[1]
|
Koul, B. and Taak, P. (2018) Biotechnological Strategies for Effective Remediation of Polluted Soils. Springer. https://doi.org/10.1007/978-981-13-2420-8
|
[2]
|
Koul, B., Poonia, A.K., Singh, R. and Kajla, S. (2022) Strategies to Cope with the Emerging Waste Water Contaminants through Adsorption Regimes. In: Shah, M., Rodriguez-Couto, S. andBiswas, J., Eds., Development in Wastewater Treatment Research and Processes, Elsevier, 61-106. https://doi.org/10.1016/b978-0-323-85583-9.00027-2
|
[3]
|
Chen, Z., Osman, A.I., Rooney, D.W., Oh, W. and Yap, P. (2023) Remediation of Heavy Metals in Polluted Water by Immobilized Algae: Current Applications and Future Perspectives. Sustainability, 15, Article 5128. https://doi.org/10.3390/su15065128
|
[4]
|
Uma, V.S., Panigrahi, S., Chandrasekaran, S., Srinivas, C.V. and Venkatraman, B. (2023) Development of Marine Activated Algal-Bacterial Granule: A Novel Replacement to the Conventional Algal Remediation Processes. Algal Research, 69, Article ID: 102914. https://doi.org/10.1016/j.algal.2022.102914
|
[5]
|
Bharadwaj, P.K., Feng, P., Kaskel, S. and Xu, Q. (2019) Metal-Organic Frameworks and Their Applications. Chemistry—An Asian Journal, 14, 3450-3451. https://doi.org/10.1002/asia.201901288
|
[6]
|
Wang, C., Xiong, C., He, Y., Yang, C., Li, X., Zheng, J., et al. (2021) Facile Preparation of Magnetic Zr-MOF for Adsorption of Pb(II) and Cr(VI) from Water: Adsorption Characteristics and Mechanisms. Chemical Engineering Journal, 415, Article ID: 128923. https://doi.org/10.1016/j.cej.2021.128923
|
[7]
|
Usman, M., Iqbal, N., Noor, T., Zaman, N., Asghar, A., Abdelnaby, M.M., et al. (2021) Advanced Strategies in Metal‐Organic Frameworks for CO2 Capture and Separation. The Chemical Record, 22, e202100230. https://doi.org/10.1002/tcr.202100230
|
[8]
|
Zhao, M., Ban, Y. and Yang, W. (2022) Assembly of Ionic Liquid Molecule Layers on Metal-Organic Framework-808 for CO2 Capture. Chemical Engineering Journal, 439, Article ID: 135650. https://doi.org/10.1016/j.cej.2022.135650
|
[9]
|
Zhao, M., Ban, Y., Yang, K., Zhou, Y., Cao, N., Wang, Y., et al. (2021) A Highly Selective Supramolecule Array Membrane Made of Zero‐Dimensional Molecules for Gas Separation. Angewandte Chemie International Edition, 60, 20977-20983. https://doi.org/10.1002/anie.202108185
|
[10]
|
Far, H.S., Hasanzadeh, M., Najafi, M. and Rabbani, M. (2023) Highly Porous Organoclay-Supported Bimetal-Organic Framework (Co-Ni-MOF/OC) Composite with Efficient and Selective Adsorption of Organic Dyes. Environmental Science and Pollution Research, 30, 43714-43725. https://doi.org/10.1007/s11356-023-25374-1
|
[11]
|
Lin, X., Zhang, X., Wang, Y., Chen, W., Zhu, Z. and Wang, S. (2025) Hydrogels and Hydrogel-Based Drug Delivery Systems for Promoting Refractory Wound Healing: Applications and Prospects. International Journal of Biological Macromolecules, 285, Article ID: 138098. https://doi.org/10.1016/j.ijbiomac.2024.138098
|
[12]
|
Cao, Q., Chen, W., Zhong, Y., Ma, X. and Wang, B. (2023) Biomedical Applications of Deformable Hydrogel Microrobots. Micromachines, 14, Article 1824. https://doi.org/10.3390/mi14101824
|
[13]
|
Bai, S., Han, Q., Gao, X., et al. (2024) Acid-Induced in Situ Phase Separation and Percolation for Constructing Bi-Continuous Phase Hydrogel Electrodes with High Conductivity and Robust Mechanical Properties. https://doi.org/10.21203/rs.3.rs-4386262/v1
|
[14]
|
Wang, X. and Wang, Q. (2021) Enzyme-laden Bioactive Hydrogel for Biocatalytic Monitoring and Regulation. Accounts of Chemical Research, 54, 1274-1287. https://doi.org/10.1021/acs.accounts.0c00832
|
[15]
|
Arif, M., Rauf, A. and Akhter, T. (2024) A Review on Ag Nanoparticles Fabricated in Microgels. RSC Advances, 14, 19381-19399. https://doi.org/10.1039/d4ra02467b
|
[16]
|
Chafran, L. and Carfagno, A. (2024) Synthesis of Multi-Responsive Poly(NIPA-Co-DMAEMA)-PBA Hydrogel Nanoparticles in Aqueous Solution for Application as Glucose-Sensitive Insulin-Releasing Nanoparticles. Journal of Diabetes & Metabolic Disorders, 23, 1259-1270. https://doi.org/10.1007/s40200-024-01421-7
|
[17]
|
Deng, Y., Xi, J., Meng, L., Lou, Y., Seidi, F., Wu, W., et al. (2022) Stimuli-Responsive nanocellulose Hydrogels: An overview. European Polymer Journal, 180, Article ID: 111591. https://doi.org/10.1016/j.eurpolymj.2022.111591
|
[18]
|
Lu, S., Xie, F., Liu, H., Liu, Y., Zhang, Z., Shang, W., et al. (2023) Construction and Electrochemical Properties of Carbon Nanotube Composite Mn-MOFs Materials Electrode for High-Performance Flexible Supercapacitors. Electrochimica Acta, 466, Article ID: 143063. https://doi.org/10.1016/j.electacta.2023.143063
|
[19]
|
Zhao, H., Zhang, L., Chen, S., Zhuang, X. and Zhao, G. (2024) Bimetallic Metal-Organic Framework Aerogels Supported by Aramid Nanofibers for Efficient CO2 Capture. Journal of Colloid and Interface Science, 674, 537-546. https://doi.org/10.1016/j.jcis.2024.06.125
|
[20]
|
Pérez-Juste, J., Pastoriza-Santos, I. and Liz-Marzán, L.M. (2013) Multifunctionality in Metal@Microgel Colloidal Nanocomposites. Journal of Materials Chemistry A, 1, 20-26. https://doi.org/10.1039/c2ta00112h
|
[21]
|
Phu, N.A.M.M., Wi, E., Jeong, G., Kim, H., Singha, N.R. and Chang, M. (2025) Highly Efficient Dye Adsorption by Hierarchical Porous SA/PVA/ZIF-8 Composite Microgels Prepared via Microfluidics. Carbohydrate Polymers, 350, Article ID: 123016. https://doi.org/10.1016/j.carbpol.2024.123016
|
[22]
|
Sun, W., Zhao, X., Webb, E., Xu, G., Zhang, W. and Wang, Y. (2023) Advances in Metal-Organic Framework-Based Hydrogel Materials: Preparation, Properties and Applications. Journal of Materials Chemistry A, 11, 2092-2127. https://doi.org/10.1039/d2ta08841j
|
[23]
|
Chai, Y., Zhang, Y., Wang, L., Du, Y., Wang, B., Li, N., et al. (2022) In Situ One-Pot Construction of MOF/Hydrogel Composite Beads with Enhanced Wastewater Treatment Performance. Separation and Purification Technology, 295, Article ID: 121225. https://doi.org/10.1016/j.seppur.2022.121225
|
[24]
|
Jiang, P., Niu, Y., Cao, J., Xie, D., Li, J. and Guo, T. (2024) A MOF-Doped Molecularly Imprinted Polymer/MOF Hybrid Gel Incorporating with pH-Buffering Sodium Acrylate for Practical Detoxification of Organophosphorus Nerve Agents. Chemical Engineering Journal, 481, Article ID: 148377. https://doi.org/10.1016/j.cej.2023.148377
|
[25]
|
Nie, J., Xie, H., Zhang, M., Liang, J., Nie, S. and Han, W. (2020) Effective and Facile Fabrication of MOFs/Cellulose Composite Paper for Air Hazards Removal by Virtue of in Situ Synthesis of MOFs/Chitosan Hydrogel. Carbohydrate Polymers, 250, Article ID: 116955. https://doi.org/10.1016/j.carbpol.2020.116955
|
[26]
|
Yang, J., Chen, Y., Zhao, L., Zhang, J. and Luo, H. (2022) Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. Polymer Reviews, 63, 574-612. https://doi.org/10.1080/15583724.2022.2137525
|
[27]
|
Guo, B., Dong, R., Liang, Y. and Li, M. (2021) Haemostatic Materials for Wound Healing Applications. Nature Reviews Chemistry, 5, 773-791. https://doi.org/10.1038/s41570-021-00323-z
|
[28]
|
Hu, W., Wang, Z., Xiao, Y., Zhang, S. and Wang, J. (2019) Advances in Crosslinking Strategies of Biomedical Hydrogels. Biomaterials Science, 7, 843-855. https://doi.org/10.1039/c8bm01246f
|
[29]
|
Zhang, J., Zhu, Y., Song, J., Yang, J., Pan, C., Xu, T., et al. (2018) Novel Balanced Charged Alginate/PEI Polyelectrolyte Hydrogel That Resists Foreign-Body Reaction. ACS Applied Materials & Interfaces, 10, 6879-6886. https://doi.org/10.1021/acsami.7b17670
|
[30]
|
Li, B., Lin, T., Lai, Y., Chiu, T. and Yeh, Y. (2025) Engineering Multiresponsive Alginate/PNIPAM/Carbon Nanotube Nanocomposite Hydrogels as On‐Demand Drug Delivery Platforms. Small, 21, Article ID: 2407420. https://doi.org/10.1002/smll.202407420
|
[31]
|
Thambi, T., Phan, V.H.G. and Lee, D.S. (2016) Stimuli‐Sensitive Injectable Hydrogels Based on Polysaccharides and Their Biomedical Applications. Macromolecular Rapid Communications, 37, 1881-1896. https://doi.org/10.1002/marc.201600371
|
[32]
|
Chen, F., Wang, Y., Guo, W. and Yin, X. (2019) Color-Tunable Lanthanide Metal-Organic Framework Gels. Chemical Science, 10, 1644-1650. https://doi.org/10.1039/c8sc04732d
|
[33]
|
Chen, W., Liu, Z., Xie, Y., Guo, X., Xie, H., Chen, J., et al. (2025) Synthesis of ZIF-67 Composite Lignin Hydrogel and Its Catalytic Degradation of Naphthalene by PMS in Wastewater. International Journal of Biological Macromolecules, 298, Article ID: 139700. https://doi.org/10.1016/j.ijbiomac.2025.139700
|
[34]
|
Luo, Y., Tan, B., Liang, X., Wang, S., Gao, X., Zhang, Z., et al. (2019) Dry Gel Conversion Synthesis of Hierarchical Porous MIL-100(Fe) and Its Water Vapor Adsorption/Desorption Performance. Industrial & Engineering Chemistry Research, 58, 7801-7807. https://doi.org/10.1021/acs.iecr.9b01647
|
[35]
|
Guo, L., Wang, Y., Wang, M., Shaghaleh, H., Hamoud, Y.A., Xu, X., et al. (2021) Synthesis of Bio-Based MIL-100(Fe)@CNF-SA Composite Hydrogel and Its Application in Slow-Release N-Fertilizer. Journal of Cleaner Production, 324, Article ID: 129274. https://doi.org/10.1016/j.jclepro.2021.129274
|
[36]
|
Salgaonkar, M., Nadar, S.S. and Rathod, V.K. (2018) Combi-Metal Organic Framework (Combi-MOF) of α-Amylase and Glucoamylase for One Pot Starch Hydrolysis. International Journal of Biological Macromolecules, 113, 464-475. https://doi.org/10.1016/j.ijbiomac.2018.02.092
|
[37]
|
Inonu, Z., Keskin, S. and Erkey, C. (2018) An Emerging Family of Hybrid Nanomaterials: Metal-Organic Framework/Aerogel Composites. ACS Applied Nano Materials, 1, 5959-5980. https://doi.org/10.1021/acsanm.8b01428
|
[38]
|
Ngulube, T., Gumbo, J.R., Masindi, V. and Maity, A. (2017) An Update on Synthetic Dyes Adsorption onto Clay Based Minerals: A State-of-Art Review. Journal of Environmental Management, 191, 35-57. https://doi.org/10.1016/j.jenvman.2016.12.031
|
[39]
|
Daradmare, S., Xia, M., Le, V.N., Kim, J. and Park, B.J. (2021) Metal-Organic Frameworks/Alginate Composite Beads as Effective Adsorbents for the Removal of Hexavalent Chromium from Aqueous Solution. Chemosphere, 270, Article ID: 129487. https://doi.org/10.1016/j.chemosphere.2020.129487
|
[40]
|
Yang, W., Wang, J., Han, Y., Luo, X., Tang, W., Yue, T., et al. (2021) Robust MOF Film of Self-Rearranged UiO-66-NO2 Anchored on Gelatin Hydrogel via Simple Thermal-Treatment for Efficient Pb(II) Removal in Water and Apple Juice. Food Control, 130, Article ID: 108409. https://doi.org/10.1016/j.foodcont.2021.108409
|
[41]
|
Luo, Z., Chen, H., Wu, S., Yang, C. and Cheng, J. (2019) Enhanced Removal of Bisphenol a from Aqueous Solution by Aluminum-Based MOF/Sodium Alginate-Chitosan Composite Beads. Chemosphere, 237, Article ID: 124493. https://doi.org/10.1016/j.chemosphere.2019.124493
|
[42]
|
Ribeiro, S.C., de Lima, H.H.C., Kupfer, V.L., da Silva, C.T.P., Veregue, F.R., Radovanovic, E., et al. (2019) Synthesis of a Superabsorbent Hybrid Hydrogel with Excellent Mechanical Properties: Water Transport and Methylene Blue Absorption Profiles. Journal of Molecular Liquids, 294, Article ID: 111553. https://doi.org/10.1016/j.molliq.2019.111553
|
[43]
|
Hou, X., Sun, J., Lian, M., Peng, Y., Jiang, D., Xu, M., et al. (2022) Emerging Synthetic Methods and Applications of MOF‐Based Gels in Supercapacitors, Water Treatment, Catalysis, Adsorption, and Energy Storage. Macromolecular Materials and Engineering, 308, Article ID: 2200469. https://doi.org/10.1002/mame.202200469
|
[44]
|
Zhao, K., Sun, X., Fu, H., Guo, H., Wang, L., Li, D., et al. (2023) In Situ Construction of Metal-Organic Frameworks on Chitosan-Derived Nitrogen Self-Doped Porous Carbon for High-Performance Supercapacitors. Journal of Colloid and Interface Science, 632, 249-259. https://doi.org/10.1016/j.jcis.2022.11.038
|
[45]
|
Zhu, Z., Yang, Y., Guan, Y., Xue, J. and Cui, L. (2016) Construction of a Cobalt-Embedded Nitrogen-Doped Carbon Material with the Desired Porosity Derived from the Confined Growth of MOFs within Graphene Aerogels as a Superior Catalyst Towards HER and Orr. Journal of Materials Chemistry A, 4, 15536-15545. https://doi.org/10.1039/c6ta05196k
|
[46]
|
Cherubini, F., Peters, G.P., Berntsen, T., Strømman, A.H. and Hertwich, E. (2011) CO2 Emissions from Biomass Combustion for Bioenergy: Atmospheric Decay and Contribution to Global Warming. GCB Bioenergy, 3, 413-426. https://doi.org/10.1111/j.1757-1707.2011.01102.x
|
[47]
|
Jiang, M., Li, H., Zhou, L., Xing, R. and Zhang, J. (2017) Hierarchically Porous Graphene/ZIF-8 Hybrid Aerogel: Preparation, CO2 Uptake Capacity, and Mechanical Property. ACS Applied Materials & Interfaces, 10, 827-834. https://doi.org/10.1021/acsami.7b17728
|
[48]
|
Pinto, M.L., Dias, S. and Pires, J. (2013) Composite MOF Foams: The Example of UiO-66/Polyurethane. ACS Applied Materials & Interfaces, 5, 2360-2363. https://doi.org/10.1021/am303089g
|
[49]
|
Yao, T., Zeng, X., Tao, X. and Xu, H. (2024) Recent Progress of MOF-Based Antibacterial Hydrogels. Chemical Engineering Journal, 487, Article ID: 150641. https://doi.org/10.1016/j.cej.2024.150641
|
[50]
|
Liang, Y., Yao, Y., Liu, Y., Li, Y., Xu, C., Fu, L., et al. (2022) Curcumin-Loaded HKUST-1@ Carboxymethyl Starch-Based Composites with Moisture-Responsive Release Properties and Synergistic Antibacterial Effect for Perishable Fruits. International Journal of Biological Macromolecules, 214, 181-191. https://doi.org/10.1016/j.ijbiomac.2022.06.022
|
[51]
|
Wang, M., Nian, L., Wu, J., Cheng, S., Yang, Z. and Cao, C. (2023) Visible Light-Responsive Chitosan/Sodium Alginate/QDs@ZIF-8 Nanocomposite Films with Antibacterial and Ethylene Scavenging Performance for Kiwifruit Preservation. Food Hydrocolloids, 145, Article ID: 109073. https://doi.org/10.1016/j.foodhyd.2023.109073
|