从斑块精准评估到个体化决策:Plaque-RADS分级系统引领高龄患者CEA安全阈值的再定义
From Plaque-Specific Assessment to Personalized Decision-Making: The Plaque-RADS Classification System Redefines Safety Thresholds for CEA in Elderly Patients
摘要: 本文系统阐述了Plaque-RADS分级系统在高龄患者颈动脉疾病管理中的应用价值及其对CEA手术决策的革新意义。作为新型影像评估体系,Plaque-RADS通过整合斑块厚度、溃疡、内出血等关键形态学特征,构建了四级风险分层标准(Plaque-RADS 1-4),突破了传统狭窄度评估的局限。研究证实,该系统对中轻度狭窄但斑块不稳定的患者具有独特识别价值,其中Plaque-RADS 3-4患者卒中风险显著升高,为临床决策提供了新依据。针对高龄患者的手术风险难题,Plaque-RADS实现了三大突破:首先,将CEA适应症从单纯狭窄标准拓展至斑块易损性评估;其次,通过量化年龄相关风险因素,优化围术期风险评估模型;第三,指导个体化治疗选择,如对高风险患者优先选择CEA而非支架治疗。临床数据显示,该系统使卒中预测的净重分类改善达63.8%,显著提升了手术决策的精准度。Plaque-RADS的应用标志着颈动脉疾病管理进入精准医疗时代,其多维度评估模式为高龄患者提供了更科学的手术安全阈值界定标准,具有重要的临床推广价值。
Abstract: This study comprehensively elucidates the clinical value of the Plaque-RADS classification system in the management of carotid artery disease among elderly patients and its transformative significance for CEA surgical decision-making. As an advanced imaging evaluation system, Plaque-RADS establishes a four-tier risk stratification standard (Plaque-RADS 1-4) by integrating critical morphological characteristics including plaque thickness, ulceration, and intraplaque hemorrhage, thereby overcoming the limitations of traditional stenosis-based assessment. Clinical studies confirm the system's unique capability to identify patients with moderate-to-mild stenosis but unstable plaques, demonstrating that Plaque-RADS 3-4 patients exhibit significantly elevated stroke risk, providing novel evidence for clinical decision-making. Regarding surgical risk management in elderly patients, Plaque-RADS achieves three major breakthroughs: Expansion of CEA indications from stenosis-based criteria to comprehensive plaque vulnerability assessment; Optimization of perioperative risk evaluation models through quantification of age-related risk factors; Guidance for personalized treatment selection, including preferential CEA over stenting for high-risk patients. Clinical data demonstrate that this system achieves a net reclassification improvement of 63.8% in stroke prediction, significantly enhancing decision-making precision. The implementation of Plaque-RADS marks the advent of precision medicine in carotid disease management, with its multidimensional assessment model establishing more scientific safety thresholds for elderly patients, underscoring its significant clinical value for widespread adoption.
文章引用:李刚, 米新佳, 施昌泽, 王中辉, 赵开胜. 从斑块精准评估到个体化决策:Plaque-RADS分级系统引领高龄患者CEA安全阈值的再定义[J]. 临床医学进展, 2025, 15(8): 888-896. https://doi.org/10.12677/acm.2025.1582312

1. 引言

颈动脉粥样硬化是导致缺血性脑卒中的重要病因,而颈动脉内膜剥脱术(CEA)作为预防卒中的有效手段,其手术适应症传统上主要依赖于管腔狭窄程度。然而,这一标准在高龄患者中面临显著局限性——单纯狭窄评估无法充分反映斑块易损性带来的卒中风险[1],且高龄患者特有的生理衰退和合并症使得手术风险显著增加[2]。近年来提出的Plaque-RADS分级系统通过整合斑块形态学特征(如厚度、溃疡、内出血等),建立了标准化的四层风险分类体系,为突破传统评估模式的局限性提供了新思路。本文系统阐述Plaque-RADS如何通过精准的斑块风险评估,重新定义高龄患者CEA的安全阈值,推动手术决策从“狭窄优先”向“风险优先”的个体化模式转变,为临床实践提供更精准的决策依据[1]-[3]

2. Plaque-RADS的定义、分类及其核心优势

2.1. 定义、分类

颈动脉斑块报告和数据系统(Carotid Plaque-RADS)是2023年提出的标准化颈动脉斑块影像学评估体系,该系统整合了多种成像方式,包括颈动脉超声、CT血管造影、MRI和PET-CT,旨在通过多模态影像特征实现斑块风险的精准分层,为颈动脉斑块提供统一的分类框架,以补充传统狭窄度评估的不足[4]

系统定义了四个分级类别,范围从低风险到高风险,辅以视觉示例辅助理解,确保标准化和可重复性:Plaque-RADS-1:表示完全无斑块,即颈动脉壁无显著病变1;Plaque-RADS-2:表示存在稳定斑块,例如斑块厚度 < 3 mm的单纯性斑块[5];Plaque-RADS-3:代表中度风险斑块,表现为斑块厚度 ≥ 3 mm或存在溃疡特征[5];Plaque-RADS-4:属于高风险或“复杂性斑块”(complicated plaque),包括以下特征:斑块厚度 ≥ 3 mm或溃疡、斑块内出血体积 > 50 mm (无论厚度如何),这通常与斑块易损性和卒中风险高度相关[5] [6]

这种分级的核心优势在于它不仅量化狭窄度(如传统方法),还整合了斑块形态学特征,提供更全面的斑块评估。其可靠性在研究中得到验证,包括阅读者间和阅读者内一致性测试[7]

2.2. 核心优势:超越传统狭窄度评估的风险分层

Plaque-RADS系统提供了一种标准化的斑块分类方法,用于改进脑卒中风险的预测和分层,尤其在传统狭窄度评估不足的情况下。与传统狭窄度分级相比,Plaque-RADS显著提高了脑卒中风险的预后准确性,尤其是在轻度/中度狭窄患者中(<50%狭窄),因为这些患者传统上可能被视为低风险,但斑块特征可揭示潜在高危因素。在研究中,Plaque-RADS类别从1增加到4时,无病生存率(DFS)显著下降,表明脑卒中风险相应增高。在轻度/中度狭窄患者中,Plaque-RADS ≥ 3的个体与<3的个体相比,DFS和复发无生存率(RFS)存在显著差异(P < 0.001),提示高风险斑块可能独立于狭窄度增加脑卒中风险[1]

Plaque-RADS能有效识别高风险斑块类型。Plaque-RADS 3-4这些类别与高脑卒中风险强烈相关,在隐源性栓塞中风患者中,中风同侧斑块更常表现为高风险Plaque-RADS 3-4,调整年龄和性别后,优势比达2.10 (95% CI: 1.20~3.71),同时中风同侧斑块分布为Plaque-RADS-3占41.5%,Plaque-RADS-4占1.1%,而对照侧仅为31.9%和0%,这突出了其在高危斑块检测中的敏感性[5]

Plaque-RADS的这一优势为CEA决策提供了更精细的风险评估基础,传统上CEA适应症主要依赖于狭窄程度和症状状态,但Plaque-RADS通过定量斑块形态学特征引入了斑块易损性维度,克服了传统CTA的局限性,实现更精准的斑块评估[1] [8]

3. 高龄患者CEA决策的挑战及个体化需求

3.1. 高龄患者CEA安全性的特定风险

在高龄患者中,CEA的安全性(主要脑卒中或死亡等不良事件的发生风险)面临特有挑战。年龄本身是CEA或颈动脉支架置入术(CAS)后不良结局的显著独立风险因素,可能与生理储备下降、伴随疾病增多或手术耐受性降低相关。

高龄患者的CEA决策需特别谨慎,因为大样本研究中(221,282名患者),年龄增加与脑卒中或死亡的复合结局风险显著相关(OR = 1.21, 95% CI 1.17~1.26, P < 0.001) [2]。高龄患者常伴有多种并发症,传统狭窄度阈值(如50%狭窄)难以反映个体化风险,导致安全阈度过高或过低。这表明随年龄增长,CEA或CAS后不良事件风险上升。

此外,年龄是特定并发症(如颅底坏死等)的预测因子。ROC分析确定,最优年龄截点为51岁用于预测颅底坏死(灵敏度73%),这意味着在老年群体中年龄可用于量化高风险阈值,但是截点需要个体化调整[9]。在其他CEA研究中,高龄患者虽成功接受CEA,但存在双侧颈动脉狭窄问题,强调了在无症状或轻度狭窄高龄患者中决策的复杂性[10]

这些年龄相关风险突显了传统CEA安全阈值(如基于狭窄度的适应症)在高龄人群中可能不足,需结合额外风险分层工具,以平衡手术益处与潜在危害[2] [11]

3.2. 个体化决策的关键需求

3.2.1. 精确评估围术期风险

高龄患者CEA的围术期中风、心肌梗死和死亡风险随年龄增加,尤其在80岁以上人群(octogenarians)中更为突出,但长期生存和卒中风险可能与年轻患者相近。因此,决策需个体化权衡短期风险增加和长期获益。Meta分析显示,80岁以上症状性患者的围术期中风风险为2.04%,高于年轻人群(1.54%),然而1年生存率和5年卒中风险在80岁以上和以下患者间无显著差异,支持在特定高卒中风险患者中实施CEA [12]

3.2.2. 整合患者特征进行中风风险评估

决策需考虑患者个体差异,如症状状态(symptomatic)、颈动脉狭窄严重程度、认知功能和伴随疾病(如淋巴结大小或认知衰退风险)等。这些因素影响CEA的绝对益处预测:对于症状性狭窄患者(≥70%),CEA可提供约5%的5年绝对风险降低[13],但认知障碍作为血管疾病风险因素,需在决策中纳入评估[14];同时淋巴结大小可作为一个分层因素(如≥10 mm),辅助个体化决策[15];其他因素如中风事件史(如多次术前缺血事件)可能增加围术期风险,也需整合入模型[16]

3.2.3. 比较替代治疗方案

CAS或经颈动脉血管重建(TCAR)可能是替代选项,但安全性和等效性需个体化验证,特别是在老年人群中。系统性回顾显示,CEA与CAS的中风或死亡风险分别为2.3%和3.7%,但年龄是影响结果的风险修饰因子[2] [17]。TCAR与CEA在标准风险患者中的卒中或死亡复合终点无显著差异(3.0% vs 2.6%),支持TCAR作为个体化选项[18]

3.2.4. 优化麻醉技术选择

局部麻醉(LA)优于全身麻醉(GA)以及颈动脉内膜切除术期间术中影像学检查策略的基本原理存在争议。一项回顾性分析表明,与倾向匹配的全身麻醉对照相比,接受区域麻醉的颈动脉内膜切除术患者预后良好[19]。回顾性研究表明,麻醉技术与院内卒中或死亡风险相关,决策时需评估患者耐受力[20]。因此,LA或GA对围术期结局的影响需个体化决策,以减少并发症风险。

3.2.5. 整合心理和认知评估

新出现的数据表明,无症状疾病引起的灌注不足可能导致老龄化人群出现严重的认知障碍,并且大多数“与年龄相关”的认知变化可能反映了血管损伤和神经血管功能障碍。虽然目前建议不要对无症状颈动脉狭窄进行广泛的人群筛查,但将颈动脉狭窄与认知障碍联系起来的新证据促使我们重新考虑对具有血管危险因素且有认知能力下降风险的老年患者的方法[14]。因此老年患者CEA决策需考虑心理健康变化,尤其是抑郁和认知功能状态,以优化术前准备和术后随访:前瞻性研究发现,颈动脉血管重建术前后的抑郁情绪(使用GDS-30问卷)和认知测试影响长期生活质量[21]

3.2.6. 纳入现代医疗进展的影响

患者个体化决策的关键需求还需评估医疗治疗(如抗血小板药物和降脂药等)的进步,这些可能减少非手术治疗的中风风险,从而影响CEA的相对益处。有研究表明:接受优化药物治疗(OMT)治疗颈动脉狭窄相关的中风风险大大低于先前颈动脉狭窄试验中类似患者的记录[22]。自1990年代以来,药物治疗改进降低了中风风险(如吸烟率下降),CEA的成本效益需重新计算[22]-[24]。研究表明,在70岁以上患者中,对药物治疗队列的分析表明,早期中风的发生率可能已经降低,颈动脉手术安全性的报告也显示出改善[13]

综上,高龄患者CEA的决策需突破“年龄壁垒”、平衡年龄相关围术期风险增加与长期获益,并整合患者特异性风险因素、治疗选择和现代医疗进展,关注生理储备、脑血管代偿能力及个体化风险–获益平衡。这些需求强调多学科协作和预测模型的开发[19] [24],以确保决策与患者整体健康状况匹配。同时随着药物治疗进步和微创技术发展,严格筛选高危亚群并采用多模态评估(影像学+生物标志物)是未来优化个体化决策的核心方向[22] [25]-[27]

4. Plaque-RADS系统推动高龄患者CEA安全阈值的再定义

4.1. Plaque-RADS系统超越传统狭窄分级的增量价值体系

Plaque-RADS系统相对于传统颈动脉狭窄分级而言是一个标准化的分类系统,通过识别出传统狭窄评估忽略的高危斑块形态学特征,超越单纯的狭窄程度测量,从而在脑卒中风险预测中提供更全面的风险分层能力,促使CEA手术决策向更个体化方向发展。

4.1.1. 超越狭窄评估,优化风险分层

传统上,CEA适应症主要基于颈动脉狭窄程度(如>70%症状性狭窄),但Plaque-RADS引入后,能更精准地识别高危患者。如Plaque-RADS ≥ 3的患者,即使处于中轻度狭窄(30%~69%),中风风险也显著增加。这使得临床决策不再局限于狭窄百分比,而是结合斑块形态来重新定义安全阈值(即决定手术的临界点)。Plaque-RADS系统能提供增量的预后价值,改进传统狭窄分级的风险评估,该系统的风险分层优于狭窄分级,尤其是对中轻度狭窄患者。结合Plaque-RADS与狭窄分级能显著改善风险再分类(净重分类改善达63.8%),从而在无症状或症状性患者中推动适应症调整[1]

4.1.2. 针对高龄患者,识别风险因素

高龄患者因合并症和生理脆弱性,CEA手术风险较高。Plaque-RADS通过量化斑块特征与年龄的关联,帮助重新定义高危老年人群的安全阈值。有研究分析了高龄与斑块特征的联系,支持在老年患者中使用Plaque-RADS进行更谨慎的风险分层。显示高龄(OR = 1.27 per 10-year increase)与同侧高Plaque-RADS ≥ 3显著相关,这可能是因为年龄增长导致斑块不稳定风险增加,从而需要调整CEA适应症以规避高风险手术[28]。同时有研究讨论了无症状狭窄治疗争议,暗示Plaque-RADS可用于细化适应症[29]。高Plaque-RADS亚型能识别潜在致中风斑块[6],这对高风险老年患者尤其关键。

因此,Plaque-RADS推动高龄患者CEA安全阈值再定义的核心在于:通过整合斑块形态学数据,将CEA决策从狭窄主导转向风险主导(尤其对中轻度狭窄老年患者),减少了基于年龄或狭窄程度的粗放评估,转而采用多模态风险评分来定义手术安全临界点。

4.2. 安全阈值再定义的结果

基于Plaque-RADS系统为核心整合脑微血管病变(WMH)及全身功能状态,CEA高龄患者安全阈值再定义超越传统狭窄评估带来了更精准的风险预测和治疗优化结果,包括改善老年患者的预后和减少并发症。

4.2.1. 优化CEA治疗决策,改善治疗效果

再定义后,Plaque-RADS评分被用于指导CEA选择。对于高Plaque-RADS分数(尤其Plaque-RADS-4)患者,CEA相比CAS可能提供更好结局。研究显示,在Plaque-RADS-4级患者中,CEA显著优于CAS (P = 0.004),这表明针对高危患者,再定义的安全阈值可避免不合适的CAS治疗,降低围手术期风险(如栓塞事件),并进一步解释Plaque-RADS的预测准确性优于单个斑块特征,能直接指导CEA治疗适应症[6]。Plaque-RADS分级可用于识别同侧致中风斑块,从而在老年患者中优化CEA干预时机[5]。结合Plaque-RADS与其他因素(如周颈脂肪密度)能进一步增强中风复发风险预测(AUC = 0.892),有助于在高龄患者中定制相应的预防策略[30]。Plaque-RADS结合狭窄分级后,中风初发和复发预测的净重分类改善分别为63.8%和47.8%,量化了风险改善,显著提高了安全决策的精度,在无症状和症状性患者中均证实了该系统的有效性[1]

4.2.2. 针对老年患者,降低并发症并支持个体化治疗

再定义后,老年患者的CEA安全阈值更为精准,减少了不必要的干预或高危手术。研究指出,高龄患者在CEA中比例增加[12],但基于Plaque-RADS的再分类能识别出高风险群体(如同侧高Plaque-RADS分数),从而避免在低危老年患者中进行手术(如Plaque-RADS < 3的患者可能无需积极干预)。年龄与Plaque-RADS的关联导致在决策中需考虑年龄相关风险因素,从而改善生存率[28]。有研究探讨了高龄CEA的并发症,但未直接引用Plaque-RADS;而通过推演,风险分层优化可间接降低事件率[31]。高Plaque-RADS亚型是中风风险标志,在老年患者中定义安全阈值能减少复发性中风[5]

综上,Plaque-RADS分级系统推动高龄患者CEA的安全阈值再定义显著提高了CEA在高龄患者中的安全性:一方面,它使适应症更精确(如优先CEA用于高Plaque-RADS分数患者) [6];另一方面,结果包括改善风险分层准确性(如净重分类改善达60%以上) [1]、优化治疗方法选择(如CEA优于CAS在高风险群体中) [6],以及通过个体化评估降低老年患者的并发症风险。这为临床实践提供了标准化依据,尤其对中度狭窄和症状不典型的老年人群至关重要。

5. Plaque-RADS系统当前的局限性和技术挑战

5.1. 影像模态依赖性导致的稳健性差异

Plaque-RADS虽设计为多模态通用系统(超声、CTA、MRI、PET-CT),但不同模态对斑块特征的识别能力存在差异。CTA在检测斑块内出血(>50 mm)和溃疡等高风险特征时需依赖特定阈值(如斑块厚度 ≥ 3 mm) [5],而其他模态(如MRI)可能更敏感于脂质核心或纤维帽完整性[32]。当前Plaque-RADS的验证主要基于CTA [33],缺乏对其他模态(如超声、MRI)的大规模一致性研究,限制了其跨模态推广[32]。目前亟需多模态统一标准,建立跨影像设备的量化阈值(如信号强度)和标准化采集协议以平衡Plaque-RADS识别能力的差异。

5.2. 观察者间一致性问题

斑块分类高度依赖影像质量与操作者经验。研究显示,半自动软件测量斑块体积时,图像重建参数(如迭代重建级别)和扫描设备(如光子计数探测器CT、能量积分探测器CT)显著影响结果可重复性。低密度斑块体积在光子计数探测器CT上的观察者间一致性较差(ICC = 0.47),而能量积分探测器CT一致性较高(ICC = 0.92) [34]。虽有视觉示例辅助分级,但未提及标准化培训方案或量化工具以减少主观偏差,可能影响临床决策[35]

5.3. 缺乏高级别预后证据

Plaque-RADS系统风险分层价值待验证。虽证实Plaque-RADS ≥ 3与同侧卒中风险相关,但其独立于狭窄程度的预后价值仍需大样本前瞻性研究确认[1] [36]。如高危斑块特征(如薄纤维帽、巨噬细胞浸润)在冠脉领域仍需血管内成像(如OCT)验证[33] [37]。Plaque-RADS系统治疗指导证据缺乏,尚无研究证明基于Plaque-RADS的干预(如降脂治疗)可改善硬终点(如心梗、卒中) [36] [38]。当前依赖替代指标(如斑块体积变化),而生物活性(如炎症状态)未被纳入分类标准[39] [40]。目前,基于Plaque-RADS系统尚存在技术整合不足的问题。人工智能虽被提议用于自动化斑块量化,但其在Plaque-RADS中的临床应用仍处于早期阶段,需解决算法泛化性与解释性问题,并开发自动化工具减少观察者变异性[40] [41],同时开展多中心队列验证临床效用[40] [42] [43]

因此,Plaque-RADS系统在标准化斑块报告方面有重要价值,但其临床适用性受限于模态依赖性、观察者变异性及高级别证据缺乏。未来需通过技术优化(如AI整合)、多模态验证及预后研究完善系统。

6. 总结

Plaque-RADS分级系统革新了高龄患者CEA的决策模式,通过量化斑块形态学特征建立了精准的风险分层体系。该系统突破了传统狭窄度评估的局限,尤其对中轻度狭窄但斑块不稳定的患者具有重要鉴别价值。Plaque-RADS ≥ 3级患者卒中风险显著升高,促使手术指征从“狭窄优先”转向“风险优先”的个体化评估。在高龄患者中,该系统通过整合斑块特征与患者特异性因素,显著优化了手术安全阈值的界定,为颈动脉疾病精准管理提供了新范式。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Huang, Z., Cheng, X., Lu, R., Bi, X., Liu, Y. and Deng, Y. (2025) Incremental Prognostic Value of Carotid Plaque-Rads over Stenosis Degree in Relation to Stroke Risk. JACC: Cardiovascular Imaging, 18, 77-89.
https://doi.org/10.1016/j.jcmg.2024.07.004
[2] Kuehnl, A., Knappich, C., Kirchhoff, F., Bohmann, B., Lohe, V., Naher, S., et al. (2024) Identification of Patient Characteristics That May Improve Procedure Selection for the Treatment of Carotid Stenosis. British Journal of Surgery, 111, znae227.
https://doi.org/10.1093/bjs/znae227
[3] Nies, K.P.H., Smits, L.J.M., van Kuijk, S.M.J., Hosseini, A.A., van Dam-Nolen, D.H.K., Kwee, R.M., et al. (2025) Individualized MRI-Based Stroke Prediction Score Using Plaque Vulnerability for Symptomatic Carotid Artery Disease Patients (Improve). Stroke, 56, 2068-2078.
https://doi.org/10.1161/strokeaha.124.050020
[4] Saba, L., Cau, R., Murgia, A., Nicolaides, A.N., Wintermark, M., Castillo, M., et al. (2024) Carotid Plaque-RADS: A Novel Stroke Risk Classification System. JACC: Cardiovascular Imaging, 17, 62-75.
https://doi.org/10.1016/j.jcmg.2023.09.005
[5] Song, J.W., Phi, H.Q., Koneru, M., Cao, Q., Rubin, J., Sakai, Y., et al. (2025) Prevalence of High-Risk Cta-Based Carotid Plaque-Rads Subtypes in Patients with Embolic Stroke of Undetermined Source. Stroke, 56, 737-740.
https://doi.org/10.1161/strokeaha.124.048305
[6] Huang, Z., Cheng, X., Lu, R., Liu, Y., Bi, X. and Deng, Y. (2025) Correlation of Plaque Vulnerability Stratified by Carotid Plaque-Reporting and Data System with Outcomes of Endarterectomy vs Stenting. Journal of Vascular Surgery.
https://doi.org/10.1016/j.jvs.2025.06.004
[7] Saba, L., Scicolone, R., Chabert, G.L., Bos, D., Kopczak, A., Mossa-Basha, M., et al. (2025) Carotid Plaque-Rads: Inter-and Intra-Reader Agreement and Learning Curve Analysis in Computed Tomography Angiography. American Journal of Neuroradiology.
https://doi.org/10.3174/ajnr.a8769
[8] Aizaz, M., Bierens, J., Gijbels, M.J.J., Schreuder, T.H.C.M.L., van Orshoven, N.P., Daemen, J.H.C., et al. (2025) Differentiation of Atherosclerotic Carotid Plaque Components with Dual-Energy Computed Tomography. Investigative Radiology, 60, 508-516.
https://doi.org/10.1097/rli.0000000000001153
[9] Yilmaz, M.T., Cengiz, M., Kahvecioglu, A., Yigit, E., Yuce Sari, S., Yildiz, D., et al. (2025) Fifteen Years of Experience with Stereotactic Body Radiation Therapy for Recurrent Head and Neck Cancers: A Detailed Analysis of Patients with Carotid Blowout Syndrome. International Journal of Radiation Oncology Biology Physics.
https://doi.org/10.1016/j.ijrobp.2025.06.3846
[10] Saliba, T., Cappeliez, O., Pather, S. and Maisonnier, H. (2025) Case 335: Accidental Intra-Arterial Injection of Contrast Material. Radiology, 314, e241602.
https://doi.org/10.1148/radiol.241602
[11] Czinege, Z., Sándor, Á.D., Gyürki, D., Varga, A., Csípő, T., Székely, A., et al. (2024) Understanding Perioperative Risk Determinants in Carotid Endarterectomy: The Impact of Compromised Circle of Willis Morphology on Inter-Hemispheric Blood Flow Indices Based on Intraoperative Internal Carotid Artery Stump Pulse Pressure and Backflow Patterns. GeroScience, 47, 2159-2177.
https://doi.org/10.1007/s11357-024-01390-y
[12] Leung, Y.Y.R., Bera, K., Urriza Rodriguez, D., Dardik, A., Mas, J., Simonte, G., et al. (2023) Safety of Carotid Endarterectomy for Symptomatic Stenosis by Age: Meta-Analysis with Individual Patient Data. Stroke, 54, 457-467.
https://doi.org/10.1161/strokeaha.122.040819
[13] Perez-Troncoso, D., Epstein, D., Davies, A.H. and Thapar, A. (2022) Cost-Effectiveness of Carotid Endarterectomy in Symptomatic Patients. British Journal of Surgery, 110, 193-199.
https://doi.org/10.1093/bjs/znac386
[14] Lineback, C.M., Stamm, B., Sorond, F. and Caprio, F.Z. (2022) Carotid Disease, Cognition, and Aging: Time to Redefine Asymptomatic Disease? GeroScience, 45, 719-725.
https://doi.org/10.1007/s11357-022-00688-z
[15] Sun, T., Wang, F., He, Y., Mao, B., Han, M., Liu, H., et al. (2022) Enlarged Pericarotid Lymph Nodes Suggest Recent Ischemic Symptoms in Patients with Carotid Atherosclerosis. Frontiers in Immunology, 13, Article 900642.
https://doi.org/10.3389/fimmu.2022.900642
[16] Strömberg, S., Holsti, M., Persson, S., Nordanstig, A., Nordanstig, J. and Johansson, E. (2024) Two or More Ischaemic Events within Seven Days before Carotid Endarterectomy Increases the Risk of Peri-Operative Stroke or Death. European Journal of Vascular and Endovascular Surgery, 68, 704-711.
https://doi.org/10.1016/j.ejvs.2024.08.007
[17] Uchida, K., Sakakibara, F., Sakai, N., Iihara, K., Imamura, H., Ishii, A., et al. (2024) Real-World Outcomes of Carotid Artery Stenting in Symptomatic and Asymptomatic Patients with Carotid Artery Stenosis. JACC: Cardiovascular Interventions, 17, 1148-1159.
https://doi.org/10.1016/j.jcin.2024.03.014
[18] Liang, P., Cronenwett, J.L., Secemsky, E.A., Eldrup-Jorgensen, J., Malas, M.B., Wang, G.J., et al. (2023) Risk of Stroke, Death, and Myocardial Infarction Following Transcarotid Artery Revascularization vs Carotid Endarterectomy in Patients with Standard Surgical Risk. JAMA Neurology, 80, 437-444.
https://doi.org/10.1001/jamaneurol.2023.0285
[19] Kline, L.A., Kothandaraman, V., Knio, Z.O. and Zuo, Z. (2023) Effect of Regional versus General Anesthesia on Thirty-Day Outcomes Following Carotid Endarterectomy: A Cohort Study. International Journal of Surgery, 109, 1291-1298.
https://doi.org/10.1097/js9.0000000000000356
[20] Kirchhoff, F., Eckstein, H., Schmid, S., Schmidt, S., Mergen, J., Dridi, S., et al. (2023) Locoregional Anaesthesia and Intra-Operative Angiography in Carotid Endarterectomy: 16 Year Results of a Consecutive Single Centre Series. European Journal of Vascular and Endovascular Surgery, 65, 223-232.
https://doi.org/10.1016/j.ejvs.2022.10.002
[21] Succar, B., Chou, Y., Hsu, C., Rapcsak, S., Trouard, T. and Zhou, W. (2024) Carotid Revascularization Is Associated with Improved Mood in Patients with Advanced Carotid Disease. Annals of Surgery, 281, 698-702.
https://doi.org/10.1097/sla.0000000000006216
[22] Donners, S.J.A., van Velzen, T.J., Cheng, S.F., Gregson, J., Hazewinkel, A., Pizzini, F.B., et al. (2025) Optimised Medical Therapy Alone versus Optimised Medical Therapy Plus Revascularisation for Asymptomatic or Low-To-Intermediate Risk Symptomatic Carotid Stenosis (ECST-2): 2-Year Interim Results of a Multicentre Randomised Trial. The Lancet Neurology, 24, 389-399.
https://doi.org/10.1016/s1474-4422(25)00107-3
[23] Musialek, P., Bonati, L.H., Bulbulia, R., Halliday, A., Bock, B., Capoccia, L., et al. (2023) Stroke Risk Management in Carotid Atherosclerotic Disease: A Clinical Consensus Statement of the ESC Council on Stroke and the ESC Working Group on Aorta and Peripheral Vascular Diseases. Cardiovascular Research, 121, 13-43.
https://doi.org/10.1093/cvr/cvad135
[24] Palipana, A.K., Gecili, E., Song, S., Johnson, S.R., Szczesniak, R.D. and Gupta, N. (2023) Predicting Individualized Lung Disease Progression in Treatment-Naive Patients with Lymphangioleiomyomatosis. CHEST, 163, 1458-1470.
https://doi.org/10.1016/j.chest.2022.12.027
[25] Gasior, S.A., O’Donnell, J.P.M., Davey, M., Clarke, J., Jalali, A., Ryan, É., et al. (2023) Optimal Management of Asymptomatic Carotid Artery Stenosis: A Systematic Review and Network Meta-Analysis. European Journal of Vascular and Endovascular Surgery, 65, 690-699.
https://doi.org/10.1016/j.ejvs.2023.01.020
[26] Magyar-Stang, R., Pál, H., Csányi, B., Gaál, A., Mihály, Z., Czinege, Z., et al. (2023) Assessment of Cerebral Autoregulatory Function and Inter-Hemispheric Blood Flow in Older Adults with Internal Carotid Artery Stenosis Using Transcranial Doppler Sonography-Based Measurement of Transient Hyperemic Response after Carotid Artery Compression. GeroScience, 45, 3333-3357.
https://doi.org/10.1007/s11357-023-00896-1
[27] Fresilli, D., Di Leo, N., Martinelli, O., Di Marzo, L., Pacini, P., Dolcetti, V., et al. (2022) 3D-Arterial Analysis Software and CEUS in the Assessment of Severity and Vulnerability of Carotid Atherosclerotic Plaque: A Comparison with CTA and Histopathology. La radiologia medica, 127, 1254-1269.
https://doi.org/10.1007/s11547-022-01551-z
[28] Wang, M., Guo, Y., Hippe, D.S., Zhao, X., Yuan, C., Saba, L., et al. (2025) Plaque RADS Related to Cerebrovascular Event Risk with Mild/Moderate Stenosis: A CARE II Study. American Journal of Neuroradiology.
https://doi.org/10.3174/ajnr.a8819
[29] Bir, S.C. and Kelley, R.E. (2022) Carotid Atherosclerotic Disease: A Systematic Review of Pathogenesis and Management. Brain Circulation, 8, 127-136.
https://doi.org/10.4103/bc.bc_36_22
[30] Qian, J., Chi, Q., Zhu, L., Zhang, T., Ding, W., Yuan, R., et al. (2025) Carotid Plaque-Rads Score Combined with Pericarotid Fat Density—An Incremental Prediction Model for Stroke Recurrence. Academic Radiology, 32, 4807-4817.
https://doi.org/10.1016/j.acra.2025.04.051
[31] Habib, S.G., Semaan, D.B., Hafeez, M., Abdul-Malak, O.M., Madigan, M.C. and Eslami, M.H. (2023) Trends in Mortality and Postoperative Complications among Octogenarian Patients Undergoing Carotid Endarterectomy. Journal of Vascular Surgery, 78, 132-140.e2.
https://doi.org/10.1016/j.jvs.2023.02.027
[32] Pakizer, D., Kozel, J., Taffé, P., Elmers, J., Feber, J., Michel, P., et al. (2024) Diagnostic Accuracy of Carotid Plaque Instability by Noninvasive Imaging: A Systematic Review and Meta-Analysis. European Heart JournalCardiovascular Imaging, 25, 1325-1335.
https://doi.org/10.1093/ehjci/jeae144
[33] Kinoshita, D., Suzuki, K., Usui, E., Hada, M., Yuki, H., Niida, T., et al. (2024) High-Risk Plaques on Coronary Computed Tomography Angiography: Correlation with Optical Coherence Tomography. JACC: Cardiovascular Imaging, 17, 382-391.
https://doi.org/10.1016/j.jcmg.2023.08.005
[34] Vecsey-Nagy, M., Tremamunno, G., Schoepf, U.J., Gnasso, C., Zsarnóczay, E., Fink, N., et al. (2025) Coronary Plaque Quantification with Ultrahigh-Spatial-Resolution Photon-Counting Detector CT: Intraindividual Comparison with Energy-Integrating Detector CT. Radiology, 314, e241479.
https://doi.org/10.1148/radiol.241479
[35] Rapillo, C.M., Giuricin, A., Sarti, C., Nesi, M., Marcheselli, S., Lombardo, I., et al. (2025) Prevalence of Carotid Plaques with High-Risk Features in Embolic Stroke of Undetermined Source: Systematic Review and Meta-Analysis. International Journal of Stroke, 20, 636-645.
https://doi.org/10.1177/17474930251317321
[36] Balmforth, C., McDermott, M., Khaing, P., Dweck, M.R. and Newby, D.E. (2025) Identification and Management of Non-Obstructive High-Risk Coronary Artery Plaque. Heart.
https://doi.org/10.1136/heartjnl-2024-324858
[37] Onnis, C., Virmani, R., Madra, A., Nardi, V., Salgado, R., Montisci, R., et al. (2024) Whys and Wherefores of Coronary Arterial Positive Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 44, 2416-2427.
https://doi.org/10.1161/atvbaha.124.321504
[38] Sarraju, A. and Nissen, S.E. (2024) Atherosclerotic Plaque Stabilization and Regression: A Review of Clinical Evidence. Nature Reviews Cardiology, 21, 487-497.
https://doi.org/10.1038/s41569-023-00979-8
[39] Vergallo, R., Park, S., Stone, G.W., Erlinge, D., Porto, I., Waksman, R., et al. (2025) Vulnerable or High-Risk Plaque. JACC: Cardiovascular Imaging, 18, 709-740.
https://doi.org/10.1016/j.jcmg.2024.12.004
[40] Vatsa, N., Faaborg-Andersen, C., Dong, T., Blaha, M.J., Shaw, L.J. and Quintana, R.A. (2024) Coronary Atherosclerotic Plaque Burden Assessment by Computed Tomography and Its Clinical Implications. Circulation: Cardiovascular Imaging, 17, e016443.
https://doi.org/10.1161/circimaging.123.016443
[41] Föllmer, B., Williams, M.C., Dey, D., Arbab-Zadeh, A., Maurovich-Horvat, P., Volleberg, R.H.J.A., et al. (2023) Roadmap on the Use of Artificial Intelligence for Imaging of Vulnerable Atherosclerotic Plaque in Coronary Arteries. Nature Reviews Cardiology, 21, 51-64.
https://doi.org/10.1038/s41569-023-00900-3
[42] Lee, J.W., Kim, J.Y., Han, K., Lee, K.H., Im, D.J., Park, C.H., et al. (2025) Utility of CAD-RADS 2.0 Plaque Burden Grades and Stenosis Categories on Coronary CTA for Predicting Cardiac Events in Patients with Acute Chest Pain: A Multicenter Study. American Journal of Roentgenology.
https://doi.org/10.2214/ajr.25.33005
[43] Chen, Q., Xie, G., Tang, C.X., Yang, L., Xu, P., Gao, X., et al. (2023) Development and Validation of CCTA-Based Radiomics Signature for Predicting Coronary Plaques with Rapid Progression. Circulation: Cardiovascular Imaging, 16, e015340.
https://doi.org/10.1161/circimaging.123.015340