并且具有非常强的侵袭性。一项涉及3432例乳腺癌的病例对照研究报告[19]称BMI与绝经前三阴性乳腺癌风险之间存在很强的正相关。除了BMI以外,另有研究表明[20]腰围和腰臀比较大同样与绝经前三阴性乳腺癌风险升高相关。有趣的是,1项1883例三阴性乳腺癌大型荟萃[21]分析指出肥胖与绝经后三阴性乳腺癌风险之间不存在相关性,仅与绝经前三阴性乳腺癌患病风险相关。这表明三阴性乳腺癌在女性生命周期的发生和发展可能涉及不同的分子机制,未来需要进一步研究和探索。

3. 肥胖对乳腺癌影响的生物学机制

在肥胖中,许多因素,包括缺氧、胰岛素、雌激素、慢性炎症反应和脂肪因子来影响细胞的代谢,这会促进肿瘤的发生及进展。

3.1. 缺氧促进乳腺癌发生机制

脂肪细胞肥大导致局部血流阻力增大及微血管密度相对降低,导致局部促织缺氧,创造出利于肿瘤细胞生长的微环境,同时缺氧抑制细胞毒性T细胞和自然杀伤(NK)细胞的活性,以及促进免疫抑制细胞(如调节性T细胞和髓源性抑制细胞(MDSC))的募集和激活造成免疫抑制微环境使癌细胞能够逃避免疫监视,促进癌症发生[22]。在携带乳腺癌基因的C57BL/6小鼠模型中,饲喂高脂饮食的小鼠比标准饮食的小鼠的肿瘤血管更少,使用哌莫硝唑测定缺氧量以及通过评估HIF1α免疫反应性和HIF1α靶基因的表达证实肿瘤缺氧程度更高[23]。这些观察结果类似于人体研究的结果,表明肥胖女性的乳腺肿瘤似乎比瘦女性的肿瘤更缺氧[24]。以上结果解释了在肥胖乳腺癌患者的高转移率及TNBC高发生率。

3.2. 胰岛素促进乳腺癌发生机制

肥胖人群往往合并高胰岛素血症。胰岛素通过激活受体酪氨酸激酶来激发信号级联反应,其中许多激酶在PI3K和AKT的激活上汇聚。反过来,PI3K-AKT信号转导的激活导致葡萄糖摄取、有氧糖酵解、蛋白质合成、核苷酸生物合成和对氧化应激的反应的刺激[25]。在癌细胞中,GLUT1是输入葡萄糖的主要葡萄糖转运蛋白[26],并且至少部分地通过硫氧还蛋白相互作用蛋白(TXNIP)的AKT依赖性下调来维持GLUT1的定位。高胰岛素血症和高血糖对癌细胞具有显着的促进生长作用并且还可以刺激脂质积累[27]。在HepG2肝细胞癌细胞中,胰岛素通过对丙酮酸激酶M2 (PKM2)的HIF1α依赖性作用刺激细胞代谢[28]。值得注意的是,由于诱导其亚基解离的活性氧水平增加,这些细胞中的PKM2活性实际上降低了。因此,胰岛素的净效应是增加需氧糖酵解和糖酵解中间体的积累,这是癌症生长的重要支持者(尽管到目前为止,这种机制尚未在乳腺癌细胞中得到证实)。在肥胖症患者中,MAPK和AKT信号的下调使肠道衍生肽激素生长素释放肽(刺激食欲)和非酰化生长素释放肽(已被证实可抑制乳腺癌细胞增殖)的水平降低[29]这些发现支持了这样一个假设,即在健康体重的个体中可能存在某种因子通过抑制促进癌细胞生长的代谢途径来降低癌症风险。

3.3. 雌激素促进乳腺癌发生机制

肥胖诱导的局部雌激素分泌升高可能会驱动乳腺上皮细胞中的DNA损伤,从而导致肿瘤发生的风险增加。雌激素促进乳腺上皮发育是通过刺激上皮细胞增殖和导管形态改变来实现的,然而,高雌激素水平(如在肥胖人群中)的促增殖作用可能导致突变致使乳腺癌的发生。促增殖作用需要更高的能量以及线粒体活性,而这个过程则可能会产生更多的活性氧(ROS)升高,这是细胞呼吸的副产物。Felty等人发现,雌二醇可以直接刺激几种乳腺癌细胞系中线粒体产生细胞内ROS [30]。此外,雌激素可以代谢为儿茶酚雌激素(如2-羟基雌二醇、4-羟基雌二醇),然后通过产生ROS的氧化还原循环过程进一步氧化为对应的雌激素醌(如雌二醇-2,3-醌、雌二醇-3,4-醌),雌激素醌可以直接与DNA相互作用形成复合物,这是 DNA损伤的一种形式[31]。有研究表明,用雌激素代谢物处理正常的乳腺上皮细胞(MCF-10A)会诱导细胞内ROS升高,从而导致氧化性DNA损伤[32]

3.4. 慢性炎症促进乳腺癌发生机制

在肥胖发生过程中,慢性炎症、缺氧、高胰岛素血症这三者存在密切联系,高胰岛素血症会诱发脂肪细胞肥大。脂肪细胞池最终长大,超出其血液供应,产生缺氧条件,导致细胞死亡[33]。在肥胖中,巨噬细胞被脂肪组织代谢激活,这些巨噬细胞的主要功能是通过吞噬作用或溶酶体激活清除坏死的脂肪细胞[34]。死亡脂肪细胞分泌促炎介质(如TNF-α、IL-6、IL-1b、MCP-1、MIF和一氧化氮)和细胞内容物(如游离脂肪酸、细胞因子和损伤相关分子)。破裂的脂肪细胞中释放的游离脂肪酸可通过TLR4受体启动细胞内NF-κB介导的信号通路,导致干扰素γ激活先天免疫细胞[35]。代谢激活的巨噬细胞的募集和增殖在坏死或焦亡肥大脂肪细胞周围,形成所谓的冠状结构(CLS) [36],这些CLS相关巨噬细胞产生细胞因子谱,使免疫微环境极化为促炎状态,这进一步导致脂肪基因表达紊乱和全身胰岛素抵抗的恶性循环[37],继而导致区域持续维持在慢性炎症状态。而大量研究已证实慢性炎症与肿瘤的发生存在密切联系[38]

3.5. 脂肪因子促进乳腺癌发生机制

与乳腺癌相关的脂肪因子研究的是脂联素和瘦素,它们对亚临床炎症产生相反的作用。脂联素是一种通常具有抗炎作用的脂肪因子,通过增强胰岛素敏感性在葡萄糖和脂质代谢中发挥关键作用[39] [40]。它还下调促炎介质的表达和释放,并调节在乳腺肿瘤发生中至关重要的关键免疫应答,包括抑制异常细胞生长和抑制细胞侵袭[41]。脂联素水平与肥胖和高胰岛素血症呈负相关,体脂量的减少伴随着脂联素水平的升高[42]。一项流行病学研究报告脂联素水平与绝经后BC风险之间存在显著的负相关[43]。此外,一项包含31项研究的荟萃分析得出结论,无论年龄大小,低脂联素水平可能与较高的BC风险有关[44]

瘦素是一种多效性脂肪因子,可上调促炎细胞因子,包括肿瘤坏死因子-α和白介素-6 (IL-6) [45]。除此之外,瘦素还可以调节能量稳态和脂肪组织生长并导致与肥胖相关的慢性低度炎症[46] [47]。肥胖女性的血浆瘦素水平异常升高并且与胰岛素抵抗呈正相关[48]。在一些流行病学研究中,高水平的瘦素与更具侵袭性的乳腺癌相关,其中有人建议将其用作潜在的预后生物标志物[49] [50]。瘦素在乳腺癌中的促癌作用归因于其促有丝分裂刺激作用[51]和细胞凋亡下调[52]。此外,瘦素通过参与刺激IL-8和IL-18的产生,进一步介导BC细胞与周围微环境之间的相互作用,从而支持肿瘤细胞存活和增殖[53]

4. 结论与展望

多数研究表明BMI与绝经前患乳腺癌风险呈负相关,与绝经后患乳腺癌呈正相关,然而有研究指出亚洲人群(尤其绝经前女性)的BMI与乳腺癌发生风险的正相关,与西方研究结果相反,目前认为造成此类人种差异性可能与亚洲人群内脏脂肪易堆积及代谢易感性相关,同样可能有研究设计的影响。然而,仅通过BMI这一单一指标来评判乳腺癌的患病风险显然有明显的局限性,因此可建立整合多种肥胖检测指标(如腰臀比、躯干脂肪含量、内脏脂肪含量)、分子分型和代谢标志物(如脂联素/瘦素比值)的风险预测工具,尤其针对亚洲人群开发独立算法实现精准风险分层。

乳腺癌不同亚型风险同样具有特异性。大多数研究表明肥胖会增加绝经后ER/PR阳性乳腺癌风险,但降低绝经前风险。对于三阴性乳腺癌现有研究支持肥胖仅显著增加绝经前风险,提示其发生机制具有年龄依赖性。而肥胖与HER2+乳腺癌的风险关联现有证据尚存矛盾,需结合绝经状态细化研究。

目前已有大量通过代谢途径(如缺氧、高胰岛素血脂、慢性炎症等)来证实肥胖与乳腺癌风险存在风险关联,但需要进一步研究将代谢功能障碍和慢性炎症的血清标志物与反应乳腺组织中发生的变化的指标(如乳腺密度)实时关联起来,以便建立风险预测模型来个性化预测乳腺癌风险。总而言之,肥胖与乳腺癌的关联是动态多维度的网络,未来通过多组学技术(空间转录组 + 代谢组)揭示基因–环境相互作用对乳腺癌患病风险影响、整合多种分子机制、开发分型精准干预策略,是降低肥胖相关乳腺癌负担的关键路径。未来需开展跨学科合作研究,推动基础发现向临床预防转化。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Wang, Y., Zhao, L., Gao, L., Pan, A. and Xue, H. (2021) Health Policy and Public Health Implications of Obesity in China. The Lancet Diabetes & Endocrinology, 9, 446-461.
https://doi.org/10.1016/s2213-8587(21)00118-2
[2] Schmitz, K.H., Neuhouser, M.L., Agurs-Collins, T., Zanetti, K.A., Cadmus-Bertram, L., Dean, L.T., et al. (2013) Impact of Obesity on Cancer Survivorship and the Potential Relevance of Race and Ethnicity. JNCI Journal of the National Cancer Institute, 105, 1344-1354.
https://doi.org/10.1093/jnci/djt223
[3] Brown, K.A. and Simpson, E.R. (2010) Obesity and Breast Cancer: Progress to Understanding the Relationship. Cancer Research, 70, 4-7.
https://doi.org/10.1158/0008-5472.can-09-2257
[4] Schoemaker, M.J., Nichols, H.B., Wright, L.B., Brook, M.N., Jones, M.E., O’Brien, K.M., et al. (2018) Association of Body Mass Index and Age with Subsequent Breast Cancer Risk in Premenopausal Women. JAMA Oncology, 4, e181771.
https://doi.org/10.1001/jamaoncol.2018.1771
[5] Renehan, A.G., Tyson, M., Egger, M., Heller, R.F. and Zwahlen, M. (2008) Body-Mass Index and Incidence of Cancer: A Systematic Review and Meta-Analysis of Prospective Observational Studies. The Lancet, 371, 569-578.
https://doi.org/10.1016/s0140-6736(08)60269-x
[6] Bhaskaran, K., Douglas, I., Forbes, H., dos-Santos-Silva, I., Leon, D.A. and Smeeth, L. (2014) Body-Mass Index and Risk of 22 Specific Cancers: A Population-Based Cohort Study of 5·24 Million UK Adults. The Lancet, 384, 755-765.
https://doi.org/10.1016/s0140-6736(14)60892-8
[7] Gaudet, M.M., Carter, B.D., Patel, A.V., Teras, L.R., Jacobs, E.J. and Gapstur, S.M. (2014) Waist Circumference, Body Mass Index, and Postmenopausal Breast Cancer Incidence in the Cancer Prevention Study-II Nutrition Cohort. Cancer Causes & Control, 25, 737-745.
https://doi.org/10.1007/s10552-014-0376-4
[8] Wang, F., Liu, L., Cui, S., Tian, F., Fan, Z., Geng, C., et al. (2017) Distinct Effects of Body Mass Index and Waist/hip Ratio on Risk of Breast Cancer by Joint Estrogen and Progestogen Receptor Status: Results from a Case-Control Study in Northern and Eastern China and Implications for Chemoprevention. The Oncologist, 22, 1431-1443.
https://doi.org/10.1634/theoncologist.2017-0148
[9] Amadou, A., Ferrari, P., Muwonge, R., Moskal, A., Biessy, C., Romieu, I., et al. (2013) Overweight, Obesity and Risk of Premenopausal Breast Cancer According to Ethnicity: A Systematic Review and Dose‐Response Meta‐Analysis. Obesity Reviews, 14, 665-678.
https://doi.org/10.1111/obr.12028
[10] Yang, X.R., Chang-Claude, J., Goode, E.L., Couch, F.J., Nevanlinna, H., Milne, R.L., et al. (2010) Associations of Breast Cancer Risk Factors with Tumor Subtypes: A Pooled Analysis from the Breast Cancer Association Consortium Studies. JNCI: Journal of the National Cancer Institute, 103, 250-263.
https://doi.org/10.1093/jnci/djq526
[11] Neuhouser, M.L., Aragaki, A.K., Prentice, R.L., Manson, J.E., Chlebowski, R., Carty, C.L., et al. (2015) Overweight, Obesity, and Postmenopausal Invasive Breast Cancer Risk: A Secondary Analysis of the Women’s Health Initiative Randomized Clinical Trials. JAMA Oncology, 1, 611-621.
https://doi.org/10.1001/jamaoncol.2015.1546
[12] White, A.J., Nichols, H.B., Bradshaw, P.T. and Sandler, D.P. (2015) Overall and Central Adiposity and Breast Cancer Risk in the Sister Study. Cancer, 121, 3700-3708.
https://doi.org/10.1002/cncr.29552
[13] Busund, M., Ursin, G., Lund, E., Wilsgaard, T. and Rylander, C. (2023) Trajectories of Body Mass Index in Adulthood and Risk of Subtypes of Postmenopausal Breast Cancer. Breast Cancer Research, 25, Article No. 130.
https://doi.org/10.1186/s13058-023-01729-x
[14] Li, X., Li, J., Hu, Q., Zhang, X. and Chen, F. (2023) Association of Physical Weight Statuses Defined by Body Mass Index (BMI) with Molecular Subtypes of Premenopausal Breast Cancer: A Systematic Review and Meta-Analysis. Breast Cancer Research and Treatment, 203, 429-447.
https://doi.org/10.1007/s10549-023-07139-z
[15] Heer, E., Harper, A., Escandor, N., Sung, H., McCormack, V. and Fidler-Benaoudia, M.M. (2020) Global Burden and Trends in Premenopausal and Postmenopausal Breast Cancer: A Population-Based Study. The Lancet Global Health, 8, e1027-e1037.
https://doi.org/10.1016/s2214-109x(20)30215-1
[16] Pang, Y., Wei, Y. and Kartsonaki, C. (2022) Associations of Adiposity and Weight Change with Recurrence and Survival in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Breast Cancer, 29, 575-588.
https://doi.org/10.1007/s12282-022-01355-z
[17] Sahin, S., Erdem, G.U., Karatas, F., Aytekin, A., Sever, A.R., Ozisik, Y., et al. (2017) The Association between Body Mass Index and Immunohistochemical Subtypes in Breast Cancer. The Breast, 32, 227-236.
https://doi.org/10.1016/j.breast.2016.09.019
[18] Li, H., Sun, X., Miller, E., Wang, Q., Tao, P., Liu, L., et al. (2017) BMI, Reproductive Factors, and Breast Cancer Molecular Subtypes: A Case-Control Study and Meta-analysis. Journal of Epidemiology, 27, 143-151.
https://doi.org/10.1016/j.je.2016.05.002
[19] Gaudet, M.M., Press, M.F., Haile, R.W., Lynch, C.F., Glaser, S.L., Schildkraut, J., et al. (2011) Risk Factors by Molecular Subtypes of Breast Cancer across a Population-Based Study of Women 56 Years or Younger. Breast Cancer Research and Treatment, 130, 587-597.
https://doi.org/10.1007/s10549-011-1616-x
[20] Nagrani, R., Mhatre, S., Rajaraman, P., Soerjomataram, I., Boffetta, P., Gupta, S., et al. (2016) Central Obesity Increases Risk of Breast Cancer Irrespective of Menopausal and Hormonal Receptor Status in Women of South Asian Ethnicity. European Journal of Cancer, 66, 153-161.
https://doi.org/10.1016/j.ejca.2016.07.022
[21] Pierobon, M. and Frankenfeld, C.L. (2012) Obesity as a Risk Factor for Triple-Negative Breast Cancers: A Systematic Review and Meta-Analysis. Breast Cancer Research and Treatment, 137, 307-314.
https://doi.org/10.1007/s10549-012-2339-3
[22] Obeagu, E.I. (2025) Oxygen Deprivation in Breast Cancer: Mechanisms, Pathways, and Implications. Annals of Medicine & Surgery, 87, 3635-3659.
https://doi.org/10.1097/ms9.0000000000003334
[23] Bousquenaud, M., Fico, F., Solinas, G., Rüegg, C. and Santamaria-Martínez, A. (2018) Obesity Promotes the Expansion of Metastasis-Initiating Cells in Breast Cancer. Breast Cancer Research, 20, Article No. 104.
https://doi.org/10.1186/s13058-018-1029-4
[24] Lai, Q., Wang, T., Guo, Q., Zhang, Y., Wang, Y., Yuan, L., et al. (2014) Positive Correlation between the Expression of Heag1 and HIF-1α in Breast Cancers: An Observational Study. BMJ Open, 4, e005049.
https://doi.org/10.1136/bmjopen-2014-005049
[25] Barthel, A., Okino, S.T., Liao, J., Nakatani, K., Li, J., Whitlock, J.P., et al. (1999) Regulation of GLUT1 Gene Transcription by the Serine/Threonine Kinase Akt1. Journal of Biological Chemistry, 274, 20281-20286.
https://doi.org/10.1074/jbc.274.29.20281
[26] Adekola, K., Rosen, S.T. and Shanmugam, M. (2012) Glucose Transporters in Cancer Metabolism. Current Opinion in Oncology, 24, 650-654.
https://doi.org/10.1097/cco.0b013e328356da72
[27] Volinsky, N., McCarthy, C.J., von Kriegsheim, A., Saban, N., Okada-Hatakeyama, M., Kolch, W., et al. (2015) Signalling Mechanisms Regulating Phenotypic Changes in Breast Cancer Cells. Bioscience Reports, 35, e00178.
https://doi.org/10.1042/bsr20140172
[28] Iqbal, M.A., Siddiqui, F.A., Gupta, V., Chattopadhyay, S., Gopinath, P., Kumar, B., et al. (2013) Insulin Enhances Metabolic Capacities of Cancer Cells by Dual Regulation of Glycolytic Enzyme Pyruvate Kinase M2. Molecular Cancer, 12, Article No. 72.
https://doi.org/10.1186/1476-4598-12-72
[29] Au, C.C., Furness, J.B., Britt, K., Oshchepkova, S., Ladumor, H., Soo, K.Y., et al. (2020) Three-Dimensional Growth of Breast Cancer Cells Potentiates the Anti-Tumor Effects of Unacylated Ghrelin and AZP-531. eLife, 9, e56913.
https://doi.org/10.7554/elife.56913
[30] Felty, Q., Xiong, W., Sun, D., Sarkar, S., Singh, K.P., Parkash, J., et al. (2005) Estrogen-Induced Mitochondrial Reactive Oxygen Species as Signal-Transducing Messengers. Biochemistry, 44, 6900-6909.
https://doi.org/10.1021/bi047629p
[31] Fussell, K.C., Udasin, R.G., Smith, P.J.S., Gallo, M.A. and Laskin, J.D. (2011) Catechol Metabolites of Endogenous Estrogens Induce Redox Cycling and Generate Reactive Oxygen Species in Breast Epithelial Cells. Carcinogenesis, 32, 1285-1293.
https://doi.org/10.1093/carcin/bgr109
[32] Singh, B. and Bhat, H.K. (2012) Superoxide Dismutase 3 Is Induced by Antioxidants, Inhibits Oxidative DNA Damage and Is Associated with Inhibition of Estrogen-Induced Breast Cancer. Carcinogenesis, 33, 2601-2610.
https://doi.org/10.1093/carcin/bgs300
[33] Corvera, S. and Gealekman, O. (2014) Adipose Tissue Angiogenesis: Impact on Obesity and Type-2 Diabetes. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1842, 463-472.
https://doi.org/10.1016/j.bbadis.2013.06.003
[34] Xu, X., Grijalva, A., Skowronski, A., van Eijk, M., Serlie, M.J. and Ferrante, A.W. (2013) Obesity Activates a Program of Lysosomal-Dependent Lipid Metabolism in Adipose Tissue Macrophages Independently of Classic Activation. Cell Metabolism, 18, 816-830.
https://doi.org/10.1016/j.cmet.2013.11.001
[35] Shi, H., Kokoeva, M.V., Inouye, K., Tzameli, I., Yin, H. and Flier, J.S. (2006) TLR4 Links Innate Immunity and Fatty Acid-Induced Insulin Resistance. Journal of Clinical Investigation, 116, 3015-3025.
https://doi.org/10.1172/jci28898
[36] Maliniak, M.L., Miller-Kleinhenz, J., Cronin-Fenton, D.P., Lash, T.L., Gogineni, K., Janssen, E.A.M., et al. (2021) Crown-Like Structures in Breast Adipose Tissue: Early Evidence and Current Issues in Breast Cancer. Cancers, 13, Article 2222.
https://doi.org/10.3390/cancers13092222
[37] Naaman, S.C., Shen, S., Zeytinoglu, M. and Iyengar, N.M. (2022) Obesity and Breast Cancer Risk: The Oncogenic Implications of Metabolic Dysregulation. The Journal of Clinical Endocrinology & Metabolism, 107, 2154-2166.
https://doi.org/10.1210/clinem/dgac241
[38] Alkaraki, A.K., Aljabali, A.A.A. and Obeid, M.A. (2025) Inflammation-Driven Oncogenesis: Precision Medicine and Immunotherapeutic Strategies. Mini-Reviews in Medicinal Chemistry, 25, 653-663.
https://doi.org/10.2174/0113895575361098250112085145
[39] Scherer, P.E. (2016) The Multifaceted Roles of Adipose Tissue—Therapeutic Targets for Diabetes and Beyond: The 2015 Banting Lecture. Diabetes, 65, 1452-1461.
https://doi.org/10.2337/db16-0339
[40] Patané, G., Caporarello, N., Marchetti, P., Parrino, C., Sudano, D., Marselli, L., et al. (2013) Adiponectin Increases Glucose-Induced Insulin Secretion through the Activation of Lipid Oxidation. Acta Diabetologica, 50, 851-857.
https://doi.org/10.1007/s00592-013-0458-x
[41] Körner, A., Pazaitou-Panayiotou, K., Kelesidis, T., Kelesidis, I., Williams, C.J., Kaprara, A., et al. (2007) Total and High-Molecular-Weight Adiponectin in Breast Cancer: In Vitro and in Vivo Studies. The Journal of Clinical Endocrinology & Metabolism, 92, 1041-1048.
https://doi.org/10.1210/jc.2006-1858
[42] Lyons, A., Coleman, M., Riis, S., Favre, C., O’Flanagan, C.H., Zhdanov, A.V., et al. (2017) Insulin-like Growth Factor 1 Signaling Is Essential for Mitochondrial Biogenesis and Mitophagy in Cancer Cells. Journal of Biological Chemistry, 292, 16983-16998.
https://doi.org/10.1074/jbc.m117.792838
[43] Macis, D., Guerrieri-Gonzaga, A. and Gandini, S. (2014) Circulating Adiponectin and Breast Cancer Risk: A Systematic Review and Meta-analysis. International Journal of Epidemiology, 43, 1226-1236.
https://doi.org/10.1093/ije/dyu088
[44] Gu, L., Cao, C., Fu, J., Li, Q., Li, D. and Chen, M. (2018) Serum Adiponectin in Breast Cancer: A Meta-Analysis. Medicine, 97, e11433.
https://doi.org/10.1097/md.0000000000011433
[45] Ray, A. (2012) Adipokine Leptin in Obesity-Related Pathology of Breast Cancer. Journal of Biosciences, 37, 289-294.
https://doi.org/10.1007/s12038-012-9191-9
[46] Grossmann, M.E. and Cleary, M.P. (2012) The Balance between Leptin and Adiponectin in the Control of Carcinogenesis—Focus on Mammary Tumorigenesis. Biochimie, 94, 2164-2171.
https://doi.org/10.1016/j.biochi.2012.06.013
[47] Pérez‐Pérez, A., Toro, A., Vilariño‐García, T., Maymó, J., Guadix, P., Dueñas, J.L., et al. (2017) Leptin Action in Normal and Pathological Pregnancies. Journal of Cellular and Molecular Medicine, 22, 716-727.
https://doi.org/10.1111/jcmm.13369
[48] Rose, D.P., Komninou, D. and Stephenson, G.D. (2004) Obesity, Adipocytokines, and Insulin Resistance in Breast Cancer. Obesity Reviews, 5, 153-165.
https://doi.org/10.1111/j.1467-789x.2004.00142.x
[49] Guo, S., Liu, M., Wang, G., Torroella-Kouri, M. and Gonzalez-Perez, R.R. (2012) Oncogenic Role and Therapeutic Target of Leptin Signaling in Breast Cancer and Cancer Stem Cells. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1825, 207-222.
https://doi.org/10.1016/j.bbcan.2012.01.002
[50] Khabaz, M.N., Abdelrahman, A., Butt, N., Damnhory, L., Elshal, M., Aldahlawi, A.M., et al. (2017) Immunohistochemical Staining of Leptin Is Associated with Grade, Stage, Lymph Node Involvement, Recurrence, and Hormone Receptor Phenotypes in Breast Cancer. BMC Womens Health, 17, Article No. 105.
https://doi.org/10.1186/s12905-017-0459-y
[51] Blanquer-Rosselló, M.d.M., Oliver, J., Sastre-Serra, J., Valle, A. and Roca, P. (2016) Leptin Regulates Energy Metabolism in MCF-7 Breast Cancer Cells. The International Journal of Biochemistry & Cell Biology, 72, 18-26.
https://doi.org/10.1016/j.biocel.2016.01.002
[52] Nepal, S., Kim, M.J., Hong, J.T., Kim, S.H., Sohn, D., Lee, S.H., et al. (2015) Autophagy Induction by Leptin Contributes to Suppression of Apoptosis in Cancer Cells and Xenograft Model: Involvement of p53/FoxO3A Axis. Oncotarget, 6, 7166-7181.
https://doi.org/10.18632/oncotarget.3347
[53] Li, K., Wei, L., Huang, Y., Wu, Y., Su, M., Pang, X., et al. (2016) Leptin Promotes Breast Cancer Cell Migration and Invasion via IL-18 Expression and Secretion. International Journal of Oncology, 48, 2479-2487.
https://doi.org/10.3892/ijo.2016.3483