[1]
|
Elimelech, M. and Phillip, W.A. (2011) The Future of Seawater Desalination: Energy, Technology, and the Environment. Science, 333, 712-717. https://doi.org/10.1126/science.1200488
|
[2]
|
Kim, D., Sakimoto, K.K., Hong, D. and Yang, P. (2015) Artificial Photosynthesis for Sustainable Fuel and Chemical Production. Angewandte Chemie International Edition, 54, 3259-3266. https://doi.org/10.1002/anie.201409116
|
[3]
|
Ismael, M. (2020) A Review and Recent Advances in Solar-To-Hydrogen Energy Conversion Based on Photocatalytic Water Splitting over Doped-Tio2 Nanoparticles. Solar Energy, 211, 522-546. https://doi.org/10.1016/j.solener.2020.09.073
|
[4]
|
Corredor, J., Rivero, M.J., Rangel, C.M., Gloaguen, F. and Ortiz, I. (2019) Comprehensive Review and Future Perspectives on the Photocatalytic Hydrogen Production. Journal of Chemical Technology & Biotechnology, 94, 3049-3063. https://doi.org/10.1002/jctb.6123
|
[5]
|
Ahmad, H., Kamarudin, S.K., Minggu, L.J. and Kassim, M. (2015) Hydrogen from Photo-Catalytic Water Splitting Process: A Review. Renewable and Sustainable Energy Reviews, 43, 599-610. https://doi.org/10.1016/j.rser.2014.10.101
|
[6]
|
Zhang, J., Hu, W., Cao, S. and Piao, L. (2020) Recent Progress for Hydrogen Production by Photocatalytic Natural or Simulated Seawater Splitting. Nano Research, 13, 2313-2322. https://doi.org/10.1007/s12274-020-2880-z
|
[7]
|
Kong, D., Ruan, X., Geng, J., Zhao, Y., Zhang, D., Pu, X., et al. (2021) 0D/3D ZnIn2S4/Ag6Si2O7 Nanocomposite with Direct Z-Scheme Heterojunction for Efficient Photocatalytic H2 Evolution under Visible Light. International Journal of Hydrogen Energy, 46, 28043-28052. https://doi.org/10.1016/j.ijhydene.2021.06.053
|
[8]
|
Wei, J., Zhou, M., Long, A., Xue, Y., Liao, H., Wei, C., et al. (2018) Heterostructured Electrocatalysts for Hydrogen Evolution Reaction under Alkaline Conditions. Nano-Micro Letters, 10, Article No. 75. https://doi.org/10.1007/s40820-018-0229-x
|
[9]
|
Wang, C., Guo, W., Chen, T., Lu, W., Song, Z., Yan, C., et al. (2024) Advanced Noble-Metal/Transition-Metal/Metal-Free Electrocatalysts for Hydrogen Evolution Reaction in Water-Electrolysis for Hydrogen Production. Coordination Chemistry Reviews, 514, Article ID: 215899. https://doi.org/10.1016/j.ccr.2024.215899
|
[10]
|
Bockris, J.O. and Potter, E.C. (1952) The Mechanism of the Cathodic Hydrogen Evolution Reaction. Journal of The Electrochemical Society, 99, Article 169. https://doi.org/10.1149/1.2779692
|
[11]
|
Anantharaj, S., Noda, S., Jothi, V.R., Yi, S., Driess, M. and Menezes, P.W. (2021) Strategies and Perspectives to Catch the Missing Pieces in Energy‐efficient Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie International Edition, 60, 18981-19006. https://doi.org/10.1002/anie.202015738
|
[12]
|
Fu, L., Li, Y., Yao, N., Yang, F., Cheng, G. and Luo, W. (2020) Irmo Nanocatalysts for Efficient Alkaline Hydrogen Electrocatalysis. ACS Catalysis, 10, 7322-7327. https://doi.org/10.1021/acscatal.0c02254
|
[13]
|
Hu, C., Zhang, L., Zhao, Z., Li, A., Chang, X. and Gong, J. (2018) Synergism of Geometric Construction and Electronic Regulation: 3D Se‐(NiCo)sx/(OH)x Nanosheets for Highly Efficient Overall Water Splitting. Advanced Materials, 30, Article ID: 1705538. https://doi.org/10.1002/adma.201705538
|
[14]
|
Nishimoto, T., Obata, K., Komiya, H., Naito, T., Harada, K., Yoshida, M., et al. (2023) Oxidized Copper and Molybdenum Species Exclusively Boosting Electrocatalytic Hydrogen Evolution in Non-Extreme pH Carbonate Buffer Electrolyte. ACS Catalysis, 13, 14725-14736. https://doi.org/10.1021/acscatal.3c03821
|
[15]
|
Naito, T., Shinagawa, T., Nishimoto, T. and Takanabe, K. (2022) Gas Crossover Regulation by Porosity‐Controlled Glass Sheet Achieves Pure Hydrogen Production by Buffered Water Electrolysis at Neutral Ph. ChemSusChem, 15, e202102294. https://doi.org/10.1002/cssc.202102294
|
[16]
|
Zhou, J., Xie, Y., Yang, L., Liu, Y., Du, Y., Yu, L., et al. (2023) Development and Perspectives of Multi-Site Electrocatalysts for Neutral Hydrogen Evolution. Inorganic Chemistry Frontiers, 10, 2842-2859. https://doi.org/10.1039/d3qi00171g
|
[17]
|
Katsounaros, I., Meier, J.C., Klemm, S.O., Topalov, A.A., Biedermann, P.U., Auinger, M., et al. (2011) The Effective Surface Ph during Reactions at the Solid-Liquid Interface. Electrochemistry Communications, 13, 634-637. https://doi.org/10.1016/j.elecom.2011.03.032
|
[18]
|
Mao, J., Iocozzia, J., Huang, J., Meng, K., Lai, Y. and Lin, Z. (2018) Graphene Aerogels for Efficient Energy Storage and Conversion. Energy & Environmental Science, 11, 772-799. https://doi.org/10.1039/c7ee03031b
|
[19]
|
Greeley, J. and Mavrikakis, M. (2004) Alloy Catalysts Designed from First Principles. Nature Materials, 3, 810-815. https://doi.org/10.1038/nmat1223
|
[20]
|
Yang, Y., Yu, Y., Li, J., Chen, Q., Du, Y., Rao, P., et al. (2021) Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction. Nano-Micro Letters, 13, Article No. 160. https://doi.org/10.1007/s40820-021-00679-3
|
[21]
|
Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, eaad4998. https://doi.org/10.1126/science.aad4998
|
[22]
|
Yang, Y. and Margam, N.N. (2021) Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens. Cells, 10, Article 160. https://doi.org/10.3390/cells10010160
|
[23]
|
Zou, X. and Zhang, Y. (2015) Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chemical Society Reviews, 44, 5148-5180. https://doi.org/10.1039/c4cs00448e
|
[24]
|
Xiao, C., Hong, T., Jia, J., Jia, H., Li, J., Zhu, Y., et al. (2024) Unlocking the Potential of Hydrogen Evolution: Advancements in 3D Nanostructured Electrocatalysts Supported on Nickel Foam. Applied Catalysis B: Environment and Energy, 355, Article ID: 124197. https://doi.org/10.1016/j.apcatb.2024.124197
|
[25]
|
Lin, J., Wang, X., Zhao, Z., Chen, D., Liu, R., Ye, Z., et al. (2024) Design of pH‐Universal Electrocatalysts for Hydrogen Evolution Reaction. Carbon Energy, 6, e555. https://doi.org/10.1002/cey2.555
|
[26]
|
Yao, R., Li, Y., Zhang, X., Zhao, Y., Wang, Y., Lang, X., et al. (2023) Self-supported Nanoporous Cunial Alloy as Highly Efficient Electrocatalyst for Nitrobenzene Hydrogenation to Aniline. Chemical Engineering Journal, 471, Article ID: 144487. https://doi.org/10.1016/j.cej.2023.144487
|
[27]
|
Park, T.H., Yeon, J.S., Sivakumar, P., Kim, Y. and Park, H.S. (2020) Bifunctional Mesoporous CoO/Nitrogen‐Incorporated Graphene Electrocatalysts for High‐Power and Long‐Term Stability of Rechargeable Zinc‐Air Batteries. International Journal of Energy Research, 45, 6698-6707. https://doi.org/10.1002/er.6263
|
[28]
|
You, M., Du, X., Hou, X., Wang, Z., Zhou, Y., Ji, H., et al. (2022) In-Situ Growth of Ruthenium-Based Nanostructure on Carbon Cloth for Superior Electrocatalytic Activity Towards HER and OER. Applied Catalysis B: Environmental, 317, Article ID: 121729. https://doi.org/10.1016/j.apcatb.2022.121729
|
[29]
|
Li, H., Chen, S., Zhang, Y., Zhang, Q., Jia, X., Zhang, Q., et al. (2018) Systematic Design of Superaerophobic Nanotube-Array Electrode Comprised of Transition-Metal Sulfides for Overall Water Splitting. Nature Communications, 9, Article No. 2452. https://doi.org/10.1038/s41467-018-04888-0
|
[30]
|
Anantharaj, S. and Noda, S. (2020) Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. ChemElectroChem, 7, 2297-2308. https://doi.org/10.1002/celc.202000515
|
[31]
|
Kundu, S. (2023) Editor’s Choice Collection: Advancing Electrocatalysts for a Sustainable World. Journal of Materials Chemistry A, 11, 22018-22019. https://doi.org/10.1039/d3ta90188b
|
[32]
|
Tao, Z., Wang, T., Wang, X., Zheng, J. and Li, X. (2016) MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 8, 35390-35397. https://doi.org/10.1021/acsami.6b13411
|
[33]
|
Kweon, D.H., Okyay, M.S., Kim, S., Jeon, J., Noh, H., Park, N., et al. (2020) Ruthenium Anchored on Carbon Nanotube Electrocatalyst for Hydrogen Production with Enhanced Faradaic Efficiency. Nature Communications, 11, Article No. 1278. https://doi.org/10.1038/s41467-020-15069-3
|
[34]
|
Stern, L., Feng, L., Song, F. and Hu, X. (2015) Ni2p as a Janus Catalyst for Water Splitting: The Oxygen Evolution Activity of Ni2P Nanoparticles. Energy & Environmental Science, 8, 2347-2351. https://doi.org/10.1039/c5ee01155h
|
[35]
|
Tung, C., Hsu, Y., Shen, Y., Zheng, Y., Chan, T., Sheu, H., et al. (2015) Reversible Adapting Layer Produces Robust Single-Crystal Electrocatalyst for Oxygen Evolution. Nature Communications, 6, Article No. 8106. https://doi.org/10.1038/ncomms9106
|
[36]
|
Shen, Y., Liang, L., Zhang, S., Huang, D., Zhang, J., Xu, S., et al. (2018) Organelle-Targeting Surface-Enhanced Raman Scattering (SERS) Nanosensors for Subcellular pH Sensing. Nanoscale, 10, 1622-1630. https://doi.org/10.1039/c7nr08636a
|
[37]
|
Meng, G., Tian, H., Peng, L., Ma, Z., Chen, Y., Chen, C., et al. (2021) Ru to W Electron Donation for Boosted HER from Acidic to Alkaline on Ru/WNO Sponges. Nano Energy, 80, Article ID: 105531. https://doi.org/10.1016/j.nanoen.2020.105531
|
[38]
|
Chen, C., Tian, H., Fu, Z., Cui, X., Kong, F., Meng, G., et al. (2022) Pt NPs-Loaded Siloxene Nanosheets for Hydrogen Co-Evolutions from Zn-H2O Fuel Cells-Powered Water-Splitting. Applied Catalysis B: Environmental, 304, Article ID: 121008. https://doi.org/10.1016/j.apcatb.2021.121008
|
[39]
|
Wang, T., Wang, P., Zang, W., Li, X., Chen, D., Kou, Z., et al. (2021) Nanoframes of Co3O4-Mo2N Heterointerfaces Enable High‐Performance Bifunctionality toward Both Electrocatalytic HER and OER. Advanced Functional Materials, 32, Article ID: 2107382. https://doi.org/10.1002/adfm.202107382
|
[40]
|
Hess, F., Smarsly, B.M. and Over, H. (2020) Catalytic Stability Studies Employing Dedicated Model Catalysts. Accounts of Chemical Research, 53, 380-389. https://doi.org/10.1021/acs.accounts.9b00467
|
[41]
|
Geiger, S., Kasian, O., Shrestha, B.R., Mingers, A.M., Mayrhofer, K.J.J. and Cherevko, S. (2016) Activity and Stability of Electrochemically and Thermally Treated Iridium for the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 163, F3132-F3138. https://doi.org/10.1149/2.0181611jes
|
[42]
|
Vorms, E.A., Papaefthymiou, V., Faverge, T., Bonnefont, A., Chatenet, M., Savinova, E.R., et al. (2024) Mechanism of the Hydrazine Hydrate Electrooxidation Reaction on Metallic Ni Electrodes in Alkaline Media as Revealed by Electrochemical Methods, Online DEMS and Ex Situ XPS. Electrochimica Acta, 507, Article ID: 145056. https://doi.org/10.1016/j.electacta.2024.145056
|
[43]
|
Feidenhans’l, A.A., Regmi, Y.N., Wei, C., Xia, D., Kibsgaard, J. and King, L.A. (2024) Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chemical Reviews, 124, 5617-5667. https://doi.org/10.1021/acs.chemrev.3c00712
|
[44]
|
Guo, C., Jiao, Y., Zheng, Y., Luo, J., Davey, K. and Qiao, S. (2019) Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. Chem, 5, 2429-2441. https://doi.org/10.1016/j.chempr.2019.06.016
|
[45]
|
Wu, G., Zheng, X., Cui, P., Jiang, H., Wang, X., Qu, Y., et al. (2019) A General Synthesis Approach for Amorphous Noble Metal Nanosheets. Nature Communications, 10, Article No. 4855. https://doi.org/10.1038/s41467-019-12859-2
|
[46]
|
Wang, L., Chen, M., Yan, Q., Xu, S., Chu, S., Chen, P., et al. (2019) A Sulfur-Tethering Synthesis Strategy toward High-Loading Atomically Dispersed Noble Metal Catalysts. Science Advances, 5, eaax6322. https://doi.org/10.1126/sciadv.aax6322
|
[47]
|
Yusuf, B.A., Yaseen, W., Xie, M., Zayyan, R.S., Muhammad, A.I., Nankya, R., et al. (2023) Recent Advances in Understanding and Design of Efficient Hydrogen Evolution Electrocatalysts for Water Splitting: A Comprehensive Review. Advances in Colloid and Interface Science, 311, Article ID: 102811. https://doi.org/10.1016/j.cis.2022.102811
|
[48]
|
Joshi, U., Malkhandi, S., Ren, Y., Tan, T.L., Chiam, S.Y. and Yeo, B.S. (2018) Ruthenium-Tungsten Composite Catalyst for the Efficient and Contamination-Resistant Electrochemical Evolution of Hydrogen. ACS Applied Materials & Interfaces, 10, 6354-6360. https://doi.org/10.1021/acsami.7b17970
|
[49]
|
Zhang, L., Roling, L.T., Wang, X., et al. (2015) Platinum-Based Nanocages with Subnanometer-Thick Walls and Well-Defined, Controllable Facets. Science, 349, 412-416.
|
[50]
|
Chen, Z., Wu, R., Liu, Y., Ha, Y., Guo, Y., Sun, D., et al. (2018) Ultrafine Co Nanoparticles Encapsulated in Carbon‐nanotubes‐Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction. Advanced Materials, 30, Article ID: 1802011. https://doi.org/10.1002/adma.201802011
|
[51]
|
Cheng, T., Wang, L., Merinov, B.V. and Goddard, W.A. (2018) Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH. Journal of the American Chemical Society, 140, 7787-7790. https://doi.org/10.1021/jacs.8b04006
|
[52]
|
Wu, H., Feng, C., Zhang, L., Zhang, J. and Wilkinson, D.P. (2021) Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochemical Energy Reviews, 4, 473-507. https://doi.org/10.1007/s41918-020-00086-z
|
[53]
|
Zhang, C. and Cheng, J. (2024) Surface and Interface Design of Electrocatalysts for Hydrogen/Oxygen Evolution Reactions: A Bridge to the Green-Oriented Transition of Energy. Surfaces and Interfaces, 49, Article ID: 104423. https://doi.org/10.1016/j.surfin.2024.104423
|
[54]
|
Dai, L., Yao, F., Yu, L., Fang, C., Li, J., Xue, L., et al. (2022) Boosting Alkaline Hydrogen Evolution on Stoichiometric Molybdenum Carbonitride via an Interstitial Vacancy‐Elimination Strategy. Advanced Energy Materials, 12, Article ID: 2200974. https://doi.org/10.1002/aenm.202200974
|
[55]
|
Yin, H., Rong, F. and Xie, Y. (2024) A Review of Typical Transition Metal Phosphides Electrocatalysts for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 52, 350-375. https://doi.org/10.1016/j.ijhydene.2023.08.333
|
[56]
|
Sheng, W., Myint, M., Chen, J.G. and Yan, Y. (2013) Correlating the Hydrogen Evolution Reaction Activity in Alkaline Electrolytes with the Hydrogen Binding Energy on Monometallic Surfaces. Energy & Environmental Science, 6, 1509-1512. https://doi.org/10.1039/c3ee00045a
|