肿瘤微环境中非肿瘤细胞的功能概述
Functional Overview of Non-Neoplastic Cells in the Tumor Microenvironment
DOI: 10.12677/acm.2025.1582315, PDF, HTML, XML,   
作者: 曾林杰, 林 鹏*:浙江大学医学院附属第二医院骨科,浙江 杭州
关键词: 肿瘤微环境肿瘤发展免疫逃逸Tumor Microenvironment Tumor Progression Immune Escape
摘要: 基因突变的肿瘤干细胞是肿瘤生长和发展的原始动力。然而,仅靠这类细胞并无法单独完成这些步骤。肿瘤细胞周围正常的组织和被招募而来的其他细胞共同构成了肿瘤微环境(Tumor Microenvironment, TME)。癌症的许多特征都是通过各自的TME在不同程度上得以实现和维持的,包括维持肿瘤的增殖信号、诱导血管生成、逃避免疫杀伤、激活肿瘤的侵袭和转移和改变肿瘤细胞的能量代谢等方面。本文综述了TME中的各种细胞为癌症的进展产生的作用,同时探讨了以TME为目标的治疗方法的发展和前景,为未来开发以TME为目标的治疗方式提供了参考。
Abstract: Genetically mutated cancer stem cells serve as the primary driving force behind tumor growth and progression. However, these cells alone cannot accomplish these processes independently. The surrounding normal tissue and recruited ancillary cells collectively constitute the tumor microenvironment (TME). Numerous hallmarks of cancer are achieved and maintained to varying degrees through their respective TMEs, including sustaining proliferative signaling, inducing angiogenesis, evading immune destruction, activating invasion and metastasis, and reprogramming energy metabolism. This review summarizes the contributions of various cellular components within the TME to cancer progression, while examining the development and prospects of TME-targeted therapeutic approaches. The findings provide valuable references for future development of TME-focused treatment strategies.
文章引用:曾林杰, 林鹏. 肿瘤微环境中非肿瘤细胞的功能概述[J]. 临床医学进展, 2025, 15(8): 911-919. https://doi.org/10.12677/acm.2025.1582315

1. 引言

基因突变的肿瘤细胞是肿瘤生长和发展的原始动力。因此,在过去的半世纪,癌症研究的主要焦点一直集中在肿瘤细胞本身上,以更加深入地了解致癌基因和抑癌基因。它们各自的激活或功能丧失会赋予正常细胞异常的特性,从而促进它们转化为肿瘤细胞。

然而,仅靠这类细胞并无法独立完成肿瘤的生长发育,在研究肿瘤细胞本身的同时,人们对TME的认识也更加深入。肿瘤细胞周围正常的组织和被招募而来的其他细胞共同构成了TME,癌症的许多特征都是通过各自的TME在不同程度上得以实现和维持的,其与癌症肿瘤细胞的相互作用也越来越为人们所知。肿瘤细胞与TME的协同作用使他们结合成异位的、慢性增殖的类器官结构,以肿瘤和局部侵袭、转移的形式成为大部分实体瘤癌症的典型表现[1]。虽然TME介导的某些功能早已得到重视,特别是肿瘤血管生成和重塑细胞外基质(Extracellular Matrix, ECM)的贡献[2]-[4],但越来越多的证据表明TME在肿瘤的整个发展过程中发挥了比预料中更多的功能。故在这篇综述中,我们列举了部分TME的功能,并部分探讨了是由TME中的哪些细胞发挥了这些作用。

2. 维持增殖信号

肿瘤细胞中维持和刺激增殖的致癌突变在大部分癌症中起到决定性的作用,但实际上TME中的多种细胞都有在一定情况下支持癌症细胞过度增殖的能力。

损伤性新生血管是一种最经典的肿瘤生长的外源性调节因素[4],这涉及构成血管生成系统的管状内皮细胞及其支持周细胞[5]。在小鼠模型中,血管生成的诱导,在文献中被称为“血管生成开关”[6]明显增加了肿瘤和肿瘤中癌细胞的增殖率(7),并且在抑制血管生成后可阻止这种过度增殖[7]-[9]

几乎所有的实体肿瘤都含有多种免疫细胞的浸润,这些细胞提供直接和间接的促有丝分裂生长介质,刺激肿瘤细胞的增殖,以及其附近的其他基质细胞类型,包括表皮生长因子(Epidermal Growth Factor, EGF)、转化生长因子-b (Transforming Growth Factor-b, TGF-b)、肿瘤坏死因子-a (Tumor Necrosis Factor-a, TNF-a)、成纤维细胞生长因子(Fibroblast Growth Factors, FGFs)、各种白介素(Various Interleukins, ILs)、趋化因子、组胺和肝素[10]。此外,部分免疫细胞表达多种类型的蛋白水解酶(金属蛋白酶、丝氨酸蛋白酶和半胱氨酸蛋白酶),它们可以选择性地ECM的结构并改变其功能,例如Lu等人的研究表明TME中的免疫细胞释放了能够改变ECM的具有生物活性的促有丝分裂剂[11]

3. 诱导血管生成

血管正常的成人组织中大多数情况下是不增生的,除女性生理周期外血管生成仅在伤口愈合的组织重塑等病理条件下发生[8]。尽管在细胞和分子程序上肿瘤血管生成和正常的生理性生成是相同的,但肿瘤激活的与正常组织不同的促血管生成信号使肿瘤相关血管明显具有不规则和不稳定性的特征[8] [12]。早期的研究认为肿瘤血管生成主要由表达促血管生成因子的癌细胞调节,然而,现在有大量证据表明,TME中的多种细胞在许多肿瘤类型中有助于启动和维持血管生成。

肿瘤相关巨噬细胞(Tumor-Associated Macrophages, TAMs)主要通过分泌血管内皮生长因子-A (Vascular Endothelial Growth Factor-A, VEGF-A)调节肿瘤血管生成,在异位VEGF过表达后肿瘤血管生成的恢复说明了这种联系[13]。相反,巨噬细胞中VEGF-A基因的缺失会减弱肿瘤性血管生成[14],这与VEGF信号的抑制剂非常相似[15]。在一些小鼠肿瘤模型中,TAMs产生的基质金属蛋白酶-9 (Matrix Metalloproteinase-9, MMP-9)增加了原本因ECM隔离的而受限的VEGF-A的生物利用度,从而为促进血管生成提供了另一类途径[16] [17]。Denardo等人的研究表明,对集落刺激因子-1 (Colony Stimulating Factor-1, CSF-1)信号的阻断导致乳腺肿瘤中的巨噬细胞耗竭,使得血管密度降低和化疗反应改善[18]

癌症相关成纤维细胞(Cancer-Associated Fibroblasts, CAFs)参与了多种肿瘤的血管生成。首先,不同TME中的CAFs可产生多种促血管生成信号蛋白,包括VEGF、FGFs、IL-8和血小板衍生生长因子-C (Platelet-Derived Growth Factor-C, PDGF-C)。Crawford等人的研究还表明,PDGF-C可能在一些具有VEGF抗体抗性的肿瘤中协助血管生成[19]。此外,与正常成纤维细胞相比,CAFs还可以产生多种ECM降解酶,释放包括bFGF、VEGF、TGF-b等潜在的血管生成因子,使它们能够被内皮细胞上的受体生物利用[20] [21]。最后,CAFs可以生成对促血管生成的巨噬细胞、中性粒细胞和其他髓系细胞的招募信号,从而间接调控肿瘤血管生成[21] [22]

血小板能够释放含有促血管生成或抗血管生成调节分子的独特颗粒,近几十年来的研究证明了其与血管生成有关,特别是在受到损伤的情况下。而Michele等人的论述表明,其在肿瘤血管的生成上也可能发挥了重要的作用[23]

4. 逃避生长抑制

抑制早期癌症细胞的增殖在很大程度上被认为与细胞内在机制相关,主要涉及肿瘤蛋白53 (Tumor Protein p53, p53)和视网膜母细胞瘤蛋白(Retinoblastoma Protein, pRb)肿瘤抑制途径[24]-[26],但存在着有TME中的细胞协助癌症细胞逃避各种形式的生长抑制的案例。

在共培养系统中进行的实验表明,来自不同器官的正常结缔组织成纤维细胞可以抑制癌细胞的生长,这一过程需要成纤维细胞与癌细胞接触,这表明了其具有调控上皮内环境稳定和增殖静止的作用[27] [28],然而CAFs失去了这种作用。可能是成纤维细胞在被重新编程为CAFs的过程中失去了这些作用,或是在其他如纤维化、水肿或感染等异常条件下激活为CAF样状态,也可能产生蛋白酶或其他旁分泌因子,破坏正常上皮结构,从而缓解上皮细胞–细胞粘附介导的内在生长抑制,从而启动肿瘤的发展。

上皮细胞受到一种外在的生长抑制,涉及细胞间和细胞-ECM粘附分子,它们通过粘附相互作用将抗生长信号传递给细胞周期机制,这种抗生长信号可以推翻驱动癌基因如细胞性骨髓细胞瘤病致癌基因(cellular myelocytomatosis oncogene, c-Myc)的增殖诱导信号[29] [30]。TME中的部分免疫细胞能分泌多种蛋白水解酶,除了释放促有丝分裂生长因子外,这些蛋白酶还可以选择性地切割细胞间和细胞-ECM粘附分子,从而使维持稳态的生长抑制粘附状态失效[31]-[33]

5. 抵抗细胞死亡

正常的组织具有能够控制原位细胞的异常增殖及抑制外来细胞入侵的调控程序,在面对外来细胞时通过诱导不同形式的细胞死亡来发挥作用,其中凋亡是最显著的一种。因此,肿瘤细胞为了维持增殖能力并在异位状态下生长,其要么对局部细胞死亡程序产生内在的抵抗力,要么协调保护其生存的细胞外在程序的发展。

有研究表明,TAM具有向癌细胞提供生存信号的能力,从而限制了由多种组织保护和治疗诱导机制触发的癌细胞死亡程序对肿瘤进展的影响。Chen等人的实验表明,表达α4整合素的TAM通过结合乳腺癌细胞上表达的血管细胞黏附分子-1 (Vascular Cell Adhesion Molecule-1, VCAM-1)来促进肺转移性乳腺癌细胞的存活。α4-整合素/VCAM-1的相互作用特异性激活乳腺癌细胞中的埃兹蛋白(Ezrin,一种受体酪氨酸信号传导的介质),进而诱导磷脂酰肌醇3-激酶(Phosphoinositide 3-Kinase, PI3K)/蛋白激酶B (Protein Kinase B, AKT)信号通路并抑制细胞凋亡[34]。此外,TAMs还通过组织蛋白酶依赖机制保护乳腺癌细胞免受化疗诱导的细胞死亡[35]

Bochet等人的研究表明,癌相关脂肪细胞减弱了放疗的细胞毒性作用,并赋予依赖于脂肪细胞衍生的IL-6的乳腺癌细胞抗辐射表型[36]。这种作用虽在其他人类肿瘤中未被普遍验证,但对于特殊类型的癌症患者如肥胖患者可能能够发挥其潜力[37]

6. 激活侵袭和转移

肿瘤血管系统具有慢性血管生成和形态异常的特点,有助于肿瘤细胞在转移过程中的扩散。许多肿瘤表达高水平的VEGF [38],VEGF通过血管内皮生长因子受体2 (Vascular Endothelial Growth Factor Receptor 2, VEGFR2)使得内皮管细胞的紧密连接放松,使血管系统通透性增高,使血液漏入TME,同时减少癌细胞进入循环的屏障。

在TME中,内皮细胞对缺氧诱导性转录因子的差异表达对于转移尤其重要[39] [40],一氧化氮能够改变血管张力和功能,又会使周细胞覆盖变松[41],从而有助于转移的成功。

原发肿瘤TME中的肥大细胞和巨噬细胞提供多种蛋白酶,包括丝氨酸、半胱氨酸和金属蛋白酶[42] [43],这些蛋白酶通过重塑ECM的结构成分(纤维胶原、弹性蛋白或纤维蛋白)促进异位组织侵袭,进而为肿瘤细胞提供通道,并产生具有促侵袭信号活性的ECM片段。白细胞衍生的MMP-7在胰腺癌细胞中将肝素原结合的EGF (HB-EGF)TNF加工成其生物活性形式[44],从而抑制上皮型钙黏蛋白介导的细胞粘附并增强侵袭性生长[45]。肿瘤相关免疫细胞衍生的TNF-a通过激活下游信号级联,包括c-Jun N-末端激酶(c-Jun N-terminal Kinase, JNK)和核因子κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells, NF-κB),增强乳腺癌、皮肤癌和卵巢癌细胞的侵袭表型,导致诱导前侵袭因子的基因表达,例如细胞外基质金属蛋白酶诱导因子(Extracellular Matrix Metalloproteinase Inducer, EMMPRIN),和巨噬细胞移动抑制因子(Macrophage Migration Inhibitory Factor, MIF),其表达增强MMP-2和MMP-9的分泌和活性[46]

CAFs具有调节癌细胞局部侵袭或在远处转移部位形成继发性肿瘤的能力。CAFs衍生的效应因子TGF-b明显参与激活某些癌细胞的上皮–间质转变(Epithelial-Tomesenchymal Transition, EMT),从而使其具有侵袭和转移能力[47]。Karnoub等人的研究表明,CAF或间充质干细胞分泌的趋化因子CC配体5 (chemokine CC motif ligand 5, CCL5)刺激乳腺癌转移[48]。此外,CAFs产生一种与正常成纤维细胞不同的ECM蛋白以及多种ECM重塑酶,这些酶进一步修饰TME,使其无论是更靠近CAFs或是正常组织都能支持癌细胞的侵袭[47] [49] [50]

7. 逃避免疫杀伤

尽管肿瘤血管系统的异常形态使内皮细胞之间的相互联系变得松散,周细胞之间的联系和覆盖也不太紧密,使得细胞向内或外穿过血管壁的转运更加容易,但有大量证据表明,这种转运途径在许多情况下不足以使得能够有效杀伤肿瘤细胞所必需的自然杀伤细胞(Natural Killer cells,NK细胞)、细胞毒性T淋巴细胞(Cytotoxic T Lymphocyte, CTL)和自然杀伤T细胞(Natural Killer T cells,NKT细胞)大量进入。因此,肿瘤血管系统有助于逃避免疫杀伤的标志性能力,因为它不能支持T细胞介导的强烈炎症。Onrust等人的研究发现高内皮微静脉(High Endothelial Venules, HEV)在肿瘤中的缺失[51],而这种静脉是淋巴细胞进出活化淋巴结和炎症组织的通道,证明了阻碍T细胞内流的屏障。Fisher等人的研究发现了使肿瘤血管系统不允许HEV和CTL大规模转运的调节信号,并发现它们的调节可打破炎症屏障[52]

MDSCs具有抑制免疫细胞应答的能力,对肿瘤环境中的T细胞有显著的抑制作用,同时具有促进调节性T细胞(Regulatory T cells, Treg)生成的能力[53] [54]

8. 重编程能量代谢

现在人们普遍认识到,癌症细胞改变了其代谢形式以支持其增殖,灵活调整产生能量和化学物质的来源是一种重要的方式,值得注意的方面包括有氧糖酵解的激活和脂质代谢的改变。虽然许多代谢重编程被认为是癌症细胞固有的特征,但TME中也存在着产生或协助调节的细胞。

CAFs是由癌细胞释放的活性氧物种诱导,从而开启有氧糖酵解,分泌乳酸和丙酮酸,而乳酸和丙酮酸又可以作为癌细胞增殖的能量来源[55] [56]。Sotgia等人的研究结果表明,向癌细胞提供异质性能源可能是CAFs对TME的另一个重要贡献[57],其作用超越了上述在细胞增殖、血管生成、侵袭和转移中的作用。

最近的研究表明,除了癌细胞本身存在脂质代谢改变外(体现在新生脂肪生成增加[58]、脂肪酸摄取增强[59]和脂肪酸氧化改变[60]),TME中的细胞也体现或诱导了脂质代谢的改变。癌症相关的脂肪细胞在某些组织(如乳腺、肝脏)中占肿瘤基质的很大一部分。除了脂质释放为肿瘤细胞提供脂来源外,这些脂肪细胞还可以通过分泌生长因子、细胞因子和趋化因子与肿瘤部位的细胞成分相互作用[61] [62]。癌症相关成纤维细胞可以向癌症细胞提供脂肪酸,支持其代谢需求。肿瘤相关巨噬细胞中的脂质聚集促进了其向M2表型的极化[63]

9. 抵抗药物治疗

药物治疗是除手术切除治疗外的另一种肿瘤治疗方案,除了经典的化疗药物治疗外,免疫治疗和靶向治疗也更多地被应用于各种肿瘤的治疗。随着应用基因组学和蛋白组学等新兴方式对治疗方式和靶点的进一步探索,人们发现TME中的一些非肿瘤细胞,特别是TAMs及CAFs能够协助肿瘤细胞对各类药物治疗方式进行抵抗。

TAMs参与构建了免疫抑制的TME,近年来的研究表明,其与多种肿瘤的药物抵抗相关。Yu等人的研究表明,在使用化疗药物对尤因肉瘤进行治疗时,尤因肉瘤细胞会通过激活TAM激酶增强Akt与ERK信号通路,从而介导化疗耐药[64]。晚期转移性去势抵抗性前列腺癌的患者对免疫检查点抑制剂的应答差,Lyu等人的研究表明,分泌性磷蛋白1 (Secreted Phosphoprotein 1, SPP1)转录水平升高的TAMs在TME中富集,使用腺苷A2A受体(A2ARs)进行治疗后逆转了TME的免疫抑制环境并显著降低了TME中SPP1-TAMs的含量,使得患者重新对免疫检查点抑制剂治疗进行响应[65]

CAFs同样具有抵抗药物治疗的功能。胰腺导管腺癌化疗抵抗的主要原因与癌细胞扩散浸润胰腺实质的能力密切相关,构筑TME基质及发挥物质交换作用的CAFs在此之中发挥了重要作用[66]。而在胰腺导管腺癌小鼠模型中,表达成纤维细胞激活蛋白(Fibroblast Activation Protein, FAP)的CAFs通过分泌C-X-C基序趋化因子配体12 (C-X-C Motif Chemokine Ligand 12, CXCL12)削弱抗PD-L1疗法疗效[67] [68]

10. 针对TME的相关治疗

基于对TME功能的认识加深,越来越多针对TME治疗的药物也开始进入市场或临床研究,对增强一些经典药物疗效的研究也在进行。索拉非尼是一种经典的血管生成抑制剂,被应用于晚期肝细胞癌等癌症治疗,相比常规化疗更具优势,Chang等人将MnO2利用纳米颗粒靶向至TME产生氧来减少缺氧驱动的血管生成以增强索拉非尼的疗效[69]。瑞戈非尼是第二代血管生成抑制剂,具有抗血管、抗肿瘤基质及抗肿瘤三重效果,一项III期临床试验表明其可显著改善患者总生存期[70]。卡博替尼能选择性地消耗MDSCs,并在与免疫检查点抑制剂联用的临床试验中体现出了更好的治疗效果[71] [72]。培西达替尼能够阻断CSF-1信号通路,耗竭TAMs,特别是M2表型的巨噬细胞,该药是首款上市的靶向TAMs的药物,于2019年获得美国食品药品监督管理局(Food and Drug Administration, FDA)批准,用于手术难治性腱鞘巨细胞瘤[73]

11. 总结

基因突变的肿瘤细胞是肿瘤生长和发展的原始动力,因此在过去很长的一段时间里,癌症研究的主要焦点一直集中在肿瘤细胞本身上,随着检验手段日益发展成熟,更加深入地了解并操纵致癌基因和抑癌基因。在这过程中,人们发现仅对肿瘤细胞本身进行治疗无法治愈绝大多数的癌症,同时认识到了TME是研究癌症时不可忽略的一部分,癌症的许多特征都是通过各自的TME在不同程度上得以实现和维持的。本文综述了TME在肿瘤的发生、生长及转移等一系列过程中所发挥的部分作用,并探讨了在TME中发挥这些功能的部分细胞,基于此,此综述有助于为以TME为目标的治疗提供目标细胞;此外,本综述讨论了这些TME中的细胞是如何与肿瘤细胞互相作用而发挥功能,并列举了近20年来的一些治疗方式和效果,为寻找更有效的治疗靶点及改进治疗方式提供了参考。

NOTES

*通讯作者。

参考文献

[1] Cox, T.R. (2021) The Matrix in Cancer. Nature Reviews Cancer, 21, 217-238.
https://doi.org/10.1038/s41568-020-00329-7
[2] Bissell, M.J., Hall, H.G. and Parry, G. (1982) How Does the Extracellular Matrix Direct Gene Expression? Journal of Theoretical Biology, 99, 31-68.
https://doi.org/10.1016/0022-5193(82)90388-5
[3] Flier, J.S., Underhill, L.H. and Dvorak, H.F. (1986) Tumors: Wounds That Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing. New England Journal of Medicine, 315, 1650-1659.
https://doi.org/10.1056/nejm198612253152606
[4] Folkman, J. (1974) Tumor Angiogenesis. Advances in Cancer Research, 19, 331-358.
https://doi.org/10.1016/s0065-230x(08)60058-5
[5] Armulik, A., Abramsson, A. and Betsholtz, C. (2005) Endothelial/Pericyte Interactions. Circulation Research, 97, 512-523.
https://doi.org/10.1161/01.res.0000182903.16652.d7
[6] Folkman, J., Watson, K., Ingber, D. and Hanahan, D. (1989) Induction of Angiogenesis during the Transition from Hyperplasia to Neoplasia. Nature, 339, 58-61.
https://doi.org/10.1038/339058a0
[7] Bergers, G., Javaherian, K., Lo, K., Folkman, J. and Hanahan, D. (1999) Effects of Angiogenesis Inhibitors on Multistage Carcinogenesis in Mice. Science, 284, 808-812.
https://doi.org/10.1126/science.284.5415.808
[8] Carmeliet, P. and Jain, R.K. (2011) Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature, 473, 298-307.
https://doi.org/10.1038/nature10144
[9] Ren, W., Liang, H., Sun, J., Cheng, Z., Liu, W., Wu, Y., et al. (2024) TNFAIP2 Promotes HIF1α Transcription and Breast Cancer Angiogenesis by Activating the Rac1-ERK-AP1 Signaling Axis. Cell Death & Disease, 15, Article No. 821.
https://doi.org/10.1038/s41419-024-07223-2
[10] Balkwill, F., Charles, K.A. and Mantovani, A. (2005) Smoldering and Polarized Inflammation in the Initiation and Promotion of Malignant Disease. Cancer Cell, 7, 211-217.
https://doi.org/10.1016/j.ccr.2005.02.013
[11] Lu, P., Takai, K., Weaver, V.M. and Werb, Z. (2011) Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspectives in Biology, 3, a005058.
https://doi.org/10.1101/cshperspect.a005058
[12] McDonald, D.M. and Choyke, P.L. (2003) Imaging of Angiogenesis: From Microscope to Clinic. Nature Medicine, 9, 713-725.
https://doi.org/10.1038/nm0603-713
[13] Balliet, R.M., Capparelli, C., Guido, C., Pestell, T.G., Martinez-Outschoorn, U.E., Lin, Z., et al. (2011) Mitochondrial Oxidative Stress in Cancer-Associated Fibroblasts Drives Lactate Production, Promoting Breast Cancer Tumor Growth: Understanding the Aging and Cancer Connection. Cell Cycle, 10, 4065-4073.
https://doi.org/10.4161/cc.10.23.18254
[14] Wang, L., Zhang, L., Zhao, L., Shao, S., Ning, Q., Jing, X., et al. (2024) VEGFA/NRP-1/GAPVD1 Axis Promotes Progression and Cancer Stemness of Triple-Negative Breast Cancer by Enhancing Tumor Cell-Macrophage Crosstalk. International Journal of Biological Sciences, 20, 446-463.
https://doi.org/10.7150/ijbs.86085
[15] Stockmann, C., Doedens, A., Weidemann, A., Zhang, N., Takeda, N., Greenberg, J.I., et al. (2008) Deletion of Vascular Endothelial Growth Factor in Myeloid Cells Accelerates Tumorigenesis. Nature, 456, 814-818.
https://doi.org/10.1038/nature07445
[16] Du, R., Lu, K.V., Petritsch, C., Liu, P., Ganss, R., Passegué, E., et al. (2008) HIF1α Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and Invasion. Cancer Cell, 13, 206-220.
https://doi.org/10.1016/j.ccr.2008.01.034
[17] Giraudo, E., Inoue, M. and Hanahan, D. (2004) An Amino-Bisphosphonate Targets MMP-9-Expressing Macrophages and Angiogenesis to Impair Cervical Carcinogenesis. Journal of Clinical Investigation, 114, 623-633.
https://doi.org/10.1172/jci22087
[18] DeNardo, D.G., Brennan, D.J., Rexhepaj, E., Ruffell, B., Shiao, S.L., Madden, S.F., et al. (2011) Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discovery, 1, 54-67.
https://doi.org/10.1158/2159-8274.cd-10-0028
[19] Crawford, Y., Kasman, I., Yu, L., Zhong, C., Wu, X., Modrusan, Z., et al. (2009) PDGF-C Mediates the Angiogenic and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment. Cancer Cell, 15, 21-34.
https://doi.org/10.1016/j.ccr.2008.12.004
[20] Pietras, K. and Östman, A. (2010) Hallmarks of Cancer: Interactions with the Tumor Stroma. Experimental Cell Research, 316, 1324-1331.
https://doi.org/10.1016/j.yexcr.2010.02.045
[21] Räsänen, K. and Vaheri, A. (2010) Activation of Fibroblasts in Cancer Stroma. Experimental Cell Research, 316, 2713-2722.
https://doi.org/10.1016/j.yexcr.2010.04.032
[22] Tang, Y., Yao, W., Hu, H., Xiong, W., Mei, H. and Hu, Y. (2023) TGF-β Blocking Combined with Photothermal Therapy Promote Tumor Targeted Migration and Long-Term Antitumor Activity of CAR-T Cells. Materials Today Bio, 20, Article ID: 100615.
https://doi.org/10.1016/j.mtbio.2023.100615
[23] De Palma, M., Biziato, D. and Petrova, T.V. (2017) Microenvironmental Regulation of Tumour Angiogenesis. Nature Reviews Cancer, 17, 457-474.
https://doi.org/10.1038/nrc.2017.51
[24] Xu, Y. (2008) Induction of Genetic Instability by Gain-Of-Function P53 Cancer Mutants. Oncogene, 27, 3501-3507.
https://doi.org/10.1038/sj.onc.1211023
[25] Engeland, K. (2017) Cell Cycle Arrest through Indirect Transcriptional Repression by P53: I Have a Dream. Cell Death & Differentiation, 25, 114-132.
https://doi.org/10.1038/cdd.2017.172
[26] Hinds, P.W. and Weinberg, R.A. (1994) Tumor Suppressor Genes. Current Opinion in Genetics & Development, 4, 135-141.
https://doi.org/10.1016/0959-437x(94)90102-3
[27] Bissell, M.J. and Hines, W.C. (2011) Why Don’t We Get More Cancer? A Proposed Role of the Microenvironment in Restraining Cancer Progression. Nature Medicine, 17, 320-329.
https://doi.org/10.1038/nm.2328
[28] Flaberg, E., Markasz, L., Petranyi, G., Stuber, G., Dicső, F., Alchihabi, N., et al. (2010) High‐Throughput Live‐Cell Imaging Reveals Differential Inhibition of Tumor Cell Proliferation by Human Fibroblasts. International Journal of Cancer, 128, 2793-2802.
https://doi.org/10.1002/ijc.25612
[29] Hezel, A.F. and Bardeesy, N. (2008) LKB1; Linking Cell Structure and Tumor Suppression. Oncogene, 27, 6908-6919.
https://doi.org/10.1038/onc.2008.342
[30] Partanen, J.I., Nieminen, A.I. and Klefstrom, J. (2009) 3D View to Tumor Suppression: LKB1, Polarity and the Arrest of Oncogenic C-Myc. Cell Cycle, 8, 716-724.
https://doi.org/10.4161/cc.8.5.7786
[31] Yamada, K.M., Doyle, A.D. and Lu, J. (2022) Cell-3D Matrix Interactions: Recent Advances and Opportunities. Trends in Cell Biology, 32, 883-895.
https://doi.org/10.1016/j.tcb.2022.03.002
[32] Mohamed, M.M. and Sloane, B.F. (2006) Multifunctional Enzymes in Cancer. Nature Reviews Cancer, 6, 764-775.
https://doi.org/10.1038/nrc1949
[33] Pontiggia, O., Sampayo, R., Raffo, D., Motter, A., Xu, R., Bissell, M.J., et al. (2011) The Tumor Microenvironment Modulates Tamoxifen Resistance in Breast Cancer: A Role for Soluble Stromal Factors and Fibronectin through Β1 Integrin. Breast Cancer Research and Treatment, 133, 459-471.
https://doi.org/10.1007/s10549-011-1766-x
[34] Chen, Q., Zhang, X.H. and Massagué, J. (2011) Macrophage Binding to Receptor VCAM-1 Transmits Survival Signals in Breast Cancer Cells That Invade the Lungs. Cancer Cell, 20, 538-549.
https://doi.org/10.1016/j.ccr.2011.08.025
[35] Shree, T., Olson, O.C., Elie, B.T., Kester, J.C., Garfall, A.L., Simpson, K., et al. (2011) Macrophages and Cathepsin Proteases Blunt Chemotherapeutic Response in Breast Cancer. Genes & Development, 25, 2465-2479.
https://doi.org/10.1101/gad.180331.111
[36] Bochet, L., Meulle, A., Imbert, S., Salles, B., Valet, P. and Muller, C. (2011) Cancer-Associated Adipocytes Promotes Breast Tumor Radioresistance. Biochemical and Biophysical Research Communications, 411, 102-106.
https://doi.org/10.1016/j.bbrc.2011.06.101
[37] Khandekar, M.J., Cohen, P. and Spiegelman, B.M. (2011) Molecular Mechanisms of Cancer Development in Obesity. Nature Reviews Cancer, 11, 886-895.
https://doi.org/10.1038/nrc3174
[38] Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S. and Dvorak, H.F. (1983) Tumor Cells Secrete a Vascular Permeability Factor That Promotes Accumulation of Ascites Fluid. Science, 219, 983-985.
https://doi.org/10.1126/science.6823562
[39] Branco-Price, C., Zhang, N., Schnelle, M., Evans, C., Katschinski, D.M., Liao, D., et al. (2012) Endothelial Cell HIF-1α and HIF-2α Differentially Regulate Metastatic Success. Cancer Cell, 21, 52-65.
https://doi.org/10.1016/j.ccr.2011.11.017
[40] Takeda, N., O’Dea, E.L., Doedens, A., Kim, J., Weidemann, A., Stockmann, C., et al. (2010) Differential Activation and Antagonistic Function of HIF-α Isoforms in Macrophages Are Essential for NO Homeostasis. Genes & Development, 24, 491-501.
https://doi.org/10.1101/gad.1881410
[41] Kashiwagi, S., Izumi, Y., Gohongi, T., Demou, Z.N., Xu, L., Huang, P.L., et al. (2005) NO Mediates Mural Cell Recruitment and Vessel Morphogenesis in Murine Melanomas and Tissue-Engineered Blood Vessels. Journal of Clinical Investigation, 115, 1816-1827.
https://doi.org/10.1172/jci24015
[42] Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell, 141, 52-67.
https://doi.org/10.1016/j.cell.2010.03.015
[43] van Kempen, L.C.L., de Visser, K.E. and Coussens, L.M. (2006) Inflammation, Proteases and Cancer. European Journal of Cancer, 42, 728-734.
https://doi.org/10.1016/j.ejca.2006.01.004
[44] Cheng, K., Xie, G. and Raufman, J. (2007) Matrix Metalloproteinase-7-Catalyzed Release of HB-EGF Mediates Deoxycholyltaurine-Induced Proliferation of a Human Colon Cancer Cell Line. Biochemical Pharmacology, 73, 1001-1012.
https://doi.org/10.1016/j.bcp.2006.11.028
[45] Wang, F., Sloss, C., Zhang, X., Lee, S.W. and Cusack, J.C. (2007) Membrane-Bound Heparin-Binding Epidermal Growth Factor-Like Growth Factor Regulates E-Cadherin Expression in Pancreatic Carcinoma Cells. Cancer Research, 67, 8486-8493.
https://doi.org/10.1158/0008-5472.can-07-0498
[46] Balkwill, F. (2009) Tumour Necrosis Factor and Cancer. Nature Reviews Cancer, 9, 361-371.
https://doi.org/10.1038/nrc2628
[47] Chaffer, C.L. and Weinberg, R.A. (2011) A Perspective on Cancer Cell Metastasis. Science, 331, 1559-1564.
https://doi.org/10.1126/science.1203543
[48] Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., et al. (2007) Mesenchymal Stem Cells within Tumour Stroma Promote Breast Cancer Metastasis. Nature, 449, 557-563.
https://doi.org/10.1038/nature06188
[49] Cirri, P. and Chiarugi, P. (2011) Cancer-Associated-Fibroblasts and Tumour Cells: A Diabolic Liaison Driving Cancer Progression. Cancer and Metastasis Reviews, 31, 195-208.
https://doi.org/10.1007/s10555-011-9340-x
[50] Kalluri, R. and Zeisberg, M. (2006) Fibroblasts in Cancer. Nature Reviews Cancer, 6, 392-401.
https://doi.org/10.1038/nrc1877
[51] Onrust, S.V., Hartl, P.M., Rosen, S.D. and Hanahan, D. (1996) Modulation of L-Selectin Ligand Expression during an Immune Response Accompanying Tumorigenesis in Transgenic Mice. Journal of Clinical Investigation, 97, 54-64.
https://doi.org/10.1172/jci118406
[52] Fisher, D.T., Chen, Q., Skitzki, J.J., Muhitch, J.B., Zhou, L., Appenheimer, M.M., et al. (2011) IL-6 Trans-Signaling Licenses Mouse and Human Tumor Microvascular Gateways for Trafficking of Cytotoxic T Cells. Journal of Clinical Investigation, 121, 3846-3859.
https://doi.org/10.1172/jci44952
[53] Veglia, F., Perego, M. and Gabrilovich, D. (2018) Myeloid-Derived Suppressor Cells Coming of Age. Nature Immunology, 19, 108-119.
https://doi.org/10.1038/s41590-017-0022-x
[54] Ostrand-Rosenberg, S. (2008) Immune Surveillance: A Balance between Protumor and Antitumor Immunity. Current Opinion in Genetics & Development, 18, 11-18.
https://doi.org/10.1016/j.gde.2007.12.007
[55] Rattigan, Y.I., Patel, B.B., Ackerstaff, E., Sukenick, G., Koutcher, J.A., Glod, J.W., et al. (2012) Lactate Is a Mediator of Metabolic Cooperation between Stromal Carcinoma Associated Fibroblasts and Glycolytic Tumor Cells in the Tumor Microenvironment. Experimental Cell Research, 318, 326-335.
https://doi.org/10.1016/j.yexcr.2011.11.014
[56] Sotgia, F., Martinez-Outschoorn, U.E., Howell, A., Pestell, R.G., Pavlides, S. and Lisanti, M.P. (2012) Caveolin-1 and Cancer Metabolism in the Tumor Microenvironment: Markers, Models, and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 7, 423-467.
https://doi.org/10.1146/annurev-pathol-011811-120856
[57] Sotgia, F., Martinez-Outschoorn, U.E., Pavlides, S., Howell, A., Pestell, R.G. and Lisanti, M.P. (2011) Understanding the Warburg Effect and the Prognostic Value of Stromal Caveolin-1 as a Marker of a Lethal Tumor Microenvironment. Breast Cancer Research, 13, Article No. 213.
https://doi.org/10.1186/bcr2892
[58] Jeong, D., Lee, S. and Chun, Y. (2021) How Cancer Cells Remodel Lipid Metabolism: Strategies Targeting Transcription Factors. Lipids in Health and Disease, 20, Article No. 163.
https://doi.org/10.1186/s12944-021-01593-8
[59] Wang, W., Bai, L., Li, W. and Cui, J. (2020) The Lipid Metabolic Landscape of Cancers and New Therapeutic Perspectives. Frontiers in Oncology, 10, Article 605154.
https://doi.org/10.3389/fonc.2020.605154
[60] Wu, Y., Pu, X., Wang, X. and Xu, M. (2024) Reprogramming of Lipid Metabolism in the Tumor Microenvironment: A Strategy for Tumor Immunotherapy. Lipids in Health and Disease, 23, Article No. 35.
https://doi.org/10.1186/s12944-024-02024-0
[61] Lengyel, E., Makowski, L., DiGiovanni, J. and Kolonin, M.G. (2018) Cancer as a Matter of Fat: The Crosstalk between Adipose Tissue and Tumors. Trends in Cancer, 4, 374-384.
https://doi.org/10.1016/j.trecan.2018.03.004
[62] Mentoor, I., Engelbrecht, A., van Jaarsveld, P.J. and Nell, T. (2018) Chemoresistance: Intricate Interplay between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Frontiers in Endocrinology, 9, Article 758.
https://doi.org/10.3389/fendo.2018.00758
[63] Qiao, X., Hu, Z., Xiong, F., Yang, Y., Peng, C., Wang, D., et al. (2023) Lipid Metabolism Reprogramming in Tumor-Associated Macrophages and Implications for Therapy. Lipids in Health and Disease, 22, Article No. 45.
https://doi.org/10.1186/s12944-023-01807-1
[64] Yu, L., Deng, Y., Wang, X., Santos, C., Davis, I.J., Earp, H.S., et al. (2024) Co-Targeting JAK1/STAT6/GAS6/TAM Signaling Improves Chemotherapy Efficacy in Ewing Sarcoma. Nature Communications, 15, Article No. 5292.
https://doi.org/10.1038/s41467-024-49667-2
[65] Lyu, A., Fan, Z., Clark, M., Lea, A., Luong, D., Setayesh, A., et al. (2024) Evolution of Myeloid-Mediated Immunotherapy Resistance in Prostate Cancer. Nature, 637, 1207-1217.
https://doi.org/10.1038/s41586-024-08290-3
[66] Mercanti, L., Sindaco, M., Mazzone, M., Di Marcantonio, M.C., Piscione, M., Muraro, R., et al. (2023) PDAC, the Influencer Cancer: Cross-Talk with Tumor Microenvironment and Connected Potential Therapy Strategies. Cancers, 15, Article 2923.
https://doi.org/10.3390/cancers15112923
[67] Feig, C., Jones, J.O., Kraman, M., Wells, R.J.B., Deonarine, A., Chan, D.S., et al. (2013) Targeting CXCL12 from Fap-Expressing Carcinoma-Associated Fibroblasts Synergizes with Anti-PD-L1 Immunotherapy in Pancreatic Cancer. Proceedings of the National Academy of Sciences, 110, 20212-20217.
https://doi.org/10.1073/pnas.1320318110
[68] Kieffer, Y., Hocine, H.R., Gentric, G., Pelon, F., Bernard, C., Bourachot, B., et al. (2020) Single-Cell Analysis Reveals Fibroblast Clusters Linked to Immunotherapy Resistance in Cancer. Cancer Discovery, 10, 1330-1351.
https://doi.org/10.1158/2159-8290.cd-19-1384
[69] Chang, C., Dinh, T.K., Lee, Y., Wang, F., Sung, Y., Yu, P., et al. (2020) Nanoparticle Delivery of MnO2 and Antiangiogenic Therapy to Overcome Hypoxia-Driven Tumor Escape and Suppress Hepatocellular Carcinoma. ACS Applied Materials & Interfaces, 12, 44407-44419.
https://doi.org/10.1021/acsami.0c08473
[70] Lam, L.L., Pavlakis, N., Shitara, K., Sjoquist, K.M., Martin, A.J., Yip, S., et al. (2023) INTEGRATE II: Randomised Phase III Controlled Trials of Regorafenib Containing Regimens versus Standard of Care in Refractory Advanced Gastro-Oesophageal Cancer (AGOC): A Study by the Australasian Gastro-Intestinal Trials Group (AGITG). BMC Cancer, 23, Article No. 180.
https://doi.org/10.1186/s12885-023-10642-7
[71] Lu, X., Horner, J.W., Paul, E., Shang, X., Troncoso, P., Deng, P., et al. (2017) Effective Combinatorial Immunotherapy for Castration-Resistant Prostate Cancer. Nature, 543, 728-732.
https://doi.org/10.1038/nature21676
[72] Saeed, A., Park, R., Dai, J., Al-Rajabi, R., Kasi, A., Baranda, J., et al. (2023) Cabozantinib Plus Durvalumab in Advanced Gastroesophageal Cancer and Other Gastrointestinal Malignancies: Phase Ib CAMILLA Trial Results. Cell Reports Medicine, 4, Article ID: 100916.
https://doi.org/10.1016/j.xcrm.2023.100916
[73] Lamb, Y.N. (2019) Pexidartinib: First Approval. Drugs, 79, 1805-1812.
https://doi.org/10.1007/s40265-019-01210-0