早发性卵巢功能不全的病因研究进展
Research Progress on the Etiology of Premature Ovarian Insufficiency
DOI: 10.12677/md.2025.154051, PDF, HTML, XML,   
作者: 吴 琼:延安大学医学院,陕西 延安;岳红云*:延安大学附属医院妇产科,陕西 延安
关键词: 早发性卵巢功能不全病因不孕症Premature Ovarian Insufficiency Etiology Infertility
摘要: 本综述旨在探讨近年来早发性卵巢功能不全的病因进展。早发性卵巢功能不全(Premature ovarian insufficiency, POI)是指女性在40岁之前出现卵巢功能的减退。POI的病因包括遗传因素、自身免疫因素、手术、放化疗因素、社会心理、生活方式和环境因素、感染因素等。POI女性的卵母细胞储备提前耗竭,影响卵泡的发育和排卵,导致POI的女性生育力下降或不孕。本研究通过系统回顾相关文献,对POI的病因进行总结,对导致POI的高危因素进行有效的干预和预防,提前保护卵巢功能和保存生育力,同时对POI的治疗提供有效的策略,降低POI的发病率。
Abstract: This review aims to explore the etiological progress of premature ovarian insufficiency in recent years. Premature ovarian insufficiency refers to the decline of ovarian function before the age of 40 in women. The etiology of POI includes genetic factors, autoimmune factors, surgery radiotherapy and chemotherapy factors, sociodemographic, lifestyle and environmental factors, infectious factors and so on. The premature exhaustion of oocytes reserve in POI women affects the development ovulation of follicles, resulting in the decrease of fertility or infertility in POI women. This study summarized the etiology of POI by systematic review of relevant literature carried out effective intervention and prevention to the high risk factors leading to POI, and protected ovarian function and preserved fertility in advance, while also providing effective strategies for the treatment POI and reducing the incidence of POI.
文章引用:吴琼, 岳红云. 早发性卵巢功能不全的病因研究进展[J]. 医学诊断, 2025, 15(4): 375-383. https://doi.org/10.12677/md.2025.154051

1. 引言

早发性卵巢功能不全(premature ovarian insufficiency, POI)指女性在40岁以前出现的卵巢功能减退,主要表现为月经异常(闭经、月经稀发或频发)、生育力降低、卵泡刺激素(follicle stimulating hormone, FSH) > 25 U/L、雌激素水平波动性下降[1]。研究发现全球女性POI的患病率为3.5% [2]。POI的病因复杂且尚未完全阐明,本综述对近年来POI的病因进行总结,为POI的早期诊断和早期治疗提供新的见解。

2. 遗传因素

遗传因素是导致早发性卵巢功能不全的重要原因之一,包括基因突变和染色体异常。在两项研究中体现了POI的家族聚集性。在犹他州396例POI确诊病例中一级亲属与对照组相比,POI风险增加18倍,二级亲属增加4倍,三级亲属增加2.7倍[3]。与没有POI的女性亲属相比,POI女性亲属患POI的相对风险为4.6倍[4]

2.1. 基因突变

1. 与减数分裂相关

(1) 减数分裂1解旋酶(HFM1):HFM1基因在小鼠卵母细胞减数分裂前期I期的进展中起着关键作用,其缺失导致卵母细胞凋亡增加、数量减少,阻滞在粗线期,影响原始卵泡池的形成,进而可能导致POI的发生[5]

(2) 减数分裂蛋白(MEIOSIN):在一例特发性POI患者中发现了一种致病性的MEIOSIN纯合子变异,它影响了一组减数分裂基因的转录,加速了卵母细胞的耗损[6]

(3) SPO16基因:ZMM蛋白是一组参与减数分裂突触和交叉成熟的保守蛋白。通过筛选1030例中国女性特发性POI患者内部WES数据库中的ZMM基因变异,首次在一名患者中发现了一种新的SPO16纯合变异(c.160 + 8A > G),该患者13岁初潮,34岁出现继发性闭经,在36岁时被诊断为POI,该变异可能是由于卵母细胞减数分裂中断而导致POI [7]

(4) C14orf39基因:通过全外显子组测序(WES)在不同种族人群的不育个体中发现了C14orf39的纯合突变,导致两名男性NOA和一名女性POI。被诊断为POI的女性患者表现为月经不规律、24岁闭经、高促卵泡激素和黄体生成激素水平和低AMH水平。C14orf39的纯合突变导致严重的联会缺陷和减数分裂停止,从而导致人类NOA和POI [8]

(5) BRCA1和BRCA2基因:BRCA1和BRCA2是参与减数分裂同源重组DNA修复途径的关键介质,负责在DNA双链断裂(DBS)后恢复DNA完整性。有研究发现,BRCA基因突变携带者比非携带者有较低的原始卵泡数量和较低的自然绝经年龄[9]。在小鼠实验中的数据表明,Brca1在卵母细胞中的条件性缺失导致产仔数减少,卵巢储备下降,卵母细胞成熟潜力受损[10]。与对照组相比,BRCA1突变的女性血清AMH水平较低,而BRCA2突变的女性血清AMH没有变化[11]

(6) FBXO31基因:研究发现FBXO31在POI患者的卵母细胞和颗粒细胞中,FBXO31的表达显著高于正常水平,FBXO31过表达会损害卵母细胞的减数分裂进程,导致卵母细胞质量下降,FBXO31过表达会使活性氧(ROS)积聚和DNA损伤加剧,进一步损害卵母细胞质量[12]

2. 与卵泡的形成和储备相关

(1) 钙粘蛋白2 (calponin2):在小鼠实验中,发现calponin2的缺失的母鼠的产仔数明显较小,4周龄calponin2缺失的小鼠卵巢的卵泡总数明显低于对照组,并且这种差异随着年龄增长而增大,表明calponin2的缺失导致卵泡形成受损,卵巢储备减少[13]

(2) ANXA7 (膜联蛋白A7)和GTF2F1 (通用转录因子IIF亚基1):已知哺乳动物原始卵泡(PF)的数量决定了卵巢储备功能,原始卵泡形成(PFF)受损会导致卵巢早衰(POI)。研究发现ANXA7和GTF2F1是促进PFF新的潜在基因,配体Mdk及其颗粒细胞中的受体Sdc1是对PFF至关重要的新型相互作用,在93例POI病例中发现GTF2F1中的两种杂合变异和SDC1中的一种杂合变异,而在对照组中未发现变异,POI患者中GTF2F1或SDC1的蛋白水平显著低于对照组,表明这两个基因对卵巢功能的影响是剂量依赖的[14]

(3) LAMC1基因:在中国POI家族中发现了一种新的LAMC1错义变异(c.3281A > T, p.D1094V),研究结果表明LAMC1基因异常可能通过不同的生物学过程影响基底膜稳定从而影响卵泡发育[15]

(4) 骨形态发生蛋白15 (BMP15)基因:BMP15基因是编码392个氨基酸的蛋白质转化生长因子-β总科(TGF-β)。BMP15在卵母细胞中表达,与生长因子9 (GDF9)协同作用,调节卵泡发生。纳入24名伊朗女性POI患者,通过BMP15基因筛选,发现了p.N103K、p.A180T和p.M184T的杂合变异体,在一位17岁继发性闭经、FSH升高和卵巢萎缩的患者中发现了p.N103K变异,pm184t见于一位31岁继发闭经,卵巢萎缩和高卵泡刺激素患者[16]

(5) NOBOX基因:该基因编码的蛋白质在卵泡发生早期阶段起作用。NOBOX基因的变异可能导致卵泡发生异常,进而引发卵巢功能不全,在810名POI患者中,识别出35种不同的NOBOX基因变异,包括5种功能缺失型变异(如错义、无义和剪接位点变异),NOBOX变异存在种族差异,某些NOBOX变异在特定种族群体中更为常见[17]

(6) FBXW7基因:该基因是Skp1-Cullin1-F-box(SCF)E3泛素连接酶的重要组分之一。FBXW7可通过触发泛素–蛋白酶体系统介导靶蛋白的泛素化和降解来调节细胞生长、存活和多能性,并与肿瘤发生、造血和睾丸发育有关,在这里,我们发现顺铂诱导的POI小鼠模型的卵巢中FBXW7蛋白水平显着降低,进一步表明,Fbxw7卵母细胞特异性缺失的小鼠表现出POI,其特征是卵泡生成缺陷、卵泡储备早耗竭、荷尔蒙分泌紊乱、卵巢功能障碍和女性不孕症[18]

(7) BMI1和MEL18基因:单独敲除BMI1或MEL18基因并未引起明显的卵巢功能障碍,但BMI1和MEL18基因的双重缺失使多梳抑制复合体1 (PRC1)的催化活性降低,从而影响卵泡从初级阶段向次级阶段的过渡,上调了细胞周期蛋白依赖性激酶抑制剂(CDKIs)的表达,抑制颗粒细胞增殖,同时PRC1功能障碍导致颗粒细胞与卵母细胞之间的物理连接和旁分泌信号通路受损,影响卵泡发育,导致小鼠出现POI样表型,包括卵巢缩小、卵泡发育受阻和生育能力丧失[19]

3. 与线粒体功能障碍相关

(1) MRPL50基因:利用全外显子组测序(WES),鉴定出一个MRPL50纯合错义变异(c.335T > a; p.Val112Asp)为POI、双侧高频感音神经性听力损失、肾脏和心脏功能障碍的双胞胎姐妹共有,研究发现MRPL50错义变体破坏线粒体核糖体的稳定性,导致氧化磷酸化缺陷和综合征性POI [20]

(2) TUFM基因:从一个近亲家庭招募了一名POI患者,在该家族中发现了TUFM的纯合变异,TUFM是一种核编码的线粒体蛋白翻译伸长因子,在维持线粒体正常功能中起关键作用。一系列功能实验和敲入小鼠模型证实,TUFM致病变异通过影响卵巢颗粒细胞的线粒体功能导致卵巢功能障碍,最终导致女性POI的发生[21]

(3) 线粒体细胞色素氧化酶1 (MT-CO1):在一项研究中,POI受试者(n = 63)和年龄匹配的健康女性对照(n = 63)中,我们在POI患者中发现了96个非同义线粒体变异,在对照组中发现了93个非同义线粒体变异。在POI患者中鉴定出8种线粒体细胞色素氧化酶1 (MT-CO1)错义变异,而在对照组中仅观察到4种错义突变,POI患者MT-CO1错义变异发生率高于对照组,组间差异有统计学意义(13/63比5/63,p = 0.042),原发性卵巢功能不全患者线粒体细胞色素c氧化酶1基因突变的发生率增加,提示MT-CO1基因突变可能是POI的原因[22]

(4) Eif4enif1:研究证明Eif4enif1单倍不足使卵母细胞线粒体灌注不足和线粒体相关核糖核蛋白结构域分布改变,改变了小鼠卵母细胞的转录组和翻译组,导致小鼠生育能力低下,损害卵母细胞成熟并部分阻止早期胚胎发育[23]

4. 与DNA损伤和原始生殖细胞(PGC)相关

(1) MCM8:研究证明MCM8与两种已知的解旋酶DDX5和DHX9相互作用,MCM8的功能缺陷通过减少这些解旋酶在r环上的保留而导致r环积累,进而引发DNA损伤和PGCs的增殖缺陷,同时我们发现在小鼠中MCM8功能缺陷会导致原始生殖细胞(PGCs)数量减少和生殖能力丧失,这些机制共同导致POI [24]

(2) 胎盘中的脑源性神经营养因子(BDNF)基因:通过构建了胎盘特异性BDNF敲除小鼠模型,结果表明BDNF的减少是通过减少小鼠早期原始生殖细胞的增殖和建立卵巢储备的能力而导致成年POI [25]

(3) FANCM基因:报道了第一例汉族女性的FANCM突变引起POI的病例,范科尼贫血(FA)通路中的FANCM基因c.1152-1155del:p.Leu386Valfs*10纯合突变导致截短的FANCM蛋白产生,并且影响FANCM蛋白在细胞核的定位,抑制其应对DNA损伤修复的能力,从而引起女性不孕[26]

(4) FANCJ基因:对131例散发性汉族POI患者进行了全外显子组测序(WES)发现了两个罕见的FANCJ杂合错义变异,这些变异破坏FANCJ的DNA修复功能,导致卵巢卵泡提前耗竭[27]

5. 与信号通路相关

(1) RNF111:RNF111是一种E3泛素连接酶,参与多种信号通路,包括TGF-β/BMP信号通路,而这一通路在卵泡发育和卵巢功能调节中扮演着核心角色。一项研究结果提示RNF111有害变异能够导致POI和女性生育力下降,在1030例POI患者中发现8位患者携带4个RNF111有害变异,其中一位患者携带与家系患者相同的罕见变异,通过与华表数据库的5000个汉族对照人群进行比较,发现RNF111有害变异在POI患者中显著富集,同时也在500个DOR患者中发现两位患者携带RNF111有害变异[28]

(2) BNC1:BNC1是一种参与卵母细胞和卵泡生成的转录因子,BNC1缺乏可通过诱导卵母细胞铁凋亡导致POI。其机制可能是卵母细胞BNC1缺乏影响NF2-YAP-TFRC/ASCL4信号轴,上调TFRC和ACSL4的表达,诱导卵母细胞铁凋亡,最终导致卵母细胞死亡和卵泡闭锁[29]

6. 与氧化应激相关

(1) TRIM28基因:我们的研究发现氧化应激通过诱导GCs过度自噬和衰老,导致POI的发生。TRIM28在调节细胞氧化应激反应中起着关键的调节作用,TRIM28的减少会增加细胞内活性氧(ROS)水平,导致线粒体功能障碍和细胞衰老,同时通过触发自噬和诱导颗粒细胞衰老导致滤泡闭锁和POI [30]

7. 与铁代谢失调相关

(1) CSE1L基因:在POI患者中发现了染色体分离-1样基因(CSE1L)的致病性纯合变异,该变异通过降低其在卵巢颗粒细胞中的表达、参与人颗粒细胞铁凋亡和阻碍卵母细胞成熟,导致卵巢功能受损[31]

2.2. 染色体异常

1. 特纳综合征(Turner syndrome, TS):是一种女性表型的先天性染色体异常疾病,其中一条X染色体完整,另一条性染色体完全或者部分缺失,其典型临床表现为:身材矮小、性腺发育不良,以及特殊的一些躯体特征如颈蹼、盾状胸、肘外翻等[32]

2. X三体综合征(TXS)是一种由多一条X染色体引起的性染色体非整倍体。一项研究提示,与对照组相比,患有X三体综合征(TXS)的女性血清AMH显著降低(0.7 ng/mL (IQR 0.2~1.7) vs 2.7 ng/mL (IQR 1.3~4.8), p < 0.001)患有TXS的女性AMH浓度较低可能代表这些患者原发性卵巢功能不全的风险增加[33]

3. 自身免疫因素

自身免疫因素可能导致卵巢功能损伤。研究发现患有POI的女性在被诊断为POI之前至少有一种自身免疫性疾病的几率是匹配女性对照组的2.6倍,并且在POI诊断后的几年内患这些疾病的风险是正常女性的2至3倍[34]

与对照组女性相比,POI患者外周血和卵巢的辅助性T细胞1 (TH1)反应增强,调节性T细胞(Treg)缺乏,TH1:Treg细胞比例的升高与POI的严重程度密切相关,在POI小鼠模型中,卵巢中TH1细胞浸润增加导致卵泡闭锁和卵巢功能不全,Treg细胞可以预防和逆转这一现象[35]。POI女性中甲状腺球蛋白抗体(TGAb) (p = 0.045)和甲状腺过氧化物酶抗体(TPOAb) (p = 0.002)是明显增加的,与健康对照组相比,POI女性中存在较高的自身免疫患病率,甲状腺抗体在POI女性中显著增加,37.9%的POI女性至少存在一种异常的自身免疫指标,而健康对照组为18.2% (p = 0.045) [36]。因此对于有自身免疫性疾病的女性,我们要尽早完成生育和提前保存生育力。

4. 手术、放化疗

手术可引起卵巢组织缺损或局部炎症,放疗、化疗可诱导卵母细胞凋亡或破坏颗粒细胞功能,这些医源性因素可导致POI。在一项前瞻性队列研究中,与无单侧卵巢切除术相比,单侧卵巢切除术发生POI的几率约为4倍(aOR: 3.75, 95% CI 1.72~8.16),与早期绝经的几率约为2倍(aOR 1.90, 95% CI 1.30~2.79)相关[37]。卵巢囊肿剥除术、输卵管切除术、子宫切除术都会影响卵巢功能,在手术方式选择时,推荐使用腹腔镜,并减少打孔数量,减少电凝止血,多选择传统缝合止血,以保护卵巢储备功能[38]。放化疗是引起卵巢损伤的一个重要原因,对卵巢损伤的程度取决于放疗区域大小、射线剂量、化疗药物的类型、剂量以及患者年龄[39]。因此,在手术方式和放化疗方式的选择上我们要选择减少卵巢损伤的方式,最大限度上保护卵巢功能。

5. 社会心理、生活方式和环境因素

社会心理、生活方式和环境因素等也可能对卵巢功能产生影响。在一项基于2019~2021年印度国家家庭健康调查(NFHS)的数据中发现:印度早发性绝经的流行率为2.2%,早熟性绝经的流行率为16.2%,较低的教育水平和经济状况较差的女性更容易经历早发性和早熟性绝经。吸烟、食用油炸食品和初潮年龄较早与早发性和早熟性绝经显著相关,居住在农村地区、营养不良(如低体重指数)和女性绝育手术(如输卵管结扎)也与早发性和早熟性绝经有关[40]。在现代社会中,我们长期处于高压状态,社会心理压力如影随形。研究表明心理应激源产生的应激相关因子可直接作用于卵巢表面受体,参与卵巢功能的下降。它还可以通过HPA和HPO轴改变内分泌激素水平和ROS产生,参与卵巢或GCs的凋亡[41]。在如今快节奏生活中,长期睡眠不足已成为许多人面临的普遍问题。在一项青春期雌性小鼠中建立睡眠剥夺(SD)小鼠的模型中发现,SD女性的肠道微生物群和全身代谢组学发生了严重改变,这些与卵巢早衰(POI)的参数有关,包括颗粒细胞凋亡增加,原始卵泡(PmFs)数量减少,与血清中AMH、E2和LH降低相关,SD还降低了卵母细胞成熟和生殖性能[42]。随着社会工业化进程的加速,环境因素同样影响着我们身体健康。研究发现持久性有机污染物,重金属,邻苯二甲酸酯,多环芳烃,化妆品和药品以及香烟烟雾,确实是POI的重要风险因素[43]。邻苯二甲酸盐通常存在于塑料制品和个人护理用品中,与窦卵泡计数减少和卵巢早衰有关,暴露于农药或塑料化合物,导致DNA甲基化模式和基因表达的变化,导致POI [44]。暴露于香烟烟雾(CS)会对卵巢健康产生不利影响,CSE通过破坏CREB1介导的卵巢颗粒细胞(GCs)增殖–凋亡平衡降低小鼠卵巢储备功能[45]。使用雌性大鼠作为实验对象,每天暴露于三丁基锡(TBT)和汞(Hg)的混合物中,持续15天。研究发现TBT和Hg的混合暴露会导致HPG轴异常,加剧POI特征并降低雌性大鼠的生育能力[46]。雌性大鼠暴露于不同浓度的氟化物中,慢性氟中毒可导致卵巢原始卵泡和初级/次级卵泡数量减少,而闭锁卵泡数量增加[47]。因此,我们要学会调整心态,合理安排时间,改善环境质量,培养健康的生活方式,避免损伤卵巢功能,为健康打下坚实的基础。

6. 感染因素

感染因素也是导致卵巢功能减退的一个因素。某些病毒或细菌感染还可能直接侵袭卵巢,导致卵巢功能减退。研究发现,在POI患者中阴道微生物群谱与健康女性不同,主要表现为链球菌、放线菌、特托孢菌和加德纳菌的显著增加,这些细菌菌群的变化与卵泡刺激素、黄体生成素、雌二醇和抗勒氏杆菌激素水平密切相关[48]。一项研究报告了一例34岁女性在感染COVID-197个月后出现原发性卵巢功能不全,伴有FSH和LH水平升高[49]。还有3例感染COVID-19后发生可逆性自身免疫性卵巢功能不全[50]。因此,预防和及时治疗感染性疾病对于保护卵巢功能至关重要。

7. 总结

综上所述,POI病因复杂,包括遗传因素、自身免疫因素、手术、放化疗因素、社会心理、生活方式和环境因素、感染因素等,这些因素相互作用,共同导致POI。因此预防和治疗POI需要综合考虑多方面因素,采取针对性措施,对有POI高危因素的女性应尽早完成生育和提前保存生育力,以维护女性生殖健康。

NOTES

*通讯作者。

参考文献

[1] Webber, L., Davies, M., Anderson, R., et al. (2016) ESHRE Guideline: Management of Women with Premature Ovarian Insufficiency. Human Reproduction (Oxford, England), 31, 926-937.
[2] Li, M., Zhu, Y., Wei, J., Chen, L., Chen, S. and Lai, D. (2022) The Global Prevalence of Premature Ovarian Insufficiency: A Systematic Review and Meta-Analysis. Climacteric, 26, 95-102.
https://doi.org/10.1080/13697137.2022.2153033
[3] Verrilli, L., Johnstone, E., Welt, C. and Allen-Brady, K. (2023) Primary Ovarian Insufficiency Has Strong Familiality: Results of a Multigenerational Genealogical Study. Fertility and Sterility, 119, 128-134.
https://doi.org/10.1016/j.fertnstert.2022.09.027
[4] Silvén, H., Savukoski, S.M., Pesonen, P., Pukkala, E., Gissler, M., Suvanto, E., et al. (2022) Incidence and Familial Risk of Premature Ovarian Insufficiency in the Finnish Female Population. Human Reproduction, 37, 1030-1036.
https://doi.org/10.1093/humrep/deac014
[5] Zhong, C., Wang, H., Yuan, X., He, Y., Cong, J., Yang, R., et al. (2024) The Crucial Role of HFM1 in Regulating FUS Ubiquitination and Localization for Oocyte Meiosis Prophase I Progression in Mice. Biological Research, 57, Article No. 36.
https://doi.org/10.1186/s40659-024-00518-w
[6] Zhang, Q., Zhang, W., Wu, X., Ke, H., Qin, Y., Zhao, S., et al. (2023) Homozygous Missense Variant in MEIOSIN Causes Premature Ovarian Insufficiency. Human Reproduction, 38, ii47-ii56.
https://doi.org/10.1093/humrep/dead084
[7] Qi, Y., Wang, Y., Li, W., Zhuang, S., Li, S., Xu, K., et al. (2023) Pathogenic Bi‐Allelic Variants of Meiotic ZMM Complex Gene spo16 in Premature Ovarian Insufficiency. Clinical Genetics, 104, 486-490.
https://doi.org/10.1111/cge.14380
[8] Fan, S., Jiao, Y., Khan, R., Jiang, X., Javed, A.R., Ali, A., et al. (2021) Homozygous Mutations in C14orf39/SIX6OS1 Cause Non-Obstructive Azoospermia and Premature Ovarian Insufficiency in Humans. The American Journal of Human Genetics, 108, 324-336.
https://doi.org/10.1016/j.ajhg.2021.01.010
[9] Hu, K., Wang, S., Ye, X. and Zhang, D. (2020) Effects of BRCA Gene Mutation on Female Reproductive Potential: A Systematic Review. Maturitas, 137, 11-17.
https://doi.org/10.1016/j.maturitas.2020.04.011
[10] Winship, A.L., Alesi, L.R., Stringer, J.M., Cao, Y., Lewis, Y.M., Tu, L., et al. (2024) Conditional Loss of Brca1 in Oocytes Causes Reduced Litter Size, Ovarian Reserve Depletion and Impaired Oocyte in Vitro Maturation with Advanced Reproductive Age in Mice. eBioMedicine, 106, Article ID: 105262.
https://doi.org/10.1016/j.ebiom.2024.105262
[11] Turan, V., Lambertini, M., Lee, D., Wang, E., Clatot, F., Karlan, B.Y., et al. (2021) Association of Germline BRCA Pathogenic Variants with Diminished Ovarian Reserve: A Meta-Analysis of Individual Patient-Level Data. Journal of Clinical Oncology, 39, 2016-2024.
https://doi.org/10.1200/jco.20.02880
[12] Zhao, F., Yan, L., Zhao, X., et al. (2024) Aberrantly High FBXO31 Impairs Oocyte Quality in Premature Ovarian Insufficiency. Aging and Disease, 15, 804-823.
[13] Hsieh, T. and Jin, J. (2024) Loss of Calponin 2 Causes Premature Ovarian Insufficiency in Mice. Journal of Ovarian Research, 17, Article No. 37.
https://doi.org/10.1186/s13048-024-01346-y
[14] Tan, H., Deng, Z., Shen, H., Deng, H. and Xiao, H. (2023) Single-Cell RNA-seq Identified Novel Genes Involved in Primordial Follicle Formation. Frontiers in Endocrinology, 14, Article ID: 1285667.
https://doi.org/10.3389/fendo.2023.1285667
[15] Xu, H., Wang, C., Wei, H., Li, T., Fang, Y. and Wang, B. (2023) A Novel Missense Variant in LAMC1 Identified in a POI Family by Whole Exome Sequencing. Gynecological Endocrinology, 39, Article ID: 2265507.
https://doi.org/10.1080/09513590.2023.2265507
[16] Afkhami, F., Shahbazi, S., Farzadi, L. and Danaei, S. (2022) Novel Bone Morphogenetic Protein 15 (BMP15) Gene Variants Implicated in Premature Ovarian Insufficiency. Reproductive Biology and Endocrinology, 20, Article No. 42.
https://doi.org/10.1186/s12958-022-00913-6
[17] Jordan, P., Verebi, C., Perol, S., Grotto, S., Fouveaut, C., Christin-Maitre, S., et al. (2023) NOBOX Gene Variants in Premature Ovarian Insufficiency: Ethnicity-Dependent Insights. Journal of Assisted Reproduction and Genetics, 41, 135-146.
https://doi.org/10.1007/s10815-023-02981-y
[18] Zhao, H., Zhang, H., Zhou, Y., Shuai, L., Chen, Z. and Wang, L. (2024) Deletion of fbxw7 in Oocytes Causes Follicle Loss and Premature Ovarian Insufficiency in Mice. Journal of Cellular and Molecular Medicine, 28, e18487.
https://doi.org/10.1111/jcmm.18487
[19] Gao, M., Zhang, T., Chen, T., Chen, Z., Zhu, Z., Wen, Y., et al. (2024) Polycomb Repressive Complex 1 Modulates Granulosa Cell Proliferation in Early Folliculogenesis to Support Female Reproduction. Theranostics, 14, 1371-1389.
https://doi.org/10.7150/thno.89878
[20] Bakhshalizadeh, S., Hock, D.H., Siddall, N.A., Kline, B.L., Sreenivasan, R., Bell, K.M., et al. (2023) Deficiency of the Mitochondrial Ribosomal Subunit, MRPL50, Causes Autosomal Recessive Syndromic Premature Ovarian Insufficiency. Human Genetics, 142, 879-907.
https://doi.org/10.1007/s00439-023-02563-z
[21] Zhang, J., Zhou, X., Wang, A., Lai, Y., Zhang, X., Liu, X., et al. (2023) Novel Tu Translation Elongation Factor, Mitochondrial (tufm) Homozygous Variant in a Consanguineous Family with Premature Ovarian Insufficiency. Clinical Genetics, 104, 516-527.
https://doi.org/10.1111/cge.14403
[22] Zhen, X., Wu, B., Wang, J., Lu, C., Gao, H. and Qiao, J. (2015) Increased Incidence of Mitochondrial Cytochrome C Oxidase 1 Gene Mutations in Patients with Primary Ovarian Insufficiency. PLOS ONE, 10, e0132610.
https://doi.org/10.1371/journal.pone.0132610
[23] Ding, Y., He, Z., Sha, Y., Kee, K. and Li, L. (2023) Eif4enif1 Haploinsufficiency Disrupts Oocyte Mitochondrial Dynamics and Leads to Subfertility. Development, 150, dev202151.
https://doi.org/10.1242/dev.202151
[24] Wen, C., Cao, L., Wang, S., Xu, W., Yu, Y., Zhao, S., et al. (2024) MCM8 Interacts with DDX5 to Promote R-Loop Resolution. The EMBO Journal, 43, 3044-3071.
https://doi.org/10.1038/s44318-024-00134-0
[25] Liu, B., Liu, Y., Li, S., Chen, P., Zhang, J. and Feng, L. (2024) Depletion of Placental Brain-Derived Neurotrophic Factor (BDNF) Is Attributed to Premature Ovarian Insufficiency (POI) in Mice Offspring. Journal of Ovarian Research, 17, Article No. 141.
https://doi.org/10.1186/s13048-024-01467-4
[26] 闻星星, 柴梦晗, 张倩楠, 等. 范科尼贫血通路FANCM基因纯合突变导致早发性卵巢功能不全的致病机制[J]. 四川大学学报(医学版), 2024, 55(3): 559-565.
[27] Yang, X., Ren, S., Yang, J., Pan, Y., Zhou, Z., Chen, Q., et al. (2024) Rare Variants in FANCJ Induce Premature Ovarian Insufficiency in Humans and Mice. Journal of Genetics and Genomics, 51, 252-255.
https://doi.org/10.1016/j.jgg.2023.03.013
[28] Song, C., Qin, Y., Li, Y., Yang, B., Guo, T., Ma, W., et al. (2024) Deleterious Variants in RNF111 Impair Female Fertility and Induce Premature Ovarian Insufficiency in Humans and Mice. Science China Life Sciences, 67, 1325-1337.
https://doi.org/10.1007/s11427-024-2606-6
[29] Wang, F., Liu, Y., Ni, F., Jin, J., Wu, Y., Huang, Y., et al. (2022) BNC1 Deficiency-Triggered Ferroptosis through the NF2-YAP Pathway Induces Primary Ovarian Insufficiency. Nature Communications, 13, Article No. 5871.
https://doi.org/10.1038/s41467-022-33323-8
[30] Zhou, C., Li, D., He, J., Luo, T., Liu, Y., Xue, Y., et al. (2024) TRIM28-Mediated Excessive Oxidative Stress Induces Cellular Senescence in Granulosa Cells and Contributes to Premature Ovarian Insufficiency in Vitro and in Vivo. Antioxidants, 13, Article No. 308.
https://doi.org/10.3390/antiox13030308
[31] Hu, L., Hong, T., He, Y., Wang, H., Cao, J., Pu, D., et al. (2024) Chromosome Segregation-1-Like Gene Participates in Ferroptosis in Human Ovarian Granulosa Cells via Nucleocytoplasmic Transport. Antioxidants, 13, Article No. 911.
https://doi.org/10.3390/antiox13080911
[32] 秦爽, 罗颂平, 鞠蕊. 特纳综合征中国专家共识(2022年版) [J]. 中国实用妇科与产科杂志, 2022, 38(4): 424-433.
[33] Davis, S.M., Soares, K., Howell, S., Cree-Green, M., Buyers, E., Johnson, J., et al. (2020) Diminished Ovarian Reserve in Girls and Adolescents with Trisomy X Syndrome. Reproductive Sciences, 27, 1985-1991.
https://doi.org/10.1007/s43032-020-00216-4
[34] Savukoski, S.M., Silvén, H., Pesonen, P., Pukkala, E., Gissler, M., Suvanto, E., et al. (2024) Excess of Severe Autoimmune Diseases in Women with Premature Ovarian Insufficiency: A Population-Based Study. Human Reproduction, 39, 2601-2607.
https://doi.org/10.1093/humrep/deae213
[35] Jiao, X., Zhang, X., Li, N., Zhang, D., Zhao, S., Dang, Y., et al. (2021) Treg Deficiency‐Mediated TH1 Response Causes Human Premature Ovarian Insufficiency through Apoptosis and Steroidogenesis Dysfunction of Granulosa Cells. Clinical and Translational Medicine, 11, e448.
https://doi.org/10.1002/ctm2.448
[36] Beitl, K., Ott, J., Rosta, K., Holzer, I., Foessleitner, P., Steininger, J., et al. (2023) Premature Ovarian Insufficiency and Autoimmune Profiles: A Prospective Case-Control Study. Climacteric, 27, 187-192.
https://doi.org/10.1080/13697137.2023.2287631
[37] Brennand, E.A., Scime, N.V., Manion, R. and Huang, B. (2024) Unilateral Oophorectomy and Age at Natural Menopause: A Longitudinal Community‐Based Cohort Study. BJOG: An International Journal of Obstetrics & Gynaecology, 132, 337-345.
https://doi.org/10.1111/1471-0528.17980
[38] 苏德慧, 杨欣. 妇科手术对卵巢储备功能的影响[J]. 中国实用妇科与产科杂志, 2023, 39(9): 887-890.
[39] 刘荣华, 王世宣. 放化疗与早发性卵巢功能不全[J]. 中国实用妇科与产科杂志, 2023, 39(9): 891-896.
[40] Kundu, S. and Acharya, S.S. (2024) Exploring the Triggers of Premature and Early Menopause in India: A Comprehensive Analysis Based on National Family Health Survey, 2019-2021. Scientific Reports, 14, Article No. 3040.
https://doi.org/10.1038/s41598-024-53536-9
[41] Xu, Y., Fu, J., Hong, Z., Zeng, D., Guo, C., Li, P., et al. (2024) Psychological Stressors Involved in the Pathogenesis of Premature Ovarian Insufficiency and Potential Intervention Measures. Gynecological Endocrinology, 40, Article ID: 2360085.
https://doi.org/10.1080/09513590.2024.2360085
[42] Yan, J., Zhang, X., Zhu, K., Yu, M., Liu, Q., De Felici, M., et al. (2024) Sleep Deprivation Causes Gut Dysbiosis Impacting on Systemic Metabolomics Leading to Premature Ovarian Insufficiency in Adolescent Mice. Theranostics, 14, 3760-3776.
https://doi.org/10.7150/thno.95197
[43] Zhu, X., Liu, M., Dong, R., Gao, L., Hu, J., Zhang, X., et al. (2023) Mechanism Exploration of Environmental Pollutants on Premature Ovarian Insufficiency: A Systematic Review and Meta-Analysis. Reproductive Sciences, 31, 99-106.
https://doi.org/10.1007/s43032-023-01326-5
[44] Evangelinakis, N., Geladari, E.V., Geladari, C.V., Kontogeorgi, A., Papaioannou, G., Peppa, M., et al. (2024) The Influence of Environmental Factors on Premature Ovarian Insufficiency and Ovarian Aging. Maturitas, 179, Article ID: 107871.
https://doi.org/10.1016/j.maturitas.2023.107871
[45] Xu, M., Li, F., Xu, X., Hu, N., Miao, J., Zhao, Y., et al. (2024) Proteomic Analysis Reveals That Cigarette Smoke Exposure Diminishes Ovarian Reserve in Mice by Disrupting the CREB1-Mediated Ovarian Granulosa Cell Proliferation-Apoptosis Balance. Ecotoxicology and Environmental Safety, 271, Article ID: 115989.
https://doi.org/10.1016/j.ecoenv.2024.115989
[46] Januario, C.d.F., Da Costa, C.S., Dos Santos, F.C.F., Miranda-Alves, L., Correa, B.S., Carneiro, M.T.W.D., et al. (2024) Subacute Exposure to a Mixture of Tributyltin Plus Mercury Impairs Reproductive Axis Function, Exacerbating Premature Ovarian Insufficiency Features and Reducing Fertility in Female Rats. Reproductive Toxicology, 129, Article ID: 108670.
https://doi.org/10.1016/j.reprotox.2024.108670
[47] Tang, X., Li, H., Wang, Y., Zeng, L., Long, L., Qu, Y., et al. (2023) Chronic Fluoride Exposure Induces Ovarian Dysfunction and Potential Association with Premature Ovarian Failure in Female Rats. Biological Trace Element Research, 202, 3225-3236.
https://doi.org/10.1007/s12011-023-03914-7
[48] Zhao, X., Shi, W., Li, Z. and Zhang, W. (2024) Linking Reproductive Tract Microbiota to Premature Ovarian Insufficiency: Pathophysiological Mechanisms and Therapies. Journal of Reproductive Immunology, 166, Article ID: 104325.
https://doi.org/10.1016/j.jri.2024.104325
[49] Wilkins, J. and Al‐Inizi, S. (2021) Premature Ovarian Insufficiency Secondary to COVID‐19 Infection: An Original Case Report. International Journal of Gynecology & Obstetrics, 154, 179-180.
https://doi.org/10.1002/ijgo.13719
[50] Stern, R., Bibi, M. and Keltz, M.D. (2024) Premature Ovarian Insufficiency after Coronavirus Disease 2019 (COVID-19): Autoimmune Follicle-Stimulating Hormone (FSH) and FSH Receptor Blockade. Obstetrics & Gynecology, 143, e149-e152.
https://doi.org/10.1097/aog.0000000000005574