[1]
|
Xu, Y., Lu, J., Li, M., Wang, T., Wang, K., Cao, Q., et al. (2024) Diabetes in China Part 1: Epidemiology and Risk Factors. The Lancet Public Health, 9, e1089-e1097. https://doi.org/10.1016/s2468-2667(24)00250-0
|
[2]
|
Tebé, C., Martínez-Laguna, D., Carbonell-Abella, C., Reyes, C., Moreno, V., Diez-Perez, A., et al. (2019) The Association between Type 2 Diabetes Mellitus, Hip Fracture, and Post-Hip Fracture Mortality: A Multi-State Cohort Analysis. Osteoporosis International, 30, 2407-2415. https://doi.org/10.1007/s00198-019-05122-3
|
[3]
|
Koromani, F., Oei, L., Shevroja, E., Trajanoska, K., Schoufour, J., Muka, T., et al. (2019) Vertebral Fractures in Individuals with Type 2 Diabetes: More than Skeletal Complications Alone. Diabetes Care, 43, 137-144. https://doi.org/10.2337/dc19-0925
|
[4]
|
Dahl, J., Gulseth, H.L., Forsén, L., Hoff, M., Forsmo, S., Åsvold, B.O., et al. (2021) Risk of Hip and Forearm Fracture in Subjects with Type 2 Diabetes Mellitus and Latent Autoimmune Diabetes of Adults. the HUNT Study, Norway. Bone, 153, Article 116110. https://doi.org/10.1016/j.bone.2021.116110
|
[5]
|
Geusens, P., van den Bergh, J., Roux, C., Chapurlat, R., Center, J., Bliuc, D., et al. (2024) The Fracture Phenotypes in Women and Men of 50 Years and Older with a Recent Clinical Fracture. Current Osteoporosis Reports, 22, 611-620. https://doi.org/10.1007/s11914-024-00885-z
|
[6]
|
Khosla, S., Samakkarnthai, P., Monroe, D.G. and Farr, J.N. (2021) Update on the Pathogenesis and Treatment of Skeletal Fragility in Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 17, 685-697. https://doi.org/10.1038/s41574-021-00555-5
|
[7]
|
Zoulakis, M., Johansson, L., Litsne, H., Axelsson, K. and Lorentzon, M. (2024) Type 2 Diabetes and Fracture Risk in Older Women. JAMA Network Open, 7, e2425106. https://doi.org/10.1001/jamanetworkopen.2024.25106
|
[8]
|
Walker, M.D. and Shane, E. (2023) Postmenopausal Osteoporosis. New England Journal of Medicine, 389, 1979-1991. https://doi.org/10.1056/nejmcp2307353
|
[9]
|
刘建民, 朱大龙, 母义明, 等. 糖尿病患者骨折风险管理中国专家共识[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4): 319-335.
|
[10]
|
Leanza, G., Cannata, F., Faraj, M., Pedone, C., Viola, V., Tramontana, F., et al. (2024) Bone Canonical Wnt Signaling Is Downregulated in Type 2 Diabetes and Associates with Higher Advanced Glycation End-Products (AGEs) Content and Reduced Bone Strength. eLife, 12, RP90437.
|
[11]
|
Napoli, N., Chandran, M., Pierroz, D.D., Abrahamsen, B., Schwartz, A.V. and Ferrari, S.L. (2016) Mechanisms of Diabetes Mellitus-Induced Bone Fragility. Nature Reviews Endocrinology, 13, 208-219. https://doi.org/10.1038/nrendo.2016.153
|
[12]
|
Sangondimath, G., Sen, R.K. and T., F.R. (2023) DEXA and Imaging in Osteoporosis. Indian Journal of Orthopaedics, 57, 82-93. https://doi.org/10.1007/s43465-023-01059-2
|
[13]
|
Starup-Linde, J. and Vestergaard, P. (2016) Biochemical Bone Turnover Markers in Diabetes Mellitus—A Systematic Review. Bone, 82, 69-78. https://doi.org/10.1016/j.bone.2015.02.019
|
[14]
|
Napoli, N., Conte, C., Eastell, R., Ewing, S.K., Bauer, D.C., Strotmeyer, E.S., et al. (2020) Bone Turnover Markers Do Not Predict Fracture Risk in Type 2 Diabetes. Journal of Bone and Mineral Research, 35, 2363-2371. https://doi.org/10.1002/jbmr.4140
|
[15]
|
张翠平, 陈琳, 徐碧林, 等. 骨小梁评分在2型糖尿病患者中评价骨质量的应用[J]. 中国骨质疏松杂志, 2020, 26(7): 1028-1033.
|
[16]
|
Leslie, W.D., Johansson, H., McCloskey, E.V., Harvey, N.C., Kanis, J.A. and Hans, D. (2018) Comparison of Methods for Improving Fracture Risk Assessment in Diabetes: The Manitoba BMD Registry. Journal of Bone and Mineral Research, 33, 1923-1930. https://doi.org/10.1002/jbmr.3538
|
[17]
|
Silva, B.C., Boutroy, S., Zhang, C., McMahon, D.J., Zhou, B., Wang, J., et al. (2013) Trabecular Bone Score (TBS)—A Novel Method to Evaluate Bone Microarchitectural Texture in Patients with Primary Hyperparathyroidism. The Journal of Clinical Endocrinology & Metabolism, 98, 1963-1970. https://doi.org/10.1210/jc.2012-4255
|
[18]
|
Lin, Y.-C., Wu, J., Kuo, S.-F., Cheung, Y.-C., Sung, C.-M., Fan, C.-M., et al. (2020) Vertebral Fractures in Type 2 Diabetes Patients: Utility of Trabecular Bone Score and Relationship with Serum Bone Turnover Biomarkers. Journal of Clinical Densitometry, 23, 37-43. https://doi.org/10.1016/j.jocd.2019.01.003
|
[19]
|
Cheung, W.-H., Hung, V.W.-Y., Cheuk, K.-Y., Chau, W.-W., Tsoi, K.K.-F., Wong, R.M.-Y., et al. (2021) Best Performance Parameters of HR-pQCT to Predict Fragility Fracture: Systematic Review and Meta-Analysis. Journal of Bone and Mineral Research, 36, 2381-2398. https://doi.org/10.1002/jbmr.4449
|
[20]
|
Qiu, H., Yang, H., Yang, Z., Yao, Q., Duan, S., Qin, J., et al. (2022) The Value of Radiomics to Predict Abnormal Bone Mass in Type 2 Diabetes Mellitus Patients Based on CT Imaging for Paravertebral Muscles. Frontiers in Endocrinology, 13, Article 963246. https://doi.org/10.3389/fendo.2022.963246
|
[21]
|
Chen, W., Mao, M., Fang, J., Xie, Y. and Rui, Y. (2022) Fracture Risk Assessment in Diabetes Mellitus. Frontiers in Endocrinology, 13, Article 961761. https://doi.org/10.3389/fendo.2022.961761
|
[22]
|
Carballido-Gamio, J. (2022) Imaging Techniques to Study Diabetic Bone Disease. Current Opinion in Endocrinology, Diabetes & Obesity, 29, 350-360. https://doi.org/10.1097/med.0000000000000749
|
[23]
|
Krieg, M.A., Barkmann, R., Gonnelli, S., Stewart, A., Bauer, D.C., Del Rio Barquero, L., et al. (2008) Quantitative Ultrasound in the Management of Osteoporosis: The 2007 ISCD Official Positions. Journal of Clinical Densitometry, 11, 163-187. https://doi.org/10.1016/j.jocd.2007.12.011
|
[24]
|
Gonnelli, S., Al Refaie, A., Baldassini, L., De Vita, M. and Caffarelli, C. (2022) Ultrasound-Based Techniques in Diabetic Bone Disease: State of the Art and Future Perspectives. Indian Journal of Endocrinology and Metabolism, 26, 518-523. https://doi.org/10.4103/ijem.ijem_347_22
|
[25]
|
Caffarelli, C., Tomai Pitinca, M.D., Al Refaie, A., Ceccarelli, E. and Gonnelli, S. (2021) Ability of Radiofrequency Echographic Multispectrometry to Identify Osteoporosis Status in Elderly Women with Type 2 Diabetes. Aging Clinical and Experimental Research, 34, 121-127. https://doi.org/10.1007/s40520-021-01889-w
|
[26]
|
Schini, M., Johansson, H., Harvey, N.C., Lorentzon, M., Kanis, J.A. and McCloskey, E.V. (2023) An Overview of the Use of the Fracture Risk Assessment Tool (FRAX) in Osteoporosis. Journal of Endocrinological Investigation, 47, 501-511. https://doi.org/10.1007/s40618-023-02219-9
|
[27]
|
Vandenput, L., Johansson, H., McCloskey, E.V., Liu, E., Åkesson, K.E., Anderson, F.A., et al. (2022) Update of the Fracture Risk Prediction Tool FRAX: A Systematic Review of Potential Cohorts and Analysis Plan. Osteoporosis International, 33, 2103-2136. https://doi.org/10.1007/s00198-022-06435-6
|
[28]
|
Zerikly, R. and Demetriou, E.W. (2024) Use of Fracture Risk Assessment Tool in Clinical Practice and Fracture Risk Assessment Tool Future Directions. Women’s Health, 20, 1-6. https://doi.org/10.1177/17455057241231387
|
[29]
|
Vilaca, T., Schini, M., Harnan, S., Sutton, A., Poku, E., Allen, I.E., et al. (2020) The Risk of Hip and Non-Vertebral Fractures in Type 1 and Type 2 Diabetes: A Systematic Review and Meta-Analysis Update. Bone, 137, Article 115457. https://doi.org/10.1016/j.bone.2020.115457
|
[30]
|
董玉洁, 刘冀. 骨质疏松性骨折风险评估工具: FRAX、QFracture、Garvan的应用和比较[J]. 临床医学进展, 2021, 11(1): 143-149.
|
[31]
|
Agarwal, A., Leslie, W.D., Nguyen, T.V., Morin, S.N., Lix, L.M. and Eisman, J.A. (2022) Performance of the Garvan Fracture Risk Calculator in Individuals with Diabetes: A Registry-Based Cohort Study. Calcified Tissue International, 110, 658-665. https://doi.org/10.1007/s00223-021-00941-1
|
[32]
|
Sheu, A., Greenfield, J.R., White, C.P. and Center, J.R. (2022) Assessment and Treatment of Osteoporosis and Fractures in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 33, 333-344. https://doi.org/10.1016/j.tem.2022.02.006
|
[33]
|
Schoeb, M., Avci, T.M., Winter, E.M. and Appelman-Dijkstra, N.M. (2023) Safety Outcomes of Impact Microindentation: A Prospective Observational Study in the Netherlands. JBMR Plus, 7, e10799. https://doi.org/10.1002/jbm4.10799
|
[34]
|
Rufus-Membere, P., Anderson, K.B., Holloway-Kew, K.L., Kotowicz, M.A., Diez-Perez, A. and Pasco, J.A. (2025) Associations between Bone Material Strength Index and FRAX Scores. Journal of Bone and Mineral Metabolism, 43, 230-236. https://doi.org/10.1007/s00774-024-01575-7
|
[35]
|
Samakkarnthai, P., Sfeir, J.G., Atkinson, E.J., Achenbach, S.J., Wennberg, P.W., Dyck, P.J., et al. (2020) Determinants of Bone Material Strength and Cortical Porosity in Patients with Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 105, e3718-e3729. https://doi.org/10.1210/clinem/dgaa388
|
[36]
|
Lekkala, S., Sacher, S.E., Taylor, E.A., Williams, R.M., Moseley, K.F. and Donnelly, E. (2020) Increased Advanced Glycation Endproducts, Stiffness, and Hardness in Iliac Crest Bone from Postmenopausal Women with Type 2 Diabetes Mellitus on Insulin. Journal of Bone and Mineral Research, 38, 261-277. https://doi.org/10.1002/jbmr.4757
|
[37]
|
van Lenthe, G.H., Mueller, T.L., Wirth, A.J. and Müller, R. (2008) Quantification of Bone Structural Parameters and Mechanical Competence at the Distal Radius. Journal of Orthopaedic Trauma, 22, S66-S72. https://doi.org/10.1097/bot.0b013e31815e9fe1
|
[38]
|
谢雨芯, 周素伊, 梅好, 等. 人工智能辅助机会性CT与双能X线骨密度检测在2型糖尿病和非糖尿病患者骨量评估中的比较研究[J]. 重庆医学, 2024, 53(24): 3700-3705.
|
[39]
|
Kruse, C., Eiken, P. and Vestergaard, P. (2017) Machine Learning Principles Can Improve Hip Fracture Prediction. Calcified Tissue International, 100, 348-360. https://doi.org/10.1007/s00223-017-0238-7
|
[40]
|
Wu, Y., Chao, J., Bao, M. and Zhang, N. (2023) Predictive Value of Machine Learning on Fracture Risk in Osteoporosis: A Systematic Review and Meta-Analysis. BMJ Open, 13, e071430. https://doi.org/10.1136/bmjopen-2022-071430
|
[41]
|
Paschou, S.Α., Dede, A.D., Anagnostis, P.G., Vryonidou, A., Morganstein, D. and Goulis, D.G. (2017) Type 2 Diabetes and Osteoporosis: A Guide to Optimal Management. The Journal of Clinical Endocrinology & Metabolism, 102, 3621-3634. https://doi.org/10.1210/jc.2017-00042
|
[42]
|
Tao, Y., E, M., Shi, J. and Zhang, Z. (2021) Sulfonylureas Use and Fractures Risk in Elderly Patients with Type 2 Diabetes Mellitus: A Meta-Analysis Study. Aging Clinical and Experimental Research, 33, 2133-2139. https://doi.org/10.1007/s40520-020-01736-4
|
[43]
|
Ma, T., Tian, X., Zhang, B., Li, M., Wang, Y., Yang, C., et al. (2022) Low-Dose Metformin Targets the Lysosomal AMPK Pathway through PEN2. Nature, 603, 159-165. https://doi.org/10.1038/s41586-022-04431-8
|
[44]
|
Liu, D., Bai, J.-J., Yao, J.-J., Wang, Y.-B., Chen, T., Xing, Q., et al. (2021) Association of Insulin Glargine Treatment with Bone Mineral Density in Patients with Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 1909-1917. https://doi.org/10.2147/dmso.s302627
|
[45]
|
Lee, R.H., Sloane, R., Pieper, C., Lyles, K.W., Adler, R.A., Van Houtven, C., et al. (2019) Glycemic Control and Insulin Treatment Alter Fracture Risk in Older Men with Type 2 Diabetes Mellitus. Journal of Bone and Mineral Research, 34, 2045-2051. https://doi.org/10.1002/jbmr.3826
|
[46]
|
Ye, Y., Zhao, C., Liang, J., Yang, Y., Yu, M. and Qu, X. (2019) Effect of Sodium-Glucose Co-Transporter 2 Inhibitors on Bone Metabolism and Fracture Risk. Frontiers in Pharmacology, 9, Article 1517. https://doi.org/10.3389/fphar.2018.01517
|
[47]
|
Watts, N.B., Bilezikian, J.P., Usiskin, K., Edwards, R., Desai, M., Law, G., et al. (2016) Effects of Canagliflozin on Fracture Risk in Patients with Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 101, 157-166. https://doi.org/10.1210/jc.2015-3167
|
[48]
|
Perkovic, V., Jardine, M.J., Neal, B., Bompoint, S., Heerspink, H.J.L., Charytan, D.M., et al. (2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 380, 2295-2306. https://doi.org/10.1056/nejmoa1811744
|
[49]
|
Song, P., Chen, T., Rui, S., Duan, X., Deng, B., Armstrong, D.G., et al. (2022) Canagliflozin Promotes Osteoblastic MC3T3-E1 Differentiation via AMPK/RUNX2 and Improves Bone Microarchitecture in Type 2 Diabetic Mice. Frontiers in Endocrinology, 13, Article 1081039. https://doi.org/10.3389/fendo.2022.1081039
|
[50]
|
Tan, J., Guo, A., Zhang, K., Jiang, Y. and Liu, H. (2024) The Effect of Empagliflozin (Sodium-Glucose Cotransporter-2 Inhibitor) on Osteoporosis and Glycemic Parameters in Patients with Type 2 Diabetes: A Quasi-Experimental Study. BMC Musculoskeletal Disorders, 25, Article No. 793. https://doi.org/10.1186/s12891-024-07900-5
|
[51]
|
Kanis, J.A., Johansson, H., McCloskey, E.V., Liu, E., Åkesson, K.E., Anderson, F.A., et al. (2023) Previous Fracture and Subsequent Fracture Risk: A Meta-Analysis to Update FRAX. Osteoporosis International, 34, 2027-2045. https://doi.org/10.1007/s00198-023-06870-z
|
[52]
|
McGuire, D.K., Marx, N., Mulvagh, S.L., Deanfield, J.E., Inzucchi, S.E., Pop-Busui, R., et al. (2025) Oral Semaglutide and Cardiovascular Outcomes in High-Risk Type 2 Diabetes. New England Journal of Medicine, 392, 2001-2012. https://doi.org/10.1056/nejmoa2501006
|
[53]
|
Daniilopoulou, I., Vlachou, E., Lambrou, G.I., Ntikoudi, A., Dokoutsidou, E., Fasoi, G., et al. (2022) The Impact of GLP1 Agonists on Bone Metabolism: A Systematic Review. Medicina, 58, Article 224. https://doi.org/10.3390/medicina58020224
|
[54]
|
Viggers, R., Rasmussen, N.H.H. and Vestergaard, P. (2023) Effects of Incretin Therapy on Skeletal Health in Type 2 Diabetes—A Systematic Review. JBMR Plus, 7, e10817. https://doi.org/10.1002/jbm4.10817
|
[55]
|
Li, X., Li, Y. and Lei, C. (2024) Effects of Glucagon-Like Peptide-1 Receptor Agonists on Bone Metabolism in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. International Journal of Endocrinology, 2024, Article 1785321. https://doi.org/10.1155/2024/1785321
|
[56]
|
Nasser, M.I., Kvist, A.V., Vestergaard, P., Eastell, R., Burden, A.M. and Frost, M. (2023) Sex and Age Group-Specific Fracture Incidence Rates Trends for Type 1 and 2 Diabetes Mellitus. JBMR Plus, 7, e10836. https://doi.org/10.1002/jbm4.10836
|
[57]
|
王亚雯, 刘靖芳. DPP-4抑制剂对2型糖尿病患者骨代谢的影响及其分子机制[J]. 中国新药与临床杂志, 2023, 42(11): 695-700.
|
[58]
|
Pechmann, L.M., Pinheiro, F.I., Andrade, V.F.C. and Moreira, C.A. (2024) The Multiple Actions of Dipeptidyl Peptidase 4 (DPP-4) and Its Pharmacological Inhibition on Bone Metabolism: A Review. Diabetology & Metabolic Syndrome, 16, Article No. 175. https://doi.org/10.1186/s13098-024-01412-x
|
[59]
|
Zhang, Y.-S., Zheng, Y.-D., Yuan, Y., Chen, S.-C. and Xie, B.-C. (2021) Effects of Anti-Diabetic Drugs on Fracture Risk: A Systematic Review and Network Meta-Analysis. Frontiers in Endocrinology, 12, Article 735824. https://doi.org/10.3389/fendo.2021.735824
|
[60]
|
Eastell, R., Vittinghoff, E., Lui, L.Y., Ewing, S.K., Schwartz, A.V., Bauer, D.C., et al. (2022) Diabetes Mellitus and the Benefit of Antiresorptive Therapy on Fracture Risk. Journal of Bone and Mineral Research, 37, 2121-2131. https://doi.org/10.1002/jbmr.4697
|
[61]
|
Ferrari, S., Eastell, R., Napoli, N., Schwartz, A., Hofbauer, L.C., Chines, A., et al. (2020) Denosumab in Postmenopausal Women with Osteoporosis and Diabetes: Subgroup Analysis of FREEDOM and FREEDOM Extension. Bone, 134, Article 115268. https://doi.org/10.1016/j.bone.2020.115268
|
[62]
|
Mori, H., Okada, Y., Kishikawa, H., Inokuchi, N., Sugimoto, H. and Tanaka, Y. (2013) Effects of Raloxifene on Lipid and Bone Metabolism in Postmenopausal Women with Type 2 Diabetes. Journal of Bone and Mineral Metabolism, 31, 89-95. https://doi.org/10.1007/s00774-012-0379-8
|
[63]
|
Jordt, N., Kjærgaard, K.A., Thomsen, R.W., Borgquist, S. and Cronin-Fenton, D. (2023) Breast Cancer and Incidence of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Breast Cancer Research and Treatment, 202, 11-22. https://doi.org/10.1007/s10549-023-07043-6
|
[64]
|
Dhaliwal, R., Hans, D., Hattersley, G., Mitlak, B., Fitzpatrick, L.A., Wang, Y., et al. (2020) Abaloparatide in Postmenopausal Women with Osteoporosis and Type 2 Diabetes: A Post Hoc Analysis of the ACTIVE Study. JBMR Plus, 4, e10346. https://doi.org/10.1002/jbm4.10346
|
[65]
|
Cosman, F., Crittenden, D.B., Adachi, J.D., Binkley, N., Czerwinski, E., Ferrari, S., et al. (2016) Romosozumab Treatment in Postmenopausal Women with Osteoporosis. New England Journal of Medicine, 375, 1532-1543. https://doi.org/10.1056/nejmoa1607948
|
[66]
|
Dominguez, L.J., Veronese, N., Marrone, E., Di Palermo, C., Iommi, C., Ruggirello, R., et al. (2024) Vitamin D and Risk of Incident Type 2 Diabetes in Older Adults: An Updated Systematic Review and Meta-Analysis. Nutrients, 16, Article 1561. https://doi.org/10.3390/nu16111561
|
[67]
|
Kawahara, T., Suzuki, G., Mizuno, S., Inazu, T., Kasagi, F., Kawahara, C., et al. (2022) Effect of Active Vitamin D Treatment on Development of Type 2 Diabetes: DPVD Randomised Controlled Trial in Japanese Population. British Medical Journal, 377, e066222. https://doi.org/10.1136/bmj-2021-066222
|
[68]
|
Ferrari, S.L., Abrahamsen, B., Napoli, N., Akesson, K., Chandran, M., Eastell, R., et al. (2018) Diagnosis and Management of Bone Fragility in Diabetes: An Emerging Challenge. Osteoporosis International, 29, 2585-2596. https://doi.org/10.1007/s00198-018-4650-2
|
[69]
|
Chandran, M., Mitchell, P.J., Amphansap, T., Bhadada, S.K., Chadha, M., Chan, D.-C., et al. (2021) Development of the Asia Pacific Consortium on Osteoporosis (APCO) Framework: Clinical Standards of Care for the Screening, Diagnosis, and Management of Osteoporosis in the Asia-Pacific Region. Osteoporosis International, 32, 1249-1275. https://doi.org/10.1007/s00198-020-05742-0
|