电催化析氢概述
Overview of Electrocatalytic Hydrogen Precipitation
DOI: 10.12677/japc.2025.143043, PDF, HTML, XML,   
作者: 郭 妍, 李海双, 马青华, 王丽丽, 赵 丽*:兰州交通大学化学化工学院,甘肃 兰州
关键词: 析氢反应机理评价参数Hydrogen Precipitation Reaction Mechanism Evaluation Parameters
摘要: 电催化析氢反应(Hydrogen Evolution Reaction, HER)作为水分解制氢的核心步骤,其反应机理涉及多电子转移与氢中间体的动态吸附–脱附过程。由于电解质溶液pH值直接影响质子来源及反应路径,HER在酸性与碱性介质中遵循不同的动力学机制。本论文通过对比不同pH体系中氢析出反应的路径演变,从微观动力学角度揭示了活性位点的调控机制。特别阐明了氢吸附自由能(ΔGH*)与催化活性之间的火山型构效关系,该发现为建立催化剂活性描述符提供了理论框架,对设计pH普适性电催化剂具有重要指导意义。催化剂的电子结构(如d带中心位置)、表面活性位点分布及ΔGH*的协同优化是调控其活性的关键:理想催化剂需平衡氢中间体的吸附强度,以实现快速反应动力学。本文还系统梳理了HER的主要评价参数及典型催化剂体系,以帮助研究者建立对反应过程的全面认知。
Abstract: The reaction mechanism of the electrocatalytic (Hydrogen Evolution Reaction, HER), a core step in hydrogen production from water decomposition, involves multi-electron transfer and dynamic adsorption-desorption processes of hydrogen intermediates. Since the pH of the electrolyte solution directly affects the proton source and reaction pathway, HER follows different kinetic mechanisms in acidic and alkaline media. This thesis reveals the regulatory mechanism of the active site from a microkinetic point of view by comparing the pathway evolution of the hydrogen precipitation reaction in different pH systems. In particular, the volcano type conformational relationship between the hydrogen adsorption free energy (ΔGH*) and catalytic activity is elucidated. This finding provides a theoretical framework for the establishment of a catalyst activity descriptor, which is an important guidance for the design of pH-pervasive electrocatalysts. The synergistic optimisation of the catalyst’s electronic structure (e.g. d-band centre position), surface active site distribution and ΔGH* is the key to modulate its activity: the ideal catalyst needs to balance the adsorption strength of the hydrogen intermediates to achieve fast reaction kinetics. In this paper, the main evaluation parameters of HER and typical catalyst systems are also systematically sorted out to help researchers establish a comprehensive knowledge of the reaction process.
文章引用:郭妍, 李海双, 马青华, 王丽丽, 赵丽. 电催化析氢概述[J]. 物理化学进展, 2025, 14(3): 461-471. https://doi.org/10.12677/japc.2025.143043

1. 引言

随着工业化和城镇化的不断推进,化石燃料的过度开采导致资源的急剧减少,这严重影响了人类社会的可持续发展[1]。同时,化石燃料燃烧过程中释放的有害气体引起的空气污染和全球变暖等问题,对人类的健康和生存造成了巨大的威胁[2]。为了能够有效缓解能源短缺、环境污染和经济社会的可持续发展等问题,开发绿色可再生能源已迫在眉睫[3]。氢能因其燃烧热值高、燃烧产物无污染以及可储可输等优点,是目前最理想的传统化石燃料的替代品之一,氢能的开发和利用还能极大限度地减缓温室效应[4]-[7],因此,氢能作为一种绿色能源而备受研究人员关注。目前人们对析氢反应的反应机理已经明确,成熟的反应机理能够帮助我们找到更有效的电催化剂。

2. 电催化析氢机理

Figure 1. Schematic diagram of hydrogen precipitation reaction mechanism under acidic and alkaline conditions [8]

1. 酸性和碱性条件下HER机理示意图[8]

电催化HER是一种相对简单的电催化反应,它包含了两个电子在电极/电解质界面上的传递。在不同电解质溶液中由于pH值的不同,还原的物质不同(H+或H2O)因此其反应机理也有所不同。机理包括三个基本步骤:分别为Volmer步骤(包括H2O和H3O+在活性中心上的吸附)、Heyrovsky步骤(H2从催化剂表面通过电化学途径脱附)和Tafel步骤(催化剂表面通过发生化学脱附产生H2),在酸性环境中,水合氢离子(H3O+)充当主要的质子载体参与反应,而中性和碱性条件下的化学反应则由水分子(H2O)直接介导。(图1) [8]

2.1. 酸性机理

在酸性条件下,析氢反应分两步进行。首先,在Volmer (公式1)中,质子(H+)被电化学吸附到催化剂的活性中心,并生成被吸附的氢气中间产物(H*)。随后,这些被吸附的H*可以在Heyrovsky步骤(公式2)中与另一个H+和一个电子(e)反应,通过电化学解吸过程形成H2 [9]。Tafel步骤是一个纯化学吸附步骤(公式3),此时催化剂表面的两个H*相结合,产生H2。综上所述,在酸性条件下HER遵循Volmer-Heyrovsky或Volmer-Tafel,具体的H2生成机理是Heyrovsky反应步骤还是Tafel反应步骤,一般通过Tafel斜率判断,使用Butler-Volmer方程可推出关于Tafel斜率的三种条件下的理论数值[10],当Tafel斜率在25℃时达到30 mV∙dec1,则反应迅速,H2的析出符合Volmer-Tafel机理;当Tafel的值为40~120 mV∙dec1时,H*被吸附到材料上,使其不受H+的约束,以此生成H2,符合Volmer-Heyrovsky过程。在室温下,如果反应非常缓慢,H2的析出是由Heyrovsky步骤来确定的,此时在室温下,Tafel斜率是120 mV∙dec1。但在酸性条件下,很少见到具有Tafel斜率 > 120 mV∙dec1的HER电催化剂,这是因为溶液中含有大量的H+,反应的机理表明,该表面电荷转移过程本质上独立于溶液中的离子迁移步骤,其反应速率仅由电极/电解质界面的电子转移效率决定。HER在酸性介质中的电催化活性比在碱性介质中高两到三个数量级,因为在电极表面有大量的H+可用于吸附,这有利于反应的发生。

Volmer step:

H+ + e + * → H* (1)

Heyrovsky step:

H+ + e + H* → H2 + * (2)

Tafel step:

2H* → H2 + 2* (3)

2.2. 碱性机理

在碱性介质中,由于H+稀缺,HER过程开始于H2O分解为H*和OH。因此,H2O的解离是HER过程中的重要步骤。后续反应步骤是H2O作为H+供体,包括Volmer和Heyrovsky步骤[11]-[13]。在Volmer步骤中,H2O与催化剂表面的e相互作用产生H* (公式4)。然后,反应分为两条不同的途径:i) Heyrovsky步骤涉及H*与电解质中另一个H2O的H+反应形成H2 (公式5);ii) Tafel步骤,其中两个H*相结合形成H2 (公式6)。与酸性环境相同,HER也通过Volmer-Heyrovsky或Volmer-Tafel途径进行,其催化效率由H-OH键解离过程的活化能垒与H*吸附自由能的协同作用主导,该关系符合Sabatier火山型曲线特征。与酸性条件相比,碱性介质中H-OH键的断裂为Volmer和Heyrovsky步骤中所需的H+引入了额外的能量势垒。从催化剂设计的角度来看,提高碱性HER性能的策略应主要从降低H2O解离的能量势垒角度出发。

Volmer step:

H2O + e + * → H* + OH (4)

Heyrovsky step:

H2O + e + H* → H2 + OH (5)

Tafel step:

2H* → H2 + 2* (6)

2.3. 中性机理

虽然大量的HER研究都集中在酸性和碱性介质中,但中性介质也可以作为电解质条件的另一种选择,因为它不仅可以有效避免对电极材料和电解池的腐蚀,还可以产生更环保的H2,从而显著降低生产成本[14] [15]。中性电解质中的HER机理与碱性机理相似但稍微比其复杂。在中性环境中,电解质溶液通常是磷酸盐缓冲溶液、硼酸盐缓冲溶液等,H+在中性环境中的浓度也非常低,但由于缓冲盐的缓冲作用,H+的浓度可以保持不变。然而,当H+的消耗速率超过缓冲盐的限制时,HER的主反应物会自发地由H+变为H2O分子[16]。因此,中性HER机制比酸性和碱性HER机制更为复杂。在初始阶段,低电压区间范围内的主要反应物是H+,中性缓冲溶液可以满足较低的H+消耗,这个过程反应速率相对较慢[17]。随后,当施加的电压增大时,H3O+的快速消耗导致电解质和催化剂表面之间的pH值差异变大,当施加的电压进一步增大时,所提供的能量可以驱动H2O的解离,导致主反应物由H+变成H2O [18]。因此,中性HER机制取决于施加的电压。在低电压区间内,其反应行为与酸性HER相同;而在高电压区间内,通过缓慢的水解离来提供额外的氢源,其机制与碱性HER相似[19]

Figure 2. Volcano plot of ΔGH* for different metal catalysts in HER [21]

2. 不同金属催化剂在HER中的ΔGH*的火山图[21]

H*与析氢过程中的任何一条路径都有密切关系,故氢吸附自由能(ΔGH*)是评价析氢性能的一个重要指标[20]。根据Sabatier原则,合适的催化剂与活性中间物之间的交互作用有利于催化反应的进行。在理想情况下,当ΔGH*趋于0时,催化剂的交换电流(j0)最大,能够获得最佳的析氢活性。Parsons等人将j0与量子化学导出ΔGH*联系起来,建立了“火山图”(图2) [21]。当ΔGH*偏离火山型曲线顶点(>0)时,吸附动力学受限导致j0呈指数衰减趋势;反之,在ΔGH* < 0 的强吸附区域,表面重构效应引发吸附能垒升高,致使j0呈现非线性抑制效应。位于火山图顶部的金属催化剂,具有ΔGH* ≈ 0和最高的交换电流值的特点,能够展现出最佳的HER活性[22] [23]

3. 电催化析氢性能评价参数

热力学参数ΔGH*不是评价电催化HER活性的唯一参数,电催化剂的活性是由HER在特定电催化剂表面的热力学和动力学表现共同决定的[11]。为了评估催化剂的HER效率,通常利用多个参数来综合评价催化剂的性能(图3),下面将详细讨论。

3.1. 过电位(η)

η是电催化HER活性最重要的参数,通常使用线性扫描伏安法(LSV)进行测量,特定电流密度下的过电位可作为催化剂活性的指标,较低的η表示优异的电催化性能[24]。一般通过比较10 mA∙cm2的电流密度下对应的过电位来衡量材料的HER性能[25]。通过电化学工作站内置的positive feedback在线补偿技术,可实时校正溶液电阻引起的电位偏差,使极化曲线反映真实的催化活性位点过电位。其补偿公式为:

Ecomp = Emea − i Rs (7)

Ecomp表示iR补偿的电位,Emea是实验测得的电压,Rs是通过阻抗测得的电解质溶液的电阻。

3.2. Tafel斜率

Tafel斜率是衡量电催化析氢反应速度的一个重要指标,Tafel斜率越小,反应速度越快,催化效果越好[24]。在适当的η区域,ηj (实验测量的电流密度)通过Tafel方程相关:

η = a + b log |j| (8)

其中b表示Tafel斜率,Tafel斜率侧重于反映本征动力学,这意味着电流密度随η升高而增加的速率可用于识别可能的决定步骤(RDS) [26]

3.3. 电流密度(j)

电流密度(j)是测量的电流(i)与工作电极的几何表面积(A)之比。

j (mA cm2) = i/A (9)

3.4. 质量活度(MA)

质量活性的评估通常在同一体系中进行,其结果取决于催化剂的活性面积,面积较大的催化剂通常表现出较高的质量活性[27]。MA是测量的i与电催化剂的质量(m)负载的比率。

Mass activity = i/m (10)

3.5. 电化学阻抗谱(EIS)

EIS可以分析电极/电解质界面电荷转移特性和反应性。从EIS中测得的数据需要通过等效电路进行拟合处理[28],得到的电荷转移电阻(Rct)反映了电极界面处电荷转移过程的动力学,也可以通过EIS获得的高频区中半圆的直径来推断。小的Rct值表示电荷转移电阻小,电荷传递速率快[29] [30]。在比较Rct值时,必须在相同反应体系和条件下,以确保结果的一致性和可比性。

3.6. 电化学活性面积(ECSA)

ECSA是评估其电化学活性区域的一个重要指标,它与电极的双电层电容值(Cdl)呈正相关。利用循环扫描伏安法(CV)对ECSA进行有效的评价,在电化学工作站电位窗口的非法拉第区域内以10至200 mV∙s1的扫描速率多次进行CV扫描[31] [32],然后通过线性拟合进行数据处理并绘制扫描速率的线性图。然后对得到的图进行线性拟合以确定Cdl,Cdl的值计算为拟合线斜率的一半。

ECSA = Cdl/Cs (11)

3.7. 转换频率(TOF)

TOF描述了每单位时间有多少反应物参与了反应,是评价单个活性位点催化性能的指标,通过TOF公式(公式12)计算[27] [33]。TOF通常绘制为过电位的函数,反映出过电位的增加会增强反应动力学,从而提高催化剂的TOF。更高的TOF表明较大的内在催化活性[24]。值得注意的是,所计算出来的活性位点的数量都是个大概估计值,并不是精确的结果。

TOF = j NA/nFΓ (12)

3.8. 法拉第效率(FE)

FE是衡量电化学反应过程中催化剂的电子转移效率和选择性,定义为测量的H2实际产量与理论H2产量的比值[34]。对于许多HER催化剂,催化剂的FE几乎接近于100%,但由于实际应用中会有副反应的发生,因此往往会造成一定的FE损失,FE一般小于100% [35] [36]。然而,在HER过程中,电极表面副产物的形成往往阻碍了在最佳条件下实现FE。因此,仅使用FE作为催化剂性能好坏的评价标准是不太合理的[37]

3.9. 稳定性

Figure 3. Schematic representation of key factors considered in designing the performance of HER catalysts [44]

3. 在设计HER催化剂性能时考虑的关键因素示意图[44]

常用表征材料稳定性的方法有两种,一种方法为计时电位法(CP)或计时电流法(CA)。为了检查不同电催化剂的稳定性,通常使用超过10 mA∙cm−1的电流密度进行至少10小时的测试。另一种方法是循环伏安法,通过500~10000次循环前后极化曲线的变化来评估稳定性,如果循环前后的极化曲线没有明显变化或者循环后的过电位增加不到10%,说明催化剂稳定性良好[38]-[40]。另外也可以采用其他的手段研究催化剂的稳定性[41],例如使用直接连接电感耦合等离子体质谱仪(ICP-MS)的扫描流通池(SFC)来原位测量电化学过程中电解液内金属的溶解量[42],或者采用差分电化学质谱仪(DEMS)鉴定和定量反应过程中的产物或中间体[43]

4. 常见的电催化析氢催化剂

4.1. 贵金属催化剂

图3中不难看出,贵金属铂族元素如铂(Pt)、钯(Pd)、铱(Ir)和铑(Rh)等往往位于火山图顶点附近,具有优异的HER催化性[45]-[47]。Pt位于“火山图”的顶点处ΔGH* ≈ 0是最有效的HER电催化剂。第一性原理计算表明,Pt (111)晶面特有的d带电子结构赋予其适中的氢吸附自由能(ΔGH*≈ 0),这种表面化学键的黄金平衡使基于Pt的HER催化剂达到交换电流密度>1 mA∙cm2的优异性能。但由于高昂的成本和较差的电化学稳定性使其在电催化HER领域受到限制。Pd在地壳中的含量与Pt相比更为丰富,并且两种元素的原子尺寸十分接近,晶格失配度仅为0.77%,而成为可行替代品[48]。作为Pt低成本的替代品,Ru也展现出适中的Ru-H键强度,可以为氢解吸提供较低的能量势垒[49]

贵金属储量稀少、成本高、电催化性能不佳,这些缺点限制了其在电解水领域的大规模应用。目前,基于贵金属催化剂的研究主要集中在降低贵金属含量、提高其稳定性等两个方向。此外,为了降低成本,用一些非贵金属基材料来替代贵金属催化剂,如过渡金属基、非金属基催化剂(图4) [50]。但这些材料在火山图中并不处于活性最优的区域,因此目前的研究致力于调节ΔGH*,使之接近于0。这些研究为设计高效稳定且低成本的HER催化剂奠定了基础[51]-[53]

Figure 4. Elements of the HER electrocatalyst [54]

4. HER电催化剂的元素[54]

4.2. 过渡金属催化剂

为了寻找贵金属催化剂的替代品,近年来许多研究致力于开发非贵金属催化剂体系。根据元素的组成将催化剂分为:(1) 过渡金属氮化物;(2) 过渡金属磷化物;(3) 过渡金属氧化物等。下面对这些过渡金属基催化剂的相关研究进展进行简单的介绍。

(1) 过渡金属氮化物(TMNs)

TMNs与碳化物类似,都是在过渡金属的晶格间隙中引入了更小的氮原子,从而获得了优异的导电性能。由于氮元素具有较高的电负性,因此可以有效地调节金属元素的d能带,使其具有类似于贵金属的电子结构[55],因此,该材料将表现出优良的物化性能和良好的催化性能。综上所述,TMNs在电催化领域有着广泛的应用。

(2) 过渡金属磷化物(TMPs)

TMPs作为HER催化剂的重要研究方向。实验结果表明,磷元素的引入显著提升了TMPs材料在酸碱介质中的催化稳定性与反应动力学,其机理可归因于磷原子独特的电子调控作用[56]。相较于金属元素,磷原子具有更强的电负性,诱导金属位点向磷原子发生电子迁移。这种电荷重分布效应减弱了氢原子在金属活性位点的吸附强度,从而促进氢脱附过程并增强HER性能。此外,P原子不仅通过优化催化剂表面氢吸附自由能(ΔGH*)和提升耐腐蚀特性实现活性位点的保护,还能作为质子传递媒介加速反应动力学。理论计算与实验数据均证实,调控磷化物中磷元素的配位环境与含量比例是改善其电解水活性的有效策略。

(3) 过渡金属氧化物(TMOs)

TMOs因其丰富的氧化还原特性、结构可调性及成本优势,近年来在电催化HER领域备受关注。与传统的贵金属催化剂(如Pt)相比,TMOs通过金属阳离子的多价态特性及氧配位环境,可在电解水的过程中实现活性位点的动态调控。例如,RuO2、IrO2等贵金属氧化物虽具有高催化活性,但其稀缺性和高成本限制了实际应用;而Fe、Co、Ni等非贵金属氧化物(如Co3O4、NiO、Fe2O3)则展现出替代潜力。然而,TMOs的本征导电性较低,且表面氧物种对氢中间体(H*)的吸附能(ΔGH*)常偏离理想值,导致其在酸性或中性介质中的HER活性相对受限。理论计算结合原位光谱表明,氧化物中金属–氧键的极化作用可削弱O-H键强度,促进水解离步骤(关键碱性HER限速步骤)。

5. 结论

氢能具有高能量密度、无碳排放、可持续发展等优点,已成为一种极具潜力的可再生能源,而高效的制氢工艺又是实现其规模化应用的重要技术基础。HER作为水电解制氢的核心半反应,在实现“双碳”战略目标和构建清洁能源体系中具有重大意义。目前,电催化分解水产氢的催化剂多为贵金属或廉价金属,而贵金属Pt系催化剂虽然表现出良好的HER性能,但资源匮乏、价格昂贵等问题限制了其产业化。因此,开发兼具高催化活性、长期稳定性和低成本效益的非贵金属催化剂材料,成为突破氢能产业瓶颈的关键科学问题。因此,发展高效、长寿命、低成本的新型非贵金属催化剂,仍然是促进其规模化应用的关键科学问题。未来研究需在深入理解机理的基础上,通过跨尺度设计与工程化策略突破现有材料性能瓶颈。

NOTES

*通讯作者。

参考文献

[1] Elimelech, M. and Phillip, W.A. (2011) The Future of Seawater Desalination: Energy, Technology, and the Environment. Science, 333, 712-717.
https://doi.org/10.1126/science.1200488
[2] Kim, D., Sakimoto, K.K., Hong, D. and Yang, P. (2015) Artificial Photosynthesis for Sustainable Fuel and Chemical Production. Angewandte Chemie International Edition, 54, 3259-3266.
https://doi.org/10.1002/anie.201409116
[3] Ismael, M. (2020) A Review and Recent Advances in Solar-To-Hydrogen Energy Conversion Based on Photocatalytic Water Splitting over Doped-Tio2 Nanoparticles. Solar Energy, 211, 522-546.
https://doi.org/10.1016/j.solener.2020.09.073
[4] Corredor, J., Rivero, M.J., Rangel, C.M., Gloaguen, F. and Ortiz, I. (2019) Comprehensive Review and Future Perspectives on the Photocatalytic Hydrogen Production. Journal of Chemical Technology & Biotechnology, 94, 3049-3063.
https://doi.org/10.1002/jctb.6123
[5] Ahmad, H., Kamarudin, S.K., Minggu, L.J. and Kassim, M. (2015) Hydrogen from Photo-Catalytic Water Splitting Process: A Review. Renewable and Sustainable Energy Reviews, 43, 599-610.
https://doi.org/10.1016/j.rser.2014.10.101
[6] Zhang, J., Hu, W., Cao, S. and Piao, L. (2020) Recent Progress for Hydrogen Production by Photocatalytic Natural or Simulated Seawater Splitting. Nano Research, 13, 2313-2322.
https://doi.org/10.1007/s12274-020-2880-z
[7] Kong, D., Ruan, X., Geng, J., Zhao, Y., Zhang, D., Pu, X., et al. (2021) 0D/3D ZnIn2S4/Ag6Si2O7 Nanocomposite with Direct Z-Scheme Heterojunction for Efficient Photocatalytic H2 Evolution under Visible Light. International Journal of Hydrogen Energy, 46, 28043-28052.
https://doi.org/10.1016/j.ijhydene.2021.06.053
[8] Wei, J., Zhou, M., Long, A., Xue, Y., Liao, H., Wei, C., et al. (2018) Heterostructured Electrocatalysts for Hydrogen Evolution Reaction under Alkaline Conditions. Nano-Micro Letters, 10, Article No. 75.
https://doi.org/10.1007/s40820-018-0229-x
[9] Wang, C., Guo, W., Chen, T., Lu, W., Song, Z., Yan, C., et al. (2024) Advanced Noble-Metal/Transition-Metal/Metal-Free Electrocatalysts for Hydrogen Evolution Reaction in Water-Electrolysis for Hydrogen Production. Coordination Chemistry Reviews, 514, Article ID: 215899.
https://doi.org/10.1016/j.ccr.2024.215899
[10] Bockris, J.O. and Potter, E.C. (1952) The Mechanism of the Cathodic Hydrogen Evolution Reaction. Journal of The Electrochemical Society, 99, Article 169.
https://doi.org/10.1149/1.2779692
[11] Anantharaj, S., Noda, S., Jothi, V.R., Yi, S., Driess, M. and Menezes, P.W. (2021) Strategies and Perspectives to Catch the Missing Pieces in Energy‐efficient Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie International Edition, 60, 18981-19006.
https://doi.org/10.1002/anie.202015738
[12] Fu, L., Li, Y., Yao, N., Yang, F., Cheng, G. and Luo, W. (2020) Irmo Nanocatalysts for Efficient Alkaline Hydrogen Electrocatalysis. ACS Catalysis, 10, 7322-7327.
https://doi.org/10.1021/acscatal.0c02254
[13] Hu, C., Zhang, L., Zhao, Z., Li, A., Chang, X. and Gong, J. (2018) Synergism of Geometric Construction and Electronic Regulation: 3D Se‐(NiCo)sx/(OH)x Nanosheets for Highly Efficient Overall Water Splitting. Advanced Materials, 30, Article ID: 1705538.
https://doi.org/10.1002/adma.201705538
[14] Nishimoto, T., Obata, K., Komiya, H., Naito, T., Harada, K., Yoshida, M., et al. (2023) Oxidized Copper and Molybdenum Species Exclusively Boosting Electrocatalytic Hydrogen Evolution in Non-Extreme pH Carbonate Buffer Electrolyte. ACS Catalysis, 13, 14725-14736.
https://doi.org/10.1021/acscatal.3c03821
[15] Naito, T., Shinagawa, T., Nishimoto, T. and Takanabe, K. (2022) Gas Crossover Regulation by Porosity‐Controlled Glass Sheet Achieves Pure Hydrogen Production by Buffered Water Electrolysis at Neutral Ph. ChemSusChem, 15, e202102294.
https://doi.org/10.1002/cssc.202102294
[16] Zhou, J., Xie, Y., Yang, L., Liu, Y., Du, Y., Yu, L., et al. (2023) Development and Perspectives of Multi-Site Electrocatalysts for Neutral Hydrogen Evolution. Inorganic Chemistry Frontiers, 10, 2842-2859.
https://doi.org/10.1039/d3qi00171g
[17] Katsounaros, I., Meier, J.C., Klemm, S.O., Topalov, A.A., Biedermann, P.U., Auinger, M., et al. (2011) The Effective Surface Ph during Reactions at the Solid-Liquid Interface. Electrochemistry Communications, 13, 634-637.
https://doi.org/10.1016/j.elecom.2011.03.032
[18] Mao, J., Iocozzia, J., Huang, J., Meng, K., Lai, Y. and Lin, Z. (2018) Graphene Aerogels for Efficient Energy Storage and Conversion. Energy & Environmental Science, 11, 772-799.
https://doi.org/10.1039/c7ee03031b
[19] Greeley, J. and Mavrikakis, M. (2004) Alloy Catalysts Designed from First Principles. Nature Materials, 3, 810-815.
https://doi.org/10.1038/nmat1223
[20] Yang, Y., Yu, Y., Li, J., Chen, Q., Du, Y., Rao, P., et al. (2021) Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction. Nano-Micro Letters, 13, Article No. 160.
https://doi.org/10.1007/s40820-021-00679-3
[21] Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, eaad4998.
https://doi.org/10.1126/science.aad4998
[22] Yang, Y. and Margam, N.N. (2021) Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens. Cells, 10, Article 160.
https://doi.org/10.3390/cells10010160
[23] Zou, X. and Zhang, Y. (2015) Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chemical Society Reviews, 44, 5148-5180.
https://doi.org/10.1039/c4cs00448e
[24] Xiao, C., Hong, T., Jia, J., Jia, H., Li, J., Zhu, Y., et al. (2024) Unlocking the Potential of Hydrogen Evolution: Advancements in 3D Nanostructured Electrocatalysts Supported on Nickel Foam. Applied Catalysis B: Environment and Energy, 355, Article ID: 124197.
https://doi.org/10.1016/j.apcatb.2024.124197
[25] Lin, J., Wang, X., Zhao, Z., Chen, D., Liu, R., Ye, Z., et al. (2024) Design of pH‐Universal Electrocatalysts for Hydrogen Evolution Reaction. Carbon Energy, 6, e555.
https://doi.org/10.1002/cey2.555
[26] Yao, R., Li, Y., Zhang, X., Zhao, Y., Wang, Y., Lang, X., et al. (2023) Self-supported Nanoporous Cunial Alloy as Highly Efficient Electrocatalyst for Nitrobenzene Hydrogenation to Aniline. Chemical Engineering Journal, 471, Article ID: 144487.
https://doi.org/10.1016/j.cej.2023.144487
[27] Park, T.H., Yeon, J.S., Sivakumar, P., Kim, Y. and Park, H.S. (2020) Bifunctional Mesoporous CoO/Nitrogen‐Incorporated Graphene Electrocatalysts for High‐Power and Long‐Term Stability of Rechargeable Zinc‐Air Batteries. International Journal of Energy Research, 45, 6698-6707.
https://doi.org/10.1002/er.6263
[28] You, M., Du, X., Hou, X., Wang, Z., Zhou, Y., Ji, H., et al. (2022) In-Situ Growth of Ruthenium-Based Nanostructure on Carbon Cloth for Superior Electrocatalytic Activity Towards HER and OER. Applied Catalysis B: Environmental, 317, Article ID: 121729.
https://doi.org/10.1016/j.apcatb.2022.121729
[29] Li, H., Chen, S., Zhang, Y., Zhang, Q., Jia, X., Zhang, Q., et al. (2018) Systematic Design of Superaerophobic Nanotube-Array Electrode Comprised of Transition-Metal Sulfides for Overall Water Splitting. Nature Communications, 9, Article No. 2452.
https://doi.org/10.1038/s41467-018-04888-0
[30] Anantharaj, S. and Noda, S. (2020) Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. ChemElectroChem, 7, 2297-2308.
https://doi.org/10.1002/celc.202000515
[31] Kundu, S. (2023) Editor’s Choice Collection: Advancing Electrocatalysts for a Sustainable World. Journal of Materials Chemistry A, 11, 22018-22019.
https://doi.org/10.1039/d3ta90188b
[32] Tao, Z., Wang, T., Wang, X., Zheng, J. and Li, X. (2016) MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 8, 35390-35397.
https://doi.org/10.1021/acsami.6b13411
[33] Kweon, D.H., Okyay, M.S., Kim, S., Jeon, J., Noh, H., Park, N., et al. (2020) Ruthenium Anchored on Carbon Nanotube Electrocatalyst for Hydrogen Production with Enhanced Faradaic Efficiency. Nature Communications, 11, Article No. 1278.
https://doi.org/10.1038/s41467-020-15069-3
[34] Stern, L., Feng, L., Song, F. and Hu, X. (2015) Ni2p as a Janus Catalyst for Water Splitting: The Oxygen Evolution Activity of Ni2P Nanoparticles. Energy & Environmental Science, 8, 2347-2351.
https://doi.org/10.1039/c5ee01155h
[35] Tung, C., Hsu, Y., Shen, Y., Zheng, Y., Chan, T., Sheu, H., et al. (2015) Reversible Adapting Layer Produces Robust Single-Crystal Electrocatalyst for Oxygen Evolution. Nature Communications, 6, Article No. 8106.
https://doi.org/10.1038/ncomms9106
[36] Shen, Y., Liang, L., Zhang, S., Huang, D., Zhang, J., Xu, S., et al. (2018) Organelle-Targeting Surface-Enhanced Raman Scattering (SERS) Nanosensors for Subcellular pH Sensing. Nanoscale, 10, 1622-1630.
https://doi.org/10.1039/c7nr08636a
[37] Meng, G., Tian, H., Peng, L., Ma, Z., Chen, Y., Chen, C., et al. (2021) Ru to W Electron Donation for Boosted HER from Acidic to Alkaline on Ru/WNO Sponges. Nano Energy, 80, Article ID: 105531.
https://doi.org/10.1016/j.nanoen.2020.105531
[38] Chen, C., Tian, H., Fu, Z., Cui, X., Kong, F., Meng, G., et al. (2022) Pt NPs-Loaded Siloxene Nanosheets for Hydrogen Co-Evolutions from Zn-H2O Fuel Cells-Powered Water-Splitting. Applied Catalysis B: Environmental, 304, Article ID: 121008.
https://doi.org/10.1016/j.apcatb.2021.121008
[39] Wang, T., Wang, P., Zang, W., Li, X., Chen, D., Kou, Z., et al. (2021) Nanoframes of Co3O4-Mo2N Heterointerfaces Enable High‐Performance Bifunctionality toward Both Electrocatalytic HER and OER. Advanced Functional Materials, 32, Article ID: 2107382.
https://doi.org/10.1002/adfm.202107382
[40] Hess, F., Smarsly, B.M. and Over, H. (2020) Catalytic Stability Studies Employing Dedicated Model Catalysts. Accounts of Chemical Research, 53, 380-389.
https://doi.org/10.1021/acs.accounts.9b00467
[41] Geiger, S., Kasian, O., Shrestha, B.R., Mingers, A.M., Mayrhofer, K.J.J. and Cherevko, S. (2016) Activity and Stability of Electrochemically and Thermally Treated Iridium for the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 163, F3132-F3138.
https://doi.org/10.1149/2.0181611jes
[42] Vorms, E.A., Papaefthymiou, V., Faverge, T., Bonnefont, A., Chatenet, M., Savinova, E.R., et al. (2024) Mechanism of the Hydrazine Hydrate Electrooxidation Reaction on Metallic Ni Electrodes in Alkaline Media as Revealed by Electrochemical Methods, Online DEMS and Ex Situ XPS. Electrochimica Acta, 507, Article ID: 145056.
https://doi.org/10.1016/j.electacta.2024.145056
[43] Feidenhans’l, A.A., Regmi, Y.N., Wei, C., Xia, D., Kibsgaard, J. and King, L.A. (2024) Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chemical Reviews, 124, 5617-5667.
https://doi.org/10.1021/acs.chemrev.3c00712
[44] Guo, C., Jiao, Y., Zheng, Y., Luo, J., Davey, K. and Qiao, S. (2019) Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. Chem, 5, 2429-2441.
https://doi.org/10.1016/j.chempr.2019.06.016
[45] Wu, G., Zheng, X., Cui, P., Jiang, H., Wang, X., Qu, Y., et al. (2019) A General Synthesis Approach for Amorphous Noble Metal Nanosheets. Nature Communications, 10, Article No. 4855.
https://doi.org/10.1038/s41467-019-12859-2
[46] Wang, L., Chen, M., Yan, Q., Xu, S., Chu, S., Chen, P., et al. (2019) A Sulfur-Tethering Synthesis Strategy toward High-Loading Atomically Dispersed Noble Metal Catalysts. Science Advances, 5, eaax6322.
https://doi.org/10.1126/sciadv.aax6322
[47] Yusuf, B.A., Yaseen, W., Xie, M., Zayyan, R.S., Muhammad, A.I., Nankya, R., et al. (2023) Recent Advances in Understanding and Design of Efficient Hydrogen Evolution Electrocatalysts for Water Splitting: A Comprehensive Review. Advances in Colloid and Interface Science, 311, Article ID: 102811.
https://doi.org/10.1016/j.cis.2022.102811
[48] Joshi, U., Malkhandi, S., Ren, Y., Tan, T.L., Chiam, S.Y. and Yeo, B.S. (2018) Ruthenium-Tungsten Composite Catalyst for the Efficient and Contamination-Resistant Electrochemical Evolution of Hydrogen. ACS Applied Materials & Interfaces, 10, 6354-6360.
https://doi.org/10.1021/acsami.7b17970
[49] Zhang, L., Roling, L.T., Wang, X., et al. (2015) Platinum-Based Nanocages with Subnanometer-Thick Walls and Well-Defined, Controllable Facets. Science, 349, 412-416.
[50] Chen, Z., Wu, R., Liu, Y., Ha, Y., Guo, Y., Sun, D., et al. (2018) Ultrafine Co Nanoparticles Encapsulated in Carbon‐nanotubes‐Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction. Advanced Materials, 30, Article ID: 1802011.
https://doi.org/10.1002/adma.201802011
[51] Cheng, T., Wang, L., Merinov, B.V. and Goddard, W.A. (2018) Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH. Journal of the American Chemical Society, 140, 7787-7790.
https://doi.org/10.1021/jacs.8b04006
[52] Wu, H., Feng, C., Zhang, L., Zhang, J. and Wilkinson, D.P. (2021) Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochemical Energy Reviews, 4, 473-507.
https://doi.org/10.1007/s41918-020-00086-z
[53] Zhang, C. and Cheng, J. (2024) Surface and Interface Design of Electrocatalysts for Hydrogen/Oxygen Evolution Reactions: A Bridge to the Green-Oriented Transition of Energy. Surfaces and Interfaces, 49, Article ID: 104423.
https://doi.org/10.1016/j.surfin.2024.104423
[54] Dai, L., Yao, F., Yu, L., Fang, C., Li, J., Xue, L., et al. (2022) Boosting Alkaline Hydrogen Evolution on Stoichiometric Molybdenum Carbonitride via an Interstitial Vacancy‐Elimination Strategy. Advanced Energy Materials, 12, Article ID: 2200974.
https://doi.org/10.1002/aenm.202200974
[55] Yin, H., Rong, F. and Xie, Y. (2024) A Review of Typical Transition Metal Phosphides Electrocatalysts for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 52, 350-375.
https://doi.org/10.1016/j.ijhydene.2023.08.333
[56] Sheng, W., Myint, M., Chen, J.G. and Yan, Y. (2013) Correlating the Hydrogen Evolution Reaction Activity in Alkaline Electrolytes with the Hydrogen Binding Energy on Monometallic Surfaces. Energy & Environmental Science, 6, 1509-1512.
https://doi.org/10.1039/c3ee00045a