[1]
|
中华医学会糖尿病学分会. 中国糖尿病防治指南(2024版) [J]. 中华糖尿病杂志, 2025, 17(1): 16-139.
|
[2]
|
Wiktorowska-Owczarek, A., Berezińska, M. and Nowak, J.Z. (2015) PUFAs: Structures, Metabolism and Functions. Advances in Clinical and Experimental Medicine, 24, 931-941. https://doi.org/10.17219/acem/31243
|
[3]
|
彭阳, 王战建. 肥胖相关慢性炎症与2型糖尿病[J]. 临床荟萃, 2016, 31(4): 458-461.
|
[4]
|
朱大龙. 炎症与2型糖尿病[J]. 中国糖尿病杂志, 2006(1): 73-74.
|
[5]
|
Lu, S., Li, Y., Qian, Z., Zhao, T., Feng, Z., Weng, X., et al. (2023) Role of the Inflammasome in Insulin Resistance and Type 2 Diabetes Mellitus. Frontiers in Immunology, 14, Article 1052756. https://doi.org/10.3389/fimmu.2023.1052756
|
[6]
|
Yan, Y., Jiang, W., Spinetti, T., Tardivel, A., Castillo, R., Bourquin, C., et al. (2013) ω-3 Fatty Acids Prevent Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome Activation. Immunity, 38, 1154-1163. https://doi.org/10.1016/j.immuni.2013.05.015
|
[7]
|
Lumeng, C.N., Bodzin, J.L. and Saltiel, A.R. (2007) Obesity Induces a Phenotypic Switch in Adipose Tissue Macrophage Polarization. Journal of Clinical Investigation, 117, 175-184. https://doi.org/10.1172/jci29881
|
[8]
|
Kim, F., Pham, M., Luttrell, I., Bannerman, D.D., Tupper, J., Thaler, J., et al. (2007) Toll-Like Receptor-4 Mediates Vascular Inflammation and Insulin Resistance in Diet-Induced Obesity. Circulation Research, 100, 1589-1596. https://doi.org/10.1161/circresaha.106.142851
|
[9]
|
Rogero, M. and Calder, P. (2018) Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients, 10, Article 432. https://doi.org/10.3390/nu10040432
|
[10]
|
王锋. 不同来源ω-3多不饱和脂肪酸对2型糖尿病合并血脂异常人群糖脂代谢的影响及机制研究[D]: [博士学位论文]. 南京: 东南大学, 2019.
|
[11]
|
Li, Q.F., Hao, H., Tu, W.S., Guo, N. and Zhou, X.Y. (2020) Maresins: Anti-Inflammatory Pro-Resolving Mediators with Therapeutic Potential. European Review for Medical and Pharmacological Sciences, 24, 7442-7453.
|
[12]
|
de Castro, G.S. and Calder, P.C. (2018) Non-Alcoholic Fatty Liver Disease and Its Treatment with N-3 Polyunsaturated Fatty Acids. Clinical Nutrition, 37, 37-55. https://doi.org/10.1016/j.clnu.2017.01.006
|
[13]
|
Rogero, M.M., Leão, M.d.C., Santana, T.M., Pimentel, M.V.d.M.B., Carlini, G.C.G., da Silveira, T.F.F., et al. (2020) Potential Benefits and Risks of ω-3 Fatty Acids Supplementation to Patients with COVID-19. Free Radical Biology and Medicine, 156, 190-199. https://doi.org/10.1016/j.freeradbiomed.2020.07.005
|
[14]
|
Clària, J., Titos, E., López-Vicario, C. and González-Périz, A. (2010) Resolvins, Protectins and Other Lipid Mediators in Obesity-Associated Inflammatory Disorders. Drug Discovery Today: Disease Mechanisms, 7, e219-e225. https://doi.org/10.1016/j.ddmec.2010.10.002
|
[15]
|
Burillo, E., Martin-Fuentes, P., Mateo-Gallego, R., Baila-Rueda, L., Cenarro, A., Ros, E., et al. (2012) ω-3 Fatty Acids and HDL. How Do They Work in the Prevention of Cardiovascular Disease? Current Vascular Pharmacology, 10, 432-441. https://doi.org/10.2174/157016112800812845
|
[16]
|
Skulas-Ray, A.C., Wilson, P.W.F., Harris, W.S., Brinton, E.A., Kris-Etherton, P.M., Richter, C.K., et al. (2019) ω-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory from the American Heart Association. Circulation, 140, e673-e691. https://doi.org/10.1161/cir.0000000000000709
|
[17]
|
Shearer, G.C., Savinova, O.V. and Harris, W.S. (2012) Fish Oil—How Does It Reduce Plasma Triglycerides? Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1821, 843-851. https://doi.org/10.1016/j.bbalip.2011.10.011
|
[18]
|
柳和春. ω-3多不饱和脂肪酸对2型糖尿病人群和模型动物高密度脂蛋白亚组分和动脉粥样硬化影响及机制研究[D]: [博士学位论文]. 南京: 东南大学, 2023.
|
[19]
|
Backes, J., Anzalone, D., Hilleman, D. and Catini, J. (2016) The Clinical Relevance of ω-3 Fatty Acids in the Management of Hypertriglyceridemia. Lipids in Health and Disease, 15, Article No. 118. https://doi.org/10.1186/s12944-016-0286-4
|
[20]
|
Albracht-Schulte, K., Kalupahana, N.S., Ramalingam, L., Wang, S., Rahman, S.M., Robert-McComb, J., et al. (2018) ω-3 Fatty Acids in Obesity and Metabolic Syndrome: A Mechanistic Update. The Journal of Nutritional Biochemistry, 58, 1-16. https://doi.org/10.1016/j.jnutbio.2018.02.012
|
[21]
|
Zayed, E.A., AinShoka, A.A., El Shazly, K.A. and Abd El Latif, H.A. (2018) Improvement of Insulin Resistance via Increase of GLUT4 and PPARγ in Metabolic Syndrome‐Induced Rats Treated with ω-3 Fatty Acid Orl-Carnitine. Journal of Biochemical and Molecular Toxicology, 32, e22218. https://doi.org/10.1002/jbt.22218
|
[22]
|
Yaribeygi, H., Sathyapalan, T., Atkin, S.L. and Sahebkar, A. (2020) Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 8609213. https://doi.org/10.1155/2020/8609213
|
[23]
|
Fan, C., Zirpoli, H. and Qi, K. (2013) N-3 Fatty Acids Modulate Adipose Tissue Inflammation and Oxidative Stress. Current Opinion in Clinical Nutrition and Metabolic Care, 16, 124-132. https://doi.org/10.1097/mco.0b013e32835c02c8
|
[24]
|
Yang, J., Fernández-Galilea, M., Martínez-Fernández, L., González-Muniesa, P., Pérez-Chávez, A., Martínez, J.A., et al. (2019) Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of ω-3 Fatty Acid Supplementation. Nutrients, 11, Article 872. https://doi.org/10.3390/nu11040872
|
[25]
|
Adkins, Y. and Kelley, D.S. (2010) Mechanisms Underlying the Cardioprotective Effects of ω-3 Polyunsaturated Fatty Acids. The Journal of Nutritional Biochemistry, 21, 781-792. https://doi.org/10.1016/j.jnutbio.2009.12.004
|
[26]
|
Lepretti, M., Martucciello, S., Burgos Aceves, M., Putti, R. and Lionetti, L. (2018) ω-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients, 10, Article 350. https://doi.org/10.3390/nu10030350
|
[27]
|
Tremblay, B.L., Guénard, F., Rudkowska, I., Lemieux, S., Couture, P. and Vohl, M. (2017) Epigenetic Changes in Blood Leukocytes Following an ω-3 Fatty Acid Supplementation. Clinical Epigenetics, 9, Article No. 43. https://doi.org/10.1186/s13148-017-0345-3
|
[28]
|
Amaral, C.L.d., Milagro, F.I., Curi, R. and Martínez, J.A. (2014) DNA Methylation Pattern in Overweight Women under an Energy-Restricted Diet Supplemented with Fish Oil. BioMed Research International, 2014, Article ID: 675021. https://doi.org/10.1155/2014/675021
|
[29]
|
Aslibekyan, S., Wiener, H.W., Havel, P.J., Stanhope, K.L., O’Brien, D.M., Hopkins, S.E., et al. (2014) DNA Methylation Patterns Are Associated with N-3 Fatty Acid Intake in Yup’ik People. The Journal of Nutrition, 144, 425-430. https://doi.org/10.3945/jn.113.187203
|
[30]
|
Kaliannan, K., Li, X., Wang, B., Pan, Q., Chen, C., Hao, L., et al. (2019) Multi-Omic Analysis in Transgenic Mice Implicates ω-6/ω-3 Fatty Acid Imbalance as a Risk Factor for Chronic Disease. Communications Biology, 2, Article No. 276. https://doi.org/10.1038/s42003-019-0521-4
|
[31]
|
Ozato, N., Saito, S., Yamaguchi, T., Katashima, M., Tokuda, I., Sawada, K., et al. (2019) Blautia Genus Associated with Visceral Fat Accumulation in Adults 20-76 Years of Age. npj Biofilms and Microbiomes, 5, Article No. 28. https://doi.org/10.1038/s41522-019-0101-x
|
[32]
|
Miao, Z., Lin, J., Mao, Y., Chen, G., Zeng, F., Dong, H., et al. (2020) Erythrocyte N-6 Polyunsaturated Fatty Acids, Gut Microbiota, and Incident Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care, 43, 2435-2443. https://doi.org/10.2337/dc20-0631
|
[33]
|
Wan, Y., Wang, F., Yuan, J., Li, J., Jiang, D., Zhang, J., et al. (2019) Effects of Dietary Fat on Gut Microbiota and Faecal Metabolites, and Their Relationship with Cardiometabolic Risk Factors: A 6-Month Randomised Controlled-Feeding Trial. Gut, 68, 1417-1429. https://doi.org/10.1136/gutjnl-2018-317609
|
[34]
|
Qian, X., Klatt, S., Bennewitz, K., Wohlfart, D.P., Lou, B., Meng, Y., et al. (2023) Impaired Detoxification of Trans, Trans‐2,4-Decadienal, an Oxidation Product from ω-6 Fatty Acids, Alters Insulin Signaling, Gluconeogenesis and Promotes Microvascular Disease. Advanced Science, 11, Article ID: 2302325. https://doi.org/10.1002/advs.202302325
|
[35]
|
Wohlfart, D.P., Lou, B., Middel, C.S., Morgenstern, J., Fleming, T., Sticht, C., et al. (2022) Accumulation of Acetaldehyde in aldh2.1−/− Zebrafish Causes Increased Retinal Angiogenesis and Impaired Glucose Metabolism. Redox Biology, 50, Article ID: 102249. https://doi.org/10.1016/j.redox.2022.102249
|
[36]
|
Lodd, E., Wiggenhauser, L.M., Morgenstern, J., Fleming, T.H., Poschet, G., Büttner, M., et al. (2019) The Combination of Loss of Glyoxalase1 and Obesity Results in Hyperglycemia. JCI Insight, 4, e126154. https://doi.org/10.1172/jci.insight.126154
|
[37]
|
Qi, H., Schmöhl, F., Li, X., Qian, X., Tabler, C.T., Bennewitz, K., et al. (2021) Reduced Acrolein Detoxification in akr1a1a Zebrafish Mutants Causes Impaired Insulin Receptor Signaling and Microvascular Alterations. Advanced Science, 8, Article ID: 2101281. https://doi.org/10.1002/advs.202101281
|
[38]
|
Kang, J.X. (2003) The Importance of ω-6/ω-3 Fatty Acid Ratio in Cell Function. In: Simopoulos, A.P. and Cleland, L.G., Eds., World Review of Nutrition and Dietetics, KARGER, 23-36. https://doi.org/10.1159/000073790
|
[39]
|
Simopoulos, A.P. (1998) Overview of Evolutionary Aspects of ω3 Fatty Acids in the Diet. In: Simopoulos, A.P. and Cleland, L.G., Eds., World Review of Nutrition and Dietetics, KARGER, 1-11. https://doi.org/10.1159/000059674
|
[40]
|
Simopoulos, A.P. (2002) The Importance of the Ratio of ω-6/ω-3 Essential Fatty Acids. Biomedicine & Pharmacotherapy, 56, 365-379. https://doi.org/10.1016/s0753-3322(02)00253-6
|
[41]
|
Arterburn, L.M., Hall, E.B. and Oken, H. (2006) Distribution, Interconversion, and Dose Response of N-3 Fatty Acids in Humans. The American Journal of Clinical Nutrition, 83, 1467S-1476S. https://doi.org/10.1093/ajcn/83.6.1467s
|
[42]
|
Bartram, H., Gostner, A., Scheppach, W., Reddy, B.S., Rao, C.V., Dusel, G., et al. (1993) Effects of Fish Oil on Rectal Cell Proliferation, Mucosal Fatty Acids, and Prostaglandin E2 Release in Healthy Subjects. Gastroenterology, 105, 1317-1322. https://doi.org/10.1016/0016-5085(93)90135-y
|
[43]
|
吴红梅, 赖炳森, 吴玉萍, 等. n6、n3系多烯脂酸配比油对兔血浆载脂蛋白的影响[J]. 上海实验动物科学, 2002(1): 39-41.
|