运动对疼痛共情的影响
The Influence of Exercise on Pain Empathy
摘要: 先前的研究已经报告了运动和疼痛之间的关系,然而,对于运动如何调节个体对他人疼痛的反应仍知之甚少。深入探讨运动对疼痛共情的潜在影响,可以为共情的机制提供新的理解。首先,文章从疼痛共情的概念、理论、测量方法及其认知神经机制介绍了其研究进展;其次,介绍了运动与疼痛共情可能的关系;最后,介绍了经颅磁刺激技术在疼痛共情研究中可能的运用,为探索运动对疼痛共情的影响提供了神经调控方面的视角。现有研究结果表明,运动与共情之间可能存在着联系,但是对其因果关系并不明晰,同时缺少认知神经方面的证据,未来的研究需要结合问卷、行为和脑科学手段,多角度地探索运动对疼痛共情的影响机制。
Abstract: Previous research has established a relationship between exercise and pain. However, how exercise modulates an individual’s response to others’ pain remains poorly understood. Investigating the potential impact of exercise on pain empathy could provide new insights into the mechanisms of empathy. First, this paper reviews research progress on pain empathy, covering its concept, theories, measurement methods, and underlying cognitive and neural mechanisms. Second, it discusses the potential relationship between exercise and pain empathy. Finally, it introduces the possible application of transcranial magnetic stimulation (TMS) in pain empathy research, offering a neuromodulatory perspective for exploring exercise’s effects. Current findings suggest a possible link between exercise and empathy, but the causal relationship remains unclear, and neurocognitive evidence is lacking. Future research should integrate questionnaires, behavioral paradigms, and neuroscientific techniques to explore the mechanisms underlying exercise’s influence on pain empathy from multiple angles.
文章引用:陈露, 邵民. 运动对疼痛共情的影响[J]. 社会科学前沿, 2025, 14(8): 259-267. https://doi.org/10.12677/ass.2025.148713

1. 引言

当代社会,人们的生活日益紧凑,社会互动不断增加,因此,对情感共鸣和相互理解的需求日益显著[1]。共情不仅体现在对他人喜悦和幸福的共鸣中,更深刻地表现在对他人痛苦和困境的理解与分享[2] [3]。疼痛共情,作为共情的一种特殊形式,涉及对他人疼痛体验的感知和情感反应,成为心理学、神经科学和社会学等多个领域的研究热点[3] [4]

过去的研究已经揭示了共情的多层次结构,包括情感共情、认知共情以及共情关心等方面[3] [5]-[7]。在这个层次结构中,疼痛共情被认为是一种情感和认知的交织,不仅涉及对疼痛刺激的认知处理,还包括对疼痛者情感状态的共情反应[3] [4]。因此,深入了解疼痛共情的机制对于理解人际互动、情感交流以及共情在社会中的功能具有重要价值[8] [9]

疼痛共情的研究方法涵盖了行为实验、神经成像技术以及神经调控手段等多个层面。通过观察被试对疼痛刺激的行为反应、脑电图(Electroencephalogram, EEG) [2] [8]-[10]和功能性磁共振成像(Functional magnetic resonance imaging, fMRI) [3]-[11]技术的运用,以及经颅磁刺激(Transcranial magnetic stimulation, TMS)对共情的干预研究[12],研究者已经在认知神经科学领域为我们揭示了共情的神经基础。

然而,在已有的研究中,运动对疼痛共情的影响成为一个尚未充分深入的领域。运动作为一种积极的身体活动,早已被证明对个体的心理和生理健康产生积极影响[13]-[20],但其与共情之间的因果关联和具体的神经机制尚未得到系统性的实验验证。

本研究梳理了疼痛共情的相关概念、研究方法、神经基础和运动对其的影响,提出可能的研究方向。

2. 疼痛共情相关概述

2.1. 疼痛共情的概念

共情(Empathy)指对他人的感受和情绪感同身受的能力[9] [21]-[24],在社会互动中发挥着重要作用[3] [5] [6] [25]。共情由两部分组成:(1) 认知共情,指理解另一个个体感受的能力[26];(2) 情绪共情,即观察者对另一个个体的精神状态的情感反应[27]。疼痛共情(Empathy for pain)则被描述为感知和判断疼痛的能力[3] [6] [10],包括理解他人痛苦的认知和情绪共情成分[2]

而神经认知模型(Neurocognitive models)则认为共情是一个复杂的、多面性的结构,由三个因素组成:认知共情、情感分享和共情关心[7] [28] [29]。然而,并不是所有的研究都区分情感分享和共情关心,而是使用“情绪共情”来指代这两个术语。其中,情感分享也被称为情感传染或共鸣,反映了分享或匹配他人情绪状态的能力[30]。共情关心是指共鸣、同情、被他人的痛苦所感动等一系列情感[31]。根据这些定义,情感上分享他人表现出的负面情绪是一种以自我为中心的共情或个人痛苦[32] [33],而共情关心是相对积极的他人导向的情感,与温暖和关怀相关[34] [35]。认知共情类似于观点采择或心理理论,是指一系列以他人为导向的认知过程,用于推断他人的信念、意图和感受[36]

2.2. 疼痛共情的测量

在以往研究中,疼痛共情大多采用与疼痛有关的图片或声音刺激进行诱发[6] [10] [37]-[42]。例如,给被试呈现一系列的疼痛或非疼痛的图片,要求被试判断图片是疼痛的还是非疼痛的,随后要求被试在一个数字评分量表上(NRS)评价图片刺激的疼痛强度和自己在观看刺激时的情绪反应。被试判断刺激的反应时、正确率与随后的疼痛强度、情绪反应的主观报告被作为疼痛共情反应的指标。或者要求被试阅读和疼痛场景有关的文本后,进行疼痛强度、情绪反应和共情关心的程度的主观报告。这种行为层面的疼痛共情反应也可以被划分为基于图片任务的范式和基于文本的范式[43]

在认知神经科学领域,疼痛共情也大多以疼痛相关刺激所诱发的响应作为指标。在疼痛共情的EEG研究中,研究者大多使用疼痛刺激诱发的事件相关电位(Event related potential, ERP)作为衡量疼痛共情反应的指标[9] [10] [44]-[48]。对于视觉刺激来说,早期ERP成分如N1、P2和N1代表着情绪共情[9] [10] [45]-[48];晚期ERP成分如P3和LPP代表着认知共情[9] [10] [45] [47] [49]。在fMRI研究中,研究者倾向于观察接受疼痛相关刺激后被试的双侧前脑岛(AI)、前扣带回皮质(ACC)、前额叶(PFC)的血氧水平依赖(Blood oxygen level dependent; BOLD),来衡量疼痛共情反应的大小[3] [4] [11]

2.3. 疼痛共情的影响因素及神经基础

基于疼痛共情沟通模型[50],个体的疼痛共情主要受观察者自身、疼痛者和疼痛者与观察者的关系这三个因素的影响。

从观察者的角度出发,观察者的认知是影响其自身疼痛共情的重要因素。比如,观察者能够自上而下地调节对疼痛线索的注意,从而影响自身对他人疼痛的共情反应[6] [10] [47] [51] [52]

观察者的疼痛经验也属于其认知因素中的重要部分[53] [54]。对于他人疼痛经验来说,研究表明长期接触疼痛信息的医生倾向于下调对他人疼痛的情绪反应[2] [55],若长期接受他人疼痛的信息,随后的共情反应将会减弱,这种共情反应的减弱表现在代表着情绪共情的N1成分上[41] [56]。而对于自身疼痛经验来说,在一项ERP研究中发现,相比于热刺激,接受热痛刺激后被试倾向于对随后呈现的疼痛图片刺激判断得更快且报告更高的疼痛强度评分,并且其因疼痛图片刺激诱发P3波幅显著降低,这代表了被试评估他人疼痛刺激时花费了更少的认知资源,即更容易进行疼痛共情[8]。在有关疼痛和疼痛共情的研究中发现,自身疼痛激活的脑区与他人疼痛激活的脑区有着重叠[3] [4] [11] [57]-[59],如双侧前脑岛(AI)、前扣带回皮质(ACC)和前额叶(PFC),这些脑区也属于镜像神经元系统的一部分[1],镜像神经元系统是疼痛共情的关键脑区[1]

3. 运动对疼痛共情的影响

运动是一种为了保持身体健康,有计划、有组织和重复的身体活动[60]。大量文献表明,定期锻炼和身体活动对健康有许多益处[61] [62],包括预防和改善代谢性疾病,如糖尿病、代谢综合征、肥胖、心脏病、中风和关节炎[15] [17]

运动的好处不仅限于身体健康,还包括我们的心理健康[63]。有规律的体力活动对精神病患者有显著益处[64],使其成为一种有效的治疗策略[14]。有研究表明,有规律的有氧运动可以减少焦虑,增加大脑中的鸢尾素水平[19],增强记忆力认知能力[13] [18] [20]。此外,运动还有助于缓解抑郁[65]和改善睡眠质量,包括加快入睡速度和提升深度睡眠质量[16]

运动对个体的共情行为起着促进作用。一项问卷研究发现,年轻人自我报告的共情水平与其身体活动水平呈正相关[66]。一项动物实验也表明,跑步(自愿轮跑)增加了小鼠的催产素水平,增加了小鼠的共情行为(开门救助同伴),并且运动组小鼠开门救助同伴所花时间显著少于对照组小鼠[67]

运动也被用于改善儿童的社交相关能力。一项综合格斗的干预研究发现,参与了综合格斗训练后的ASD儿童比对照组儿童有着更高的社交能力得分[68]。并且,参与柔道训练的儿童,相比于未参与训练的同龄人有着更高的共情水平[69]

同时,神经科学领域的研究表明,控制运动的前运动区属于镜像神经元系统的一部分[1],进行一次适度的运动后,被试的镜像神经元系统被明显地激活[70]。这也提示着运动与疼痛共情似乎存在着认知神经机制上的重合。

4. 经颅磁刺激技术对共情的作用

非侵入性的神经调控技术不光在疼痛和各种精神疾病的干预中发挥着重要作用[71]-[75],也为揭示特定脑区是如何因果性地支持人类高阶认知功能提供了重要途径[76] [77]。其中,TMS是一种常用的神经调控技术。

以往的研究表明,重复经颅磁刺激(repetitive Transcranial Magnetic Stimulatio, rTMS)技术已经在治疗疼痛和抑郁症方面发挥着强大作用[78]-[82]。具体而言,rTMS通常用于对疼痛对侧初级运动皮层(M1)进行刺激从而产生镇痛效应[83] [84],对背外侧前额叶进行刺激则对抑郁症患者产生强大的抗抑郁作用[83]。一项针对重性抑郁症患者的双盲干预研究发现[12],相比于传统的治疗左背外侧前额叶皮质(lDLPFC),使用高频rTMS (20 HZ)治疗富含镜像神经元的左顶叶下叶(lIPL)可以更有效地提高抑郁症患者的共情水平。另一项研究表明,使用低频rTMS (1 HZ)对右颞顶联合区(TPJ)进行抑制,可以降低被试报告的共情水平[85]。上述证据也表明了TMS可以有效的调节个体的共情水平。

一项有关疼痛共情的TMS研究表明[86],被试在观看疼痛的手部视频时,通过TMS诱发的运动诱发电位(MEPs)测量到的运动皮质输出增加。这也为运动皮层在疼痛共情中产生着重要作用[1] [70]提供了证据。

5. 以往研究不足

首先,以往有关运动量(身体活动水平)与共情的关系的探讨仅停留在横断研究上[66],还未进行过纵向的调查。

其次,虽然有研究发现进行运动训练可以提高共情水平,但是这些研究给出的证据仅停留在行为层面上[68] [69],有关运动影响共情的神经科学研究也只是从侧面给出了证据(运动后镜像神经元系统激活) [1] [70],还未有研究正面探讨运动影响疼痛共情的认知神经机制。

最后,现有的研究也都只关注了是否运动对共情的影响,还未更深入地探究M1皮层在疼痛共情中产生的作用。

6. 展望

综上所述,现有研究初步揭示了运动与疼痛共情之间的潜在关联,但对其具体作用机制,尤其是认知神经层面的因果机制,仍缺乏系统深入的探索。未来研究应着力于以下方面:

纵向追踪研究:采用纵向设计结合问卷法,系统考察不同运动模式、强度及持续时间对身体活动水平与疼痛共情水平动态变化的影响,以揭示两者间潜在的因果关系与发展轨迹。

多模态神经机制探究:整合高时间分辨率的脑电图(ERP)与高空间分辨率的功能性磁共振成像(fMRI)技术,深入解析运动如何影响疼痛共情加工的不同阶段,并精确定位其背后涉及的神经环路。

因果性神经调控验证:利用经颅磁刺激(TMS)技术,特别是针对初级运动皮层(M1)进行调控,结合行为与神经指标,直接检验M1在运动调控疼痛共情过程中的具体角色及其神经通路,为运动影响疼痛共情的因果机制提供关键证据。

这种整合纵向调查、多模态脑成像(行为、ERP、fMRI)与神经调控(TMS)的研究策略,将能够多维度、多层次地阐明运动影响疼痛共情的认知与神经机制。这不仅将深化我们对共情本质的理解,也有望为基于运动干预促进个体心理健康提供创新的理论依据和实践策略。

NOTES

*通讯作者。

参考文献

[1] Sliwa, J. and Freiwald, W.A. (2017) A Dedicated Network for Social Interaction Processing in the Primate Brain. Science, 356, 745-749.
https://doi.org/10.1126/science.aam6383
[2] Decety, J., Yang, C.Y. and Cheng, Y. (2010) Physicians Down-Regulate Their Pain Empathy Response: An Event-Related Brain Potential Study. NeuroImage, 50, 1676-1682.
https://doi.org/10.1016/j.neuroimage.2010.01.025
[3] Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R.J. and Frith, C.D. (2004) Empathy for Pain Involves the Affective but Not Sensory Components of Pain. Science, 303, 1157-1162.
https://doi.org/10.1126/science.1093535
[4] Fan, Y., Duncan, N.W., de Greck, M. and Northoff, G. (2011) Is There a Core Neural Network in Empathy? An fMRI Based Quantitative Meta-Analysis. Neuroscience & Biobehavioral Reviews, 35, 903-911.
https://doi.org/10.1016/j.neubiorev.2010.10.009
[5] Li, Y., Wei, Z., Shao, M., Hong, M., Yang, D., Luo, L., et al. (2022) Empathy for Pain in Individuals with Autistic Traits during Observation of Static and Dynamic Stimuli. Frontiers in Psychiatry, 13, Article 1022087.
https://doi.org/10.3389/fpsyt.2022.1022087
[6] Meng, J., Shen, L., Li, Z. and Peng, W. (2019) Top-Down Effects on Empathy for Pain in Adults with Autistic Traits. Scientific Reports, 9, Article No. 8022.
https://doi.org/10.1038/s41598-019-44400-2
[7] Oliver, L.D., Neufeld, R.W.J., Dziobek, I. and Mitchell, D.G.V. (2016) Distinguishing the Relationship between Different Aspects of Empathic Responding as a Function of Psychopathic, Autistic, and Anxious Traits. Personality and Individual Differences, 99, 81-88.
https://doi.org/10.1016/j.paid.2016.04.058
[8] Meng, J., Jackson, T., Chen, H., Hu, L., Yang, Z., Su, Y., et al. (2013) Pain Perception in the Self and Observation of Others: An ERP Investigation. NeuroImage, 72, 164-173.
https://doi.org/10.1016/j.neuroimage.2013.01.024
[9] Peng, W., Lou, W., Huang, X., Ye, Q., Tong, R.K.Y. and Cui, F. (2021) Suffer Together, Bond Together: Brain-to-Brain Synchronization and Mutual Affective Empathy When Sharing Painful Experiences. NeuroImage, 238, Article 118249.
https://doi.org/10.1016/j.neuroimage.2021.118249
[10] Fan, Y. and Han, S. (2008) Temporal Dynamic of Neural Mechanisms Involved in Empathy for Pain: An Event-Related Brain Potential Study. Neuropsychologia, 46, 160-173.
https://doi.org/10.1016/j.neuropsychologia.2007.07.023
[11] Lamm, C., Decety, J. and Singer, T. (2011) Meta-Analytic Evidence for Common and Distinct Neural Networks Associated with Directly Experienced Pain and Empathy for Pain. NeuroImage, 54, 2492-2502.
https://doi.org/10.1016/j.neuroimage.2010.10.014
[12] Jahangard, L., Tayebi, M., Haghighi, M., Ahmadpanah, M., Holsboer-Trachsler, E., Sadeghi Bahmani, D., et al. (2019) Does rTMS on Brain Areas of Mirror Neurons Lead to Higher Improvements on Symptom Severity and Empathy Compared to the rTMS Standard Procedure—Results from a Double-Blind Interventional Study in Individuals with Major Depressive Disorders. Journal of Affective Disorders, 257, 527-535.
https://doi.org/10.1016/j.jad.2019.07.019
[13] Babaei, P. and Azari, H.B. (2021) Exercise Training Improves Memory Performance in Older Adults: A Narrative Review of Evidence and Possible Mechanisms. Frontiers in Human Neuroscience, 15, Article 771553.
https://doi.org/10.3389/fnhum.2021.771553
[14] Knöchel, C., Oertel-Knöchel, V., O’Dwyer, L., Prvulovic, D., Alves, G., Kollmann, B., et al. (2012) Cognitive and Behavioural Effects of Physical Exercise in Psychiatric Patients. Progress in Neurobiology, 96, 46-68.
https://doi.org/10.1016/j.pneurobio.2011.11.007
[15] Kyu, H.H., Bachman, V.F., Alexander, L.T., Mumford, J.E., Afshin, A., Estep, K., et al. (2016) Physical Activity and Risk of Breast Cancer, Colon Cancer, Diabetes, Ischemic Heart Disease, and Ischemic Stroke Events: Systematic Review and Dose-Response Meta-Analysis for the Global Burden of Disease Study 2013. British Medical Journal, 354, i3857.
https://doi.org/10.1136/bmj.i3857
[16] Mahindru, A., Patil, P. and Agrawal, V. (2023) Role of Physical Activity on Mental Health and Well-Being: A Review. Cureus, 15, e33475.
https://doi.org/10.7759/cureus.33475
[17] Posadzki, P., Pieper, D., Bajpai, R., Makaruk, H., Könsgen, N., Neuhaus, A.L., et al. (2020) Exercise/Physical Activity and Health Outcomes: An Overview of Cochrane Systematic Reviews. BMC Public Health, 20, Article No. 1724.
https://doi.org/10.1186/s12889-020-09855-3
[18] Uysal, N., Tugyan, K., Kayatekin, B.M., Acikgoz, O., Bagriyanik, H.A., Gonenc, S., et al. (2005) The Effects of Regular Aerobic Exercise in Adolescent Period on Hippocampal Neuron Density, Apoptosis and Spatial Memory. Neuroscience Letters, 383, 241-245.
https://doi.org/10.1016/j.neulet.2005.04.054
[19] Uysal, N., Yuksel, O., Kizildag, S., Yuce, Z., Gumus, H., Karakilic, A., et al. (2018) Regular Aerobic Exercise Correlates with Reduced Anxiety and Incresed Levels of Irisin in Brain and White Adipose Tissue. Neuroscience Letters, 676, 92-97.
https://doi.org/10.1016/j.neulet.2018.04.023
[20] Xu, L., Gu, H., Cai, X., Zhang, Y., Hou, X., Yu, J., et al. (2023) The Effects of Exercise for Cognitive Function in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. International Journal of Environmental Research and Public Health, 20, Article 1088.
https://doi.org/10.3390/ijerph20021088
[21] Decety, J. and Jackson, P.L. (2004) The Functional Architecture of Human Empathy. Behavioral and Cognitive Neuroscience Reviews, 3, 71-100.
https://doi.org/10.1177/1534582304267187
[22] Guo, R. and Wu, Z. (2021) Empathy as a Buffer: How Empathy Moderates the Emotional Effects on Preschoolers’ Sharing. British Journal of Psychology, 112, 412-432.
https://doi.org/10.1111/bjop.12466
[23] Hamada, M., Matsubayashi, J., Tanaka, K., Furuya, M., Matsuhashi, M., Mima, T., et al. (2022) People with High Empathy Show Increased Cortical Activity around the Left Medial Parieto-Occipital Sulcus after Watching Social Interaction of On-Screen Characters. Cerebral Cortex, 32, 3581-3601.
https://doi.org/10.1093/cercor/bhab435
[24] Persson, B.N. and Kajonius, P.J. (2016) Empathy and Universal Values Explicated by the Empathy-Altruism Hypothesis. The Journal of Social Psychology, 156, 610-619.
[25] Harrison, K. (2021) Compassion Fatigue Understanding Empathy. Veterinary Clinics of North America: Small Animal Practice, 51, 1041-1051.
https://doi.org/10.1016/j.cvsm.2021.04.020
[26] Cui, F., Huang, X., Jing, Y., Luo, Y., Liu, J. and Gu, R. (2022) How Resource Sharing Resists Scarcity: The Role of Cognitive Empathy and Its Neurobiological Mechanisms. Cerebral Cortex, 32, 5330-5342.
[27] Sodoma, K.A. (2022) Emotional Gaslighting and Affective Empathy. International Journal of Philosophical Studies, 30, 320-338.
https://doi.org/10.1080/09672559.2022.2121894
[28] Levy, J. and Bader, O. (2020) Graded Empathy: A Neuro-Phenomenological Hypothesis. Frontiers in Psychiatry, 11, Article 554848.
https://doi.org/10.3389/fpsyt.2020.554848
[29] Simko, L.C., Rhodes, D.C., Gumireddy, A., Schreiber, J., Booth, A. and Hawkins, M. (2021) Effects of a Chronic Pain Simulation Empathy Training Kit on the Empathy of Interprofessional Healthcare Students for Chronic Pain Patients. Clinical Simulation in Nursing, 56, 66-75.
https://doi.org/10.1016/j.ecns.2021.04.003
[30] Jordan, M.R., Amir, D. and Bloom, P. (2016) Are Empathy and Concern Psychologically Distinct? Emotion, 16, 1107-1116.
https://doi.org/10.1037/emo0000228
[31] Stocks, E.L., Lishner, D.A., Waits, B.L. and Downum, E.M. (2011) I’m Embarrassed for You: The Effect of Valuing and Perspective Taking on Empathic Embarrassment and Empathic Concern. Journal of Applied Social Psychology, 41, 1-26.
https://doi.org/10.1111/j.1559-1816.2010.00699.x
[32] Eisenberg, N., Fabes, R.A., Miller, P.A., Fultz, J., Shell, R., Mathy, R.M., et al. (1989) Relation of Sympathy and Personal Distress to Prosocial Behavior: A Multimethod Study. Journal of Personality and Social Psychology, 57, 55-66.
https://doi.org/10.1037/0022-3514.57.1.55
[33] Pérez-Manrique, A. and Gomila, A. (2018) The Comparative Study of Empathy: Sympathetic Concern and Empathic Perspective-Taking in Non-Human Animals. Biological Reviews, 93, 248-269.
https://doi.org/10.1111/brv.12342
[34] Klimecki, O.M., Leiberg, S., Ricard, M. and Singer, T. (2014) Differential Pattern of Functional Brain Plasticity after Compassion and Empathy Training. Social Cognitive and Affective Neuroscience, 9, 873-879.
https://doi.org/10.1093/scan/nst060
[35] Stellar, J.E., Cohen, A., Oveis, C. and Keltner, D. (2015) Affective and Physiological Responses to the Suffering of Others: Compassion and Vagal Activity. Journal of Personality and Social Psychology, 108, 572-585.
https://doi.org/10.1037/pspi0000010
[36] Decety, J. and Yoder, K.J. (2016) Empathy and Motivation for Justice: Cognitive Empathy and Concern, but Not Emotional Empathy, Predict Sensitivity to Injustice for Others. Social Neuroscience, 11, 1-14.
https://doi.org/10.1080/17470919.2015.1029593
[37] Flasbeck, V., Matthiessen, A., Alabowitz, A., Rusu, A.C. and Brüne, M. (2023) Is Your Pain My Pain? A Study Exploring the Relation between Pain Sensitivity, Pain Thresholds and Empathy for Somatic and Psychological Pain. British Journal of Clinical Psychology, 62, 748-761.
https://doi.org/10.1111/bjc.12436
[38] Meng, J., Li, Y., Luo, L., Li, L., Jiang, J., Liu, X., et al. (2023) The Empathy for Pain Stimuli System (EPSS): Development and Preliminary Validation. Behavior Research Methods, 56, 784-803.
https://doi.org/10.3758/s13428-023-02087-4
[39] Mouras, H. and Lelard, T. (2021) Approach-Avoidance Behavior in the Empathy for Pain Model as Measured by Posturography. Brain Sciences, 11, Article 1426.
https://doi.org/10.3390/brainsci11111426
[40] Ren, Q., Lu, X., Zhao, Q., Zhang, H. and Hu, L. (2020) Can Self-Pain Sensitivity Quantify Empathy for Others’ Pain? Psychophysiology, 57, e13637.
https://doi.org/10.1111/psyp.13637
[41] Shao, M., Li, L., Li, X., Wei, Z., Wang, J., Hong, M., et al. (2023) The Effect of Top-Down Attention on Empathy Fatigue. Cerebral Cortex, 34, bhad441.
https://doi.org/10.1093/cercor/bhad441
[42] Yang, D., Li, X., Zhang, Y., Li, Z. and Meng, J. (2022) Skin Color and Attractiveness Modulate Empathy for Pain: An Event-Related Potential Study. Frontiers in Psychology, 12, Article 780633.
https://doi.org/10.3389/fpsyg.2021.780633
[43] Mischkowski, D., Crocker, J. and Way, B.M. (2016) From Painkiller to Empathy Killer: Acetaminophen (Paracetamol) Reduces Empathy for Pain. Social Cognitive and Affective Neuroscience, 11, 1345-1353.
https://doi.org/10.1093/scan/nsw057
[44] Chen, T., Li, Q., Peng, M. and Li, X. (2023) Moral Transgression Modulates Empathy for Pain: Evidence from ERP and EEG Data. Biological Psychology, 176, Article 108467.
https://doi.org/10.1016/j.biopsycho.2022.108467
[45] Davis, M.H. (1983) Measuring Individual Differences in Empathy: Evidence for a Multidimensional Approach. Journal of Personality and Social Psychology, 44, 113-126.
https://doi.org/10.1037/0022-3514.44.1.113
[46] Duan, H., Wang, Y.J. and Lei, X. (2021) The Effect of Sleep Deprivation on Empathy for Pain: An ERP Study. Neuropsychologia, 163, Article 108084.
https://doi.org/10.1016/j.neuropsychologia.2021.108084
[47] Gu, X. and Han, S. (2007) Attention and Reality Constraints on the Neural Processes of Empathy for Pain. NeuroImage, 36, 256-267.
https://doi.org/10.1016/j.neuroimage.2007.02.025
[48] Wang, H., Ao, L., Gao, Y., Liu, Y. and Zhang, X. (2023) Empathy for Pain in Individuals Influenced by Moral Identity: Evidence from an ERP Study. Physiology & Behavior, 266, Article 114202.
https://doi.org/10.1016/j.physbeh.2023.114202
[49] Galang, C.M., Jenkins, M., Fahim, G. and Obhi, S.S. (2021) Exploring the Relationship between Social Power and the ERP Components of Empathy for Pain. Social Neuroscience, 16, 174-188.
https://doi.org/10.1080/17470919.2021.1886165
[50] Hadjistavropoulos, T. and Craig, K.D. (2002) A Theoretical Framework for Understanding Self-Report and Observational Measures of Pain: A Communications Model. Behaviour Research and Therapy, 40, 551-570.
https://doi.org/10.1016/s0005-7967(01)00072-9
[51] Li, X., Li, Z., Xiang, B. and Meng, J. (2020) Empathy for Pain in Individuals with Autistic Traits Influenced by Attention Cues: Evidence from an ERP Study. Acta Psychologica Sinica, 52, 294-306.
https://doi.org/10.3724/sp.j.1041.2020.00294
[52] Meng, J., Shen, L., Li, Z. and Peng, W. (2019) Top-Down Attention Modulation on the Perception of Others’ Vocal Pain: An Event-Related Potential Study. Neuropsychologia, 133, Article 107177.
https://doi.org/10.1016/j.neuropsychologia.2019.107177
[53] Li, X., Lou, W., Zhang, W., Tong, R.K., Hu, L. and Peng, W. (2022) Ongoing First-Hand Pain Facilitates Somatosensory Resonance but Inhibits Affective Sharing in Empathy for Pain. NeuroImage, 263, Article 119599.
https://doi.org/10.1016/j.neuroimage.2022.119599
[54] Li, X., Liu, Y., Ye, Q., Lu, X. and Peng, W. (2020) The Linkage between First-Hand Pain Sensitivity and Empathy for Others’ Pain: Attention Matters. Human Brain Mapping, 41, 4815-4828.
https://doi.org/10.1002/hbm.25160
[55] Cheng, Y., Lin, C., Liu, H., Hsu, Y.Y., Lim, K., Hung, D., et al. (2007) Expertise Modulates the Perception of Pain in Others. Current Biology, 17, 1708-1713.
https://doi.org/10.1016/j.cub.2007.09.020
[56] Jia, L., Zheng, Z., Sung, B., Compton, B.J. and Wang, J. (2023) Resisting Repeated Exposure: Characteristics of Pain Empathy for Experienced Physicians. Behavioural Brain Research, 436, Article 114099.
https://doi.org/10.1016/j.bbr.2022.114099
[57] Hartmann, H., Riva, F., Rütgen, M. and Lamm, C. (2021) Placebo Analgesia Does Not Reduce Empathy for Naturalistic Depictions of Others’ Pain in a Somatosensory Specific Way. Cerebral Cortex Communications, 2, tgab039.
https://doi.org/10.1093/texcom/tgab039
[58] Naor, N., Rohr, C., Schaare, L.H., Limbachia, C., Shamay-Tsoory, S. and Okon-Singer, H. (2020) The Neural Networks Underlying Reappraisal of Empathy for Pain. Social Cognitive and Affective Neuroscience, 15, 733-744.
[59] Rütgen, M., Wirth, E.M., Riečanský, I., Hummer, A., Windischberger, C., Petrovic, P., et al. (2021) Beyond Sharing Unpleasant Affect—Evidence for Pain-Specific Opioidergic Modulation of Empathy for Pain. Cerebral Cortex, 31, 2773-2786.
https://doi.org/10.1093/cercor/bhaa385
[60] Caspersen, C.J., Powell, K.E. and Christenson, G.M. (1985) Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Reports, 100, 126-131.
[61] Fernández-Rodríguez, R., Álvarez-Bueno, C., Cavero-Redondo, I., Torres-Costoso, A., Pozuelo-Carrascosa, D.P., Reina-Gutiérrez, S., et al. (2022) Best Exercise Options for Reducing Pain and Disability in Adults with Chronic Low Back Pain: Pilates, Strength, Core-Based, and Mind-Body. A Network Meta-Analysis. Journal of Orthopaedic & Sports Physical Therapy, 52, 505-521.
https://doi.org/10.2519/jospt.2022.10671
[62] Owen, P.J., Miller, C.T., Mundell, N.L., Verswijveren, S.J.J.M., Tagliaferri, S.D., Brisby, H., et al. (2020) Which Specific Modes of Exercise Training Are Most Effective for Treating Low Back Pain? Network Meta-Analysis. British Journal of Sports Medicine, 54, 1279-1287.
https://doi.org/10.1136/bjsports-2019-100886
[63] Smith, P.J. and Merwin, R.M. (2021) The Role of Exercise in Management of Mental Health Disorders: An Integrative Review. Annual Review of Medicine, 72, 45-62.
https://doi.org/10.1146/annurev-med-060619-022943
[64] Yu, F., Vock, D.M., Zhang, L., Salisbury, D., Nelson, N.W., Chow, L.S., et al. (2021) Cognitive Effects of Aerobic Exercise in Alzheimer’s Disease: A Pilot Randomized Controlled Trial. Journal of Alzheimers Disease, 80, 233-244.
https://doi.org/10.3233/jad-201100
[65] Hidalgo, J.L.-T., Sotos, J.R. and DEP-EXERCISE Group (2021) Effectiveness of Physical Exercise in Older Adults with Mild to Moderate Depression. The Annals of Family Medicine, 19, 302-309.
https://doi.org/10.1370/afm.2670
[66] Shima, T., Jesmin, S., Nakao, H., Tai, K., Shimofure, T., Arai, Y., et al. (2021) Association between Self-Reported Empathy and Level of Physical Activity in Healthy Young Adults. The Journal of Physical Fitness and Sports Medicine, 10, 45-49.
https://doi.org/10.7600/jpfsm.10.45
[67] Yüksel, O., Ateş, M., Kızıldağ, S., Yüce, Z., Koç, B., Kandiş, S., et al. (2019) Regular Aerobic Voluntary Exercise Increased Oxytocin in Female Mice: Cause to Decrease Anxiety and Increase Empathy-Like Behaviors. Balkan Medical Journal, 36, 257-262.
https://doi.org/10.4274/balkanmedj.galenos.2019.2018.12.87
[68] Phung, J.N. and Goldberg, W.A. (2021) Mixed Martial Arts Training Improves Social Skills and Lessens Problem Behaviors in Boys with Autism Spectrum Disorder. Research in Autism Spectrum Disorders, 83, Article 101758.
https://doi.org/10.1016/j.rasd.2021.101758
[69] Kozdras, G.P. (2019) Empathy in Children Practising Judo Compared to Their Non-Practicing Peers. Revista de Artes Marciales Asiáticas, 14, 40-42.
https://doi.org/10.18002/rama.v14i2s.5950
[70] Xu, Z., Wang, Z.R., Li, J., Hu, M. and Xiang, M.Q. (2020) Effect of Acute Moderate-Intensity Exercise on the Mirror Neuron System: Role of Cardiovascular Fitness Level. Frontiers in Psychology, 11, Article 312.
https://doi.org/10.3389/fpsyg.2020.00312
[71] Derosiere, G., Vassiliadis, P. and Duque, J. (2020) Advanced TMS Approaches to Probe Corticospinal Excitability during Action Preparation. NeuroImage, 213, Article 116746.
https://doi.org/10.1016/j.neuroimage.2020.116746
[72] Li, Z., Zhang, L., Chen, Y. and Hu, L. (2023) Advancements and Challenges in Neuromodulation Technology: Interdisciplinary Opportunities and Collaborative Endeavors. Science Bulletin, 68, 1978-1982.
https://doi.org/10.1016/j.scib.2023.08.019
[73] Mizutani-Tiebel, Y., Tik, M., Chang, K., Padberg, F., Soldini, A., Wilkinson, Z., et al. (2022) Concurrent TMS-fMRI: Technical Challenges, Developments, and Overview of Previous Studies. Frontiers in Psychiatry, 13, Article 825205.
https://doi.org/10.3389/fpsyt.2022.825205
[74] Nardone, R., Sebastianelli, L., Versace, V., Ferrazzoli, D., Saltuari, L. and Trinka, E. (2021) TMS-EEG Co-Registration in Patients with Mild Cognitive Impairment, Alzheimer’s Disease and Other Dementias: A Systematic Review. Brain Sciences, 11, Article 303.
https://doi.org/10.3390/brainsci11030303
[75] Rawji, V., Latorre, A., Sharma, N., Rothwell, J.C. and Rocchi, L. (2020) On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Frontiers in Neurology, 11, Article 584664.
https://doi.org/10.3389/fneur.2020.584664
[76] Fecteau, S. (2023) Influencing Human Behavior with Noninvasive Brain Stimulation: Direct Human Brain Manipulation Revisited. The Neuroscientist, 29, 317-331.
https://doi.org/10.1177/10738584211067744
[77] Stultz, D.J., Osburn, S., Burns, T., Pawlowska-Wajswol, S. and Walton, R. (2020) Transcranial Magnetic Stimulation (TMS) Safety with Respect to Seizures: A Literature Review. Neuropsychiatric Disease and Treatment, 16, 2989-3000.
https://doi.org/10.2147/ndt.s276635
[78] Cao, K.X., Ma, M.L., Wang, C.Z., Iqbal, J., Si, J.J., Xue, Y.X. and Yang, J.L. (2021) TMS-EEG: An Emerging Tool to Study the Neurophysiologic Biomarkers of Psychiatric Disorders. Neuropharmacology, 197, Article 108574.
https://doi.org/10.1016/j.neuropharm.2021.108574
[79] Cappon, D., den Boer, T., Jordan, C., Yu, W., Metzger, E. and Pascual-Leone, A. (2022) Transcranial Magnetic Stimulation (TMS) for Geriatric Depression. Ageing Research Reviews, 74, Article 101531.
https://doi.org/10.1016/j.arr.2021.101531
[80] Che, X., Cash, R.F.H., Luo, X., Luo, H., Lu, X., Xu, F., et al. (2021) High-Frequency rTMS over the Dorsolateral Prefrontal Cortex on Chronic and Provoked Pain: A Systematic Review and Meta-Analysis. Brain Stimulation, 14, 1135-1146.
https://doi.org/10.1016/j.brs.2021.07.004
[81] Koutsomitros, T., Evagorou, O., Schuhmann, T., Zamar, A. and Sack, A.T. (2021) Advances in Transcranial Magnetic Stimulation (TMS) and Its Applications in Resistant Depression. Psychiatriki, 32, 90-98.
https://doi.org/10.22365/jpsych.2021.054
[82] Ye, Y., Wang, J. and Che, X. (2022) Concurrent TMS-EEG to Reveal the Neuroplastic Changes in the Prefrontal and Insular Cortices in the Analgesic Effects of DLPFC-rTMS. Cerebral Cortex, 32, 4436-4446.
https://doi.org/10.1093/cercor/bhab493
[83] Lefaucheur, J.P., André-Obadia, N., Antal, A., Ayache, S.S., Baeken, C., Benninger, D.H., et al. (2014) Evidence-Based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (rTMS). Clinical Neurophysiology, 125, 2150-2206.
https://doi.org/10.1016/j.clinph.2014.05.021
[84] Sondergaard, R.E., Martino, D., Kiss, Z.H.T. and Condliffe, E.G. (2021) TMS Motor Mapping Methodology and Reliability: A Structured Review. Frontiers in Neuroscience, 15, Article 709368.
https://doi.org/10.3389/fnins.2021.709368
[85] Miller, J.G., Xia, G. and Hastings, P.D. (2020) Right Temporoparietal Junction Involvement in Autonomic Responses to the Suffering of Others: A Preliminary Transcranial Magnetic Stimulation Study. Frontiers in Human Neuroscience, 14, Article 7.
https://doi.org/10.3389/fnhum.2020.00007
[86] Galang, C.M. and Obhi, S.S. (2021) To Move or Not to Move: Motor Cortical Output Is Enhanced during Pain Observation Regardless of Motor Preparation State. Journal of Neurophysiology, 125, 599-605.
https://doi.org/10.1152/jn.00600.2020