[1]
|
Cox, T.R. (2021) The Matrix in Cancer. Nature Reviews Cancer, 21, 217-238. https://doi.org/10.1038/s41568-020-00329-7
|
[2]
|
Bissell, M.J., Hall, H.G. and Parry, G. (1982) How Does the Extracellular Matrix Direct Gene Expression? Journal of Theoretical Biology, 99, 31-68. https://doi.org/10.1016/0022-5193(82)90388-5
|
[3]
|
Flier, J.S., Underhill, L.H. and Dvorak, H.F. (1986) Tumors: Wounds That Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing. New England Journal of Medicine, 315, 1650-1659. https://doi.org/10.1056/nejm198612253152606
|
[4]
|
Folkman, J. (1974) Tumor Angiogenesis. Advances in Cancer Research, 19, 331-358. https://doi.org/10.1016/s0065-230x(08)60058-5
|
[5]
|
Armulik, A., Abramsson, A. and Betsholtz, C. (2005) Endothelial/Pericyte Interactions. Circulation Research, 97, 512-523. https://doi.org/10.1161/01.res.0000182903.16652.d7
|
[6]
|
Folkman, J., Watson, K., Ingber, D. and Hanahan, D. (1989) Induction of Angiogenesis during the Transition from Hyperplasia to Neoplasia. Nature, 339, 58-61. https://doi.org/10.1038/339058a0
|
[7]
|
Bergers, G., Javaherian, K., Lo, K., Folkman, J. and Hanahan, D. (1999) Effects of Angiogenesis Inhibitors on Multistage Carcinogenesis in Mice. Science, 284, 808-812. https://doi.org/10.1126/science.284.5415.808
|
[8]
|
Carmeliet, P. and Jain, R.K. (2011) Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature, 473, 298-307. https://doi.org/10.1038/nature10144
|
[9]
|
Ren, W., Liang, H., Sun, J., Cheng, Z., Liu, W., Wu, Y., et al. (2024) TNFAIP2 Promotes HIF1α Transcription and Breast Cancer Angiogenesis by Activating the Rac1-ERK-AP1 Signaling Axis. Cell Death & Disease, 15, Article No. 821. https://doi.org/10.1038/s41419-024-07223-2
|
[10]
|
Balkwill, F., Charles, K.A. and Mantovani, A. (2005) Smoldering and Polarized Inflammation in the Initiation and Promotion of Malignant Disease. Cancer Cell, 7, 211-217. https://doi.org/10.1016/j.ccr.2005.02.013
|
[11]
|
Lu, P., Takai, K., Weaver, V.M. and Werb, Z. (2011) Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspectives in Biology, 3, a005058. https://doi.org/10.1101/cshperspect.a005058
|
[12]
|
McDonald, D.M. and Choyke, P.L. (2003) Imaging of Angiogenesis: From Microscope to Clinic. Nature Medicine, 9, 713-725. https://doi.org/10.1038/nm0603-713
|
[13]
|
Balliet, R.M., Capparelli, C., Guido, C., Pestell, T.G., Martinez-Outschoorn, U.E., Lin, Z., et al. (2011) Mitochondrial Oxidative Stress in Cancer-Associated Fibroblasts Drives Lactate Production, Promoting Breast Cancer Tumor Growth: Understanding the Aging and Cancer Connection. Cell Cycle, 10, 4065-4073. https://doi.org/10.4161/cc.10.23.18254
|
[14]
|
Wang, L., Zhang, L., Zhao, L., Shao, S., Ning, Q., Jing, X., et al. (2024) VEGFA/NRP-1/GAPVD1 Axis Promotes Progression and Cancer Stemness of Triple-Negative Breast Cancer by Enhancing Tumor Cell-Macrophage Crosstalk. International Journal of Biological Sciences, 20, 446-463. https://doi.org/10.7150/ijbs.86085
|
[15]
|
Stockmann, C., Doedens, A., Weidemann, A., Zhang, N., Takeda, N., Greenberg, J.I., et al. (2008) Deletion of Vascular Endothelial Growth Factor in Myeloid Cells Accelerates Tumorigenesis. Nature, 456, 814-818. https://doi.org/10.1038/nature07445
|
[16]
|
Du, R., Lu, K.V., Petritsch, C., Liu, P., Ganss, R., Passegué, E., et al. (2008) HIF1α Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and Invasion. Cancer Cell, 13, 206-220. https://doi.org/10.1016/j.ccr.2008.01.034
|
[17]
|
Giraudo, E., Inoue, M. and Hanahan, D. (2004) An Amino-Bisphosphonate Targets MMP-9-Expressing Macrophages and Angiogenesis to Impair Cervical Carcinogenesis. Journal of Clinical Investigation, 114, 623-633. https://doi.org/10.1172/jci22087
|
[18]
|
DeNardo, D.G., Brennan, D.J., Rexhepaj, E., Ruffell, B., Shiao, S.L., Madden, S.F., et al. (2011) Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discovery, 1, 54-67. https://doi.org/10.1158/2159-8274.cd-10-0028
|
[19]
|
Crawford, Y., Kasman, I., Yu, L., Zhong, C., Wu, X., Modrusan, Z., et al. (2009) PDGF-C Mediates the Angiogenic and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment. Cancer Cell, 15, 21-34. https://doi.org/10.1016/j.ccr.2008.12.004
|
[20]
|
Pietras, K. and Östman, A. (2010) Hallmarks of Cancer: Interactions with the Tumor Stroma. Experimental Cell Research, 316, 1324-1331. https://doi.org/10.1016/j.yexcr.2010.02.045
|
[21]
|
Räsänen, K. and Vaheri, A. (2010) Activation of Fibroblasts in Cancer Stroma. Experimental Cell Research, 316, 2713-2722. https://doi.org/10.1016/j.yexcr.2010.04.032
|
[22]
|
Tang, Y., Yao, W., Hu, H., Xiong, W., Mei, H. and Hu, Y. (2023) TGF-β Blocking Combined with Photothermal Therapy Promote Tumor Targeted Migration and Long-Term Antitumor Activity of CAR-T Cells. Materials Today Bio, 20, Article ID: 100615. https://doi.org/10.1016/j.mtbio.2023.100615
|
[23]
|
De Palma, M., Biziato, D. and Petrova, T.V. (2017) Microenvironmental Regulation of Tumour Angiogenesis. Nature Reviews Cancer, 17, 457-474. https://doi.org/10.1038/nrc.2017.51
|
[24]
|
Xu, Y. (2008) Induction of Genetic Instability by Gain-Of-Function P53 Cancer Mutants. Oncogene, 27, 3501-3507. https://doi.org/10.1038/sj.onc.1211023
|
[25]
|
Engeland, K. (2017) Cell Cycle Arrest through Indirect Transcriptional Repression by P53: I Have a Dream. Cell Death & Differentiation, 25, 114-132. https://doi.org/10.1038/cdd.2017.172
|
[26]
|
Hinds, P.W. and Weinberg, R.A. (1994) Tumor Suppressor Genes. Current Opinion in Genetics & Development, 4, 135-141. https://doi.org/10.1016/0959-437x(94)90102-3
|
[27]
|
Bissell, M.J. and Hines, W.C. (2011) Why Don’t We Get More Cancer? A Proposed Role of the Microenvironment in Restraining Cancer Progression. Nature Medicine, 17, 320-329. https://doi.org/10.1038/nm.2328
|
[28]
|
Flaberg, E., Markasz, L., Petranyi, G., Stuber, G., Dicső, F., Alchihabi, N., et al. (2010) High‐Throughput Live‐Cell Imaging Reveals Differential Inhibition of Tumor Cell Proliferation by Human Fibroblasts. International Journal of Cancer, 128, 2793-2802. https://doi.org/10.1002/ijc.25612
|
[29]
|
Hezel, A.F. and Bardeesy, N. (2008) LKB1; Linking Cell Structure and Tumor Suppression. Oncogene, 27, 6908-6919. https://doi.org/10.1038/onc.2008.342
|
[30]
|
Partanen, J.I., Nieminen, A.I. and Klefstrom, J. (2009) 3D View to Tumor Suppression: LKB1, Polarity and the Arrest of Oncogenic C-Myc. Cell Cycle, 8, 716-724. https://doi.org/10.4161/cc.8.5.7786
|
[31]
|
Yamada, K.M., Doyle, A.D. and Lu, J. (2022) Cell-3D Matrix Interactions: Recent Advances and Opportunities. Trends in Cell Biology, 32, 883-895. https://doi.org/10.1016/j.tcb.2022.03.002
|
[32]
|
Mohamed, M.M. and Sloane, B.F. (2006) Multifunctional Enzymes in Cancer. Nature Reviews Cancer, 6, 764-775. https://doi.org/10.1038/nrc1949
|
[33]
|
Pontiggia, O., Sampayo, R., Raffo, D., Motter, A., Xu, R., Bissell, M.J., et al. (2011) The Tumor Microenvironment Modulates Tamoxifen Resistance in Breast Cancer: A Role for Soluble Stromal Factors and Fibronectin through Β1 Integrin. Breast Cancer Research and Treatment, 133, 459-471. https://doi.org/10.1007/s10549-011-1766-x
|
[34]
|
Chen, Q., Zhang, X.H. and Massagué, J. (2011) Macrophage Binding to Receptor VCAM-1 Transmits Survival Signals in Breast Cancer Cells That Invade the Lungs. Cancer Cell, 20, 538-549. https://doi.org/10.1016/j.ccr.2011.08.025
|
[35]
|
Shree, T., Olson, O.C., Elie, B.T., Kester, J.C., Garfall, A.L., Simpson, K., et al. (2011) Macrophages and Cathepsin Proteases Blunt Chemotherapeutic Response in Breast Cancer. Genes & Development, 25, 2465-2479. https://doi.org/10.1101/gad.180331.111
|
[36]
|
Bochet, L., Meulle, A., Imbert, S., Salles, B., Valet, P. and Muller, C. (2011) Cancer-Associated Adipocytes Promotes Breast Tumor Radioresistance. Biochemical and Biophysical Research Communications, 411, 102-106. https://doi.org/10.1016/j.bbrc.2011.06.101
|
[37]
|
Khandekar, M.J., Cohen, P. and Spiegelman, B.M. (2011) Molecular Mechanisms of Cancer Development in Obesity. Nature Reviews Cancer, 11, 886-895. https://doi.org/10.1038/nrc3174
|
[38]
|
Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S. and Dvorak, H.F. (1983) Tumor Cells Secrete a Vascular Permeability Factor That Promotes Accumulation of Ascites Fluid. Science, 219, 983-985. https://doi.org/10.1126/science.6823562
|
[39]
|
Branco-Price, C., Zhang, N., Schnelle, M., Evans, C., Katschinski, D.M., Liao, D., et al. (2012) Endothelial Cell HIF-1α and HIF-2α Differentially Regulate Metastatic Success. Cancer Cell, 21, 52-65. https://doi.org/10.1016/j.ccr.2011.11.017
|
[40]
|
Takeda, N., O’Dea, E.L., Doedens, A., Kim, J., Weidemann, A., Stockmann, C., et al. (2010) Differential Activation and Antagonistic Function of HIF-α Isoforms in Macrophages Are Essential for NO Homeostasis. Genes & Development, 24, 491-501. https://doi.org/10.1101/gad.1881410
|
[41]
|
Kashiwagi, S., Izumi, Y., Gohongi, T., Demou, Z.N., Xu, L., Huang, P.L., et al. (2005) NO Mediates Mural Cell Recruitment and Vessel Morphogenesis in Murine Melanomas and Tissue-Engineered Blood Vessels. Journal of Clinical Investigation, 115, 1816-1827. https://doi.org/10.1172/jci24015
|
[42]
|
Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell, 141, 52-67. https://doi.org/10.1016/j.cell.2010.03.015
|
[43]
|
van Kempen, L.C.L., de Visser, K.E. and Coussens, L.M. (2006) Inflammation, Proteases and Cancer. European Journal of Cancer, 42, 728-734. https://doi.org/10.1016/j.ejca.2006.01.004
|
[44]
|
Cheng, K., Xie, G. and Raufman, J. (2007) Matrix Metalloproteinase-7-Catalyzed Release of HB-EGF Mediates Deoxycholyltaurine-Induced Proliferation of a Human Colon Cancer Cell Line. Biochemical Pharmacology, 73, 1001-1012. https://doi.org/10.1016/j.bcp.2006.11.028
|
[45]
|
Wang, F., Sloss, C., Zhang, X., Lee, S.W. and Cusack, J.C. (2007) Membrane-Bound Heparin-Binding Epidermal Growth Factor-Like Growth Factor Regulates E-Cadherin Expression in Pancreatic Carcinoma Cells. Cancer Research, 67, 8486-8493. https://doi.org/10.1158/0008-5472.can-07-0498
|
[46]
|
Balkwill, F. (2009) Tumour Necrosis Factor and Cancer. Nature Reviews Cancer, 9, 361-371. https://doi.org/10.1038/nrc2628
|
[47]
|
Chaffer, C.L. and Weinberg, R.A. (2011) A Perspective on Cancer Cell Metastasis. Science, 331, 1559-1564. https://doi.org/10.1126/science.1203543
|
[48]
|
Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., et al. (2007) Mesenchymal Stem Cells within Tumour Stroma Promote Breast Cancer Metastasis. Nature, 449, 557-563. https://doi.org/10.1038/nature06188
|
[49]
|
Cirri, P. and Chiarugi, P. (2011) Cancer-Associated-Fibroblasts and Tumour Cells: A Diabolic Liaison Driving Cancer Progression. Cancer and Metastasis Reviews, 31, 195-208. https://doi.org/10.1007/s10555-011-9340-x
|
[50]
|
Kalluri, R. and Zeisberg, M. (2006) Fibroblasts in Cancer. Nature Reviews Cancer, 6, 392-401. https://doi.org/10.1038/nrc1877
|
[51]
|
Onrust, S.V., Hartl, P.M., Rosen, S.D. and Hanahan, D. (1996) Modulation of L-Selectin Ligand Expression during an Immune Response Accompanying Tumorigenesis in Transgenic Mice. Journal of Clinical Investigation, 97, 54-64. https://doi.org/10.1172/jci118406
|
[52]
|
Fisher, D.T., Chen, Q., Skitzki, J.J., Muhitch, J.B., Zhou, L., Appenheimer, M.M., et al. (2011) IL-6 Trans-Signaling Licenses Mouse and Human Tumor Microvascular Gateways for Trafficking of Cytotoxic T Cells. Journal of Clinical Investigation, 121, 3846-3859. https://doi.org/10.1172/jci44952
|
[53]
|
Veglia, F., Perego, M. and Gabrilovich, D. (2018) Myeloid-Derived Suppressor Cells Coming of Age. Nature Immunology, 19, 108-119. https://doi.org/10.1038/s41590-017-0022-x
|
[54]
|
Ostrand-Rosenberg, S. (2008) Immune Surveillance: A Balance between Protumor and Antitumor Immunity. Current Opinion in Genetics & Development, 18, 11-18. https://doi.org/10.1016/j.gde.2007.12.007
|
[55]
|
Rattigan, Y.I., Patel, B.B., Ackerstaff, E., Sukenick, G., Koutcher, J.A., Glod, J.W., et al. (2012) Lactate Is a Mediator of Metabolic Cooperation between Stromal Carcinoma Associated Fibroblasts and Glycolytic Tumor Cells in the Tumor Microenvironment. Experimental Cell Research, 318, 326-335. https://doi.org/10.1016/j.yexcr.2011.11.014
|
[56]
|
Sotgia, F., Martinez-Outschoorn, U.E., Howell, A., Pestell, R.G., Pavlides, S. and Lisanti, M.P. (2012) Caveolin-1 and Cancer Metabolism in the Tumor Microenvironment: Markers, Models, and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 7, 423-467. https://doi.org/10.1146/annurev-pathol-011811-120856
|
[57]
|
Sotgia, F., Martinez-Outschoorn, U.E., Pavlides, S., Howell, A., Pestell, R.G. and Lisanti, M.P. (2011) Understanding the Warburg Effect and the Prognostic Value of Stromal Caveolin-1 as a Marker of a Lethal Tumor Microenvironment. Breast Cancer Research, 13, Article No. 213. https://doi.org/10.1186/bcr2892
|
[58]
|
Jeong, D., Lee, S. and Chun, Y. (2021) How Cancer Cells Remodel Lipid Metabolism: Strategies Targeting Transcription Factors. Lipids in Health and Disease, 20, Article No. 163. https://doi.org/10.1186/s12944-021-01593-8
|
[59]
|
Wang, W., Bai, L., Li, W. and Cui, J. (2020) The Lipid Metabolic Landscape of Cancers and New Therapeutic Perspectives. Frontiers in Oncology, 10, Article 605154. https://doi.org/10.3389/fonc.2020.605154
|
[60]
|
Wu, Y., Pu, X., Wang, X. and Xu, M. (2024) Reprogramming of Lipid Metabolism in the Tumor Microenvironment: A Strategy for Tumor Immunotherapy. Lipids in Health and Disease, 23, Article No. 35. https://doi.org/10.1186/s12944-024-02024-0
|
[61]
|
Lengyel, E., Makowski, L., DiGiovanni, J. and Kolonin, M.G. (2018) Cancer as a Matter of Fat: The Crosstalk between Adipose Tissue and Tumors. Trends in Cancer, 4, 374-384. https://doi.org/10.1016/j.trecan.2018.03.004
|
[62]
|
Mentoor, I., Engelbrecht, A., van Jaarsveld, P.J. and Nell, T. (2018) Chemoresistance: Intricate Interplay between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Frontiers in Endocrinology, 9, Article 758. https://doi.org/10.3389/fendo.2018.00758
|
[63]
|
Qiao, X., Hu, Z., Xiong, F., Yang, Y., Peng, C., Wang, D., et al. (2023) Lipid Metabolism Reprogramming in Tumor-Associated Macrophages and Implications for Therapy. Lipids in Health and Disease, 22, Article No. 45. https://doi.org/10.1186/s12944-023-01807-1
|
[64]
|
Yu, L., Deng, Y., Wang, X., Santos, C., Davis, I.J., Earp, H.S., et al. (2024) Co-Targeting JAK1/STAT6/GAS6/TAM Signaling Improves Chemotherapy Efficacy in Ewing Sarcoma. Nature Communications, 15, Article No. 5292. https://doi.org/10.1038/s41467-024-49667-2
|
[65]
|
Lyu, A., Fan, Z., Clark, M., Lea, A., Luong, D., Setayesh, A., et al. (2024) Evolution of Myeloid-Mediated Immunotherapy Resistance in Prostate Cancer. Nature, 637, 1207-1217. https://doi.org/10.1038/s41586-024-08290-3
|
[66]
|
Mercanti, L., Sindaco, M., Mazzone, M., Di Marcantonio, M.C., Piscione, M., Muraro, R., et al. (2023) PDAC, the Influencer Cancer: Cross-Talk with Tumor Microenvironment and Connected Potential Therapy Strategies. Cancers, 15, Article 2923. https://doi.org/10.3390/cancers15112923
|
[67]
|
Feig, C., Jones, J.O., Kraman, M., Wells, R.J.B., Deonarine, A., Chan, D.S., et al. (2013) Targeting CXCL12 from Fap-Expressing Carcinoma-Associated Fibroblasts Synergizes with Anti-PD-L1 Immunotherapy in Pancreatic Cancer. Proceedings of the National Academy of Sciences, 110, 20212-20217. https://doi.org/10.1073/pnas.1320318110
|
[68]
|
Kieffer, Y., Hocine, H.R., Gentric, G., Pelon, F., Bernard, C., Bourachot, B., et al. (2020) Single-Cell Analysis Reveals Fibroblast Clusters Linked to Immunotherapy Resistance in Cancer. Cancer Discovery, 10, 1330-1351. https://doi.org/10.1158/2159-8290.cd-19-1384
|
[69]
|
Chang, C., Dinh, T.K., Lee, Y., Wang, F., Sung, Y., Yu, P., et al. (2020) Nanoparticle Delivery of MnO2 and Antiangiogenic Therapy to Overcome Hypoxia-Driven Tumor Escape and Suppress Hepatocellular Carcinoma. ACS Applied Materials & Interfaces, 12, 44407-44419. https://doi.org/10.1021/acsami.0c08473
|
[70]
|
Lam, L.L., Pavlakis, N., Shitara, K., Sjoquist, K.M., Martin, A.J., Yip, S., et al. (2023) INTEGRATE II: Randomised Phase III Controlled Trials of Regorafenib Containing Regimens versus Standard of Care in Refractory Advanced Gastro-Oesophageal Cancer (AGOC): A Study by the Australasian Gastro-Intestinal Trials Group (AGITG). BMC Cancer, 23, Article No. 180. https://doi.org/10.1186/s12885-023-10642-7
|
[71]
|
Lu, X., Horner, J.W., Paul, E., Shang, X., Troncoso, P., Deng, P., et al. (2017) Effective Combinatorial Immunotherapy for Castration-Resistant Prostate Cancer. Nature, 543, 728-732. https://doi.org/10.1038/nature21676
|
[72]
|
Saeed, A., Park, R., Dai, J., Al-Rajabi, R., Kasi, A., Baranda, J., et al. (2023) Cabozantinib Plus Durvalumab in Advanced Gastroesophageal Cancer and Other Gastrointestinal Malignancies: Phase Ib CAMILLA Trial Results. Cell Reports Medicine, 4, Article ID: 100916. https://doi.org/10.1016/j.xcrm.2023.100916
|
[73]
|
Lamb, Y.N. (2019) Pexidartinib: First Approval. Drugs, 79, 1805-1812. https://doi.org/10.1007/s40265-019-01210-0
|