|
[1]
|
Stajic, J., Stone, R., Chin, G. and Wible, B. (2015) Rise of the Machines. Science, 349, 248-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rajpurkar, P., Chen, E., Banerjee, O. and Topol, E.J. (2022) AI in Health and Medicine. Nature Medicine, 28, 31-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kiarash, R., Hassan, A., Jacob, H.C., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861.
|
|
[4]
|
De Minicis, S., Day, C. and Svegliati-Baroni, G. (2013) From NAFLD to NASH and HCC: Pathogenetic Mechanisms and Therapeutic Insights. Current Pharmaceutical Design, 19, 5239-5249. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, S. and Summers, R.M. (2012) Machine Learning and Radiology. Medical Image Analysis, 16, 933-951. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
夏明锋, 高鑫. 无创性诊断非酒精性脂肪性肝病的方法学进展[J]. 中华内分泌代谢杂志, 2010, 26(7): 623-626.
|
|
[7]
|
Han, A., Byra, M., Heba, E., Andre, M.P., Erdman, J.W., Loomba, R., et al. (2020) Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease and Quantification of Liver Fat with Radiofrequency Ultrasound Data Using One-Dimensional Convolutional Neural Networks. Radiology, 295, 342-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yang, Y., Liu, J., Sun, C., Shi, Y., Hsing, J.C., Kamya, A., et al. (2023) Nonalcoholic Fatty Liver Disease (NAFLD) Detection and Deep Learning in a Chinese Community-Based Population. European Radiology, 33, 5894-5906. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhu, H., Liu, Y., Gao, X. and Zhang, L. (2022) Combined CNN and Pixel Feature Image for Fatty Liver Ultrasound Image Classification. Computational and Mathematical Methods in Medicine, 2022, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Graffy, P.M., Sandfort, V., Summers, R.M. and Pickhardt, P.J. (2019) Automated Liver Fat Quantification at Nonenhanced Abdominal CT for Population-Based Steatosis Assessment. Radiology, 293, 334-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Huo, Y., Terry, J.G., Wang, J., Nair, S., Lasko, T.A., Freedman, B.I., et al. (2019) Fully Automatic Liver Attenuation Estimation Combing CNN Segmentation and Morphological Operations. Medical Physics, 46, 3508-3519. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lin, H., Xu, X., Deng, R., Xu, Z., Cai, X., Dong, H., et al. (2024) Photon-Counting Detector CT for Liver Fat Quantification: Validation across Protocols in Metabolic Dysfunction-Associated Steatotic Liver Disease. Radiology, 312, e240038. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chen, X.X., Wang, X.M., Zhang, K., et al. (2022) Recent Advances and Clinical Applications of Deep Learning in Medical Image Analysis. Medical Image Analysis, 79, Article ID: 102444. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Castera, L., Friedrich-Rust, M. and Loomba, R. (2019) Noninvasive Assessment of Liver Disease in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology, 156, 1264-1281. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Qu, Y., Li, M., Hamilton, G., Zhang, Y.N. and Song, B. (2019) Diagnostic Accuracy of Hepatic Proton Density Fat Fraction Measured by Magnetic Resonance Imaging for the Evaluation of Liver Steatosis with Histology as Reference Standard: A Meta-Analysis. European Radiology, 29, 5180-5189. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Davison, B.A., Harrison, S.A., Cotter, G., Alkhouri, N., Sanyal, A., Edwards, C., et al. (2020) Suboptimal Reliability of Liver Biopsy Evaluation Has Implications for Randomized Clinical Trials. Journal of Hepatology, 73, 1322-1332. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nam, D., Chapiro, J., Paradis, V., Seraphin, T.P. and Kather, J.N. (2022) Artificial Intelligence in Liver Diseases: Improving Diagnostics, Prognostics and Response Prediction. JHEP Reports, 4, Article ID: 100443. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ratziu, V., Hompesch, M., Petitjean, M., et al. (2023) Artificial Intelligence-Assisted Digital Pathology for Non-Alcoholic Steatohepatitis: Current Status and Future Directions. Journal of Hepatology, 80, 335-351.
|
|
[19]
|
Munsterman, I.D., van Erp, M., Weijers, G., Bronkhorst, C., de Korte, C.L., Drenth, J.P.H., et al. (2019) A Novel Automatic Digital Algorithm That Accurately Quantifies Steatosis in NAFLD on Histopathological Whole‐Slide Images. Cytometry Part B: Clinical Cytometry, 96, 521-528. [Google Scholar] [CrossRef] [PubMed]
|