[1]
|
Sabatino, A., Regolisti, G., Cosola, C., Gesualdo, L. and Fiaccadori, E. (2017) Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Current Diabetes Reports, 17, Article No. 16. https://doi.org/10.1007/s11892-017-0841-z
|
[2]
|
Akhtar, M., Taha, N.M., Nauman, A., Mujeeb, I.B. and Al-Nabet, A.D.M.H. (2019) Diabetic Kidney Disease: Past and Present. Advances in Anatomic Pathology, 27, 87-97. https://doi.org/10.1097/pap.0000000000000257
|
[3]
|
Chen, Y., Zhou, J. and Wang, L. (2021) Role and Mechanism of Gut Microbiota in Human Disease. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 625913. https://doi.org/10.3389/fcimb.2021.625913
|
[4]
|
Guldris, S.C., Parra, E.G. and Amenós, A.C. (2017) Gut Microbiota in Chronic Kidney Disease. Nefrología (English Edition), 37, 9-19. https://doi.org/10.1016/j.nefroe.2017.01.017
|
[5]
|
Lu, C.C., Ma, K.L., Ruan, X.Z. and Liu, B.C. (2018) Intestinal Dysbiosis Activates Renal Renin-Angiotensin System Contributing to Incipient Diabetic Nephropathy. International Journal of Medical Sciences, 15, 816-822. https://doi.org/10.7150/ijms.25543
|
[6]
|
Navarro-González, J.F., Mora-Fernández, C., de Fuentes, M.M. and García-Pérez, J. (2011) Inflammatory Molecules and Pathways in the Pathogenesis of Diabetic Nephropathy. Nature Reviews Nephrology, 7, 327-340. https://doi.org/10.1038/nrneph.2011.51
|
[7]
|
Lu, C., Hu, Z., Wang, R., Hong, Z., Lu, J., Chen, P., et al. (2020) Gut Microbiota Dysbiosis-Induced Activation of the Intrarenal Renin—Angiotensin System Is Involved in Kidney Injuries in Rat Diabetic Nephropathy. Acta Pharmacologica Sinica, 41, 1111-1118. https://doi.org/10.1038/s41401-019-0326-5
|
[8]
|
Krasnow, M.A, Riegler, J., et al. (2015) Oxygen Regulation of Breathing through an Olfactory Receptor Activated by Lactate. Nature, 527, 240-244.
|
[9]
|
Mercer, K.E., Yeruva, L., Pack, L., Graham, J.L., Stanhope, K.L., Chintapalli, S.V., et al. (2020) Xenometabolite Signatures in the UC Davis Type 2 Diabetes Mellitus Rat Model Revealed Using a Metabolomics Platform Enriched with Microbe-Derived Metabolites. American Journal of Physiology-Gastrointestinal and Liver Physiology, 319, G157-G169. https://doi.org/10.1152/ajpgi.00105.2020
|
[10]
|
Yang, J., Dong, H., Wang, Y., Jiang, Y., Zhang, W., Lu, Y., et al. (2020) Cordyceps Cicadae Polysaccharides Ameliorated Renal Interstitial Fibrosis in Diabetic Nephropathy Rats by Repressing Inflammation and Modulating Gut Microbiota Dysbiosis. International Journal of Biological Macromolecules, 163, 442-456. https://doi.org/10.1016/j.ijbiomac.2020.06.153
|
[11]
|
池杨峰, 刘爽, 黄洁波, 等. 黄芪汤通过TLR4/NF-κB信号通路改善糖尿病肾病大鼠炎症反应的研究[J]. 临床肾脏病杂志, 2022, 22(1): 39-45.
|
[12]
|
Fukai, T. and Ushio-Fukai, M. (2020) Cross-Talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis. Cells, 9, Article 1849. https://doi.org/10.3390/cells9081849
|
[13]
|
Hou, Y., Wang, Q., Han, B., Chen, Y., Qiao, X. and Wang, L. (2021) CD36 Promotes NLRP3 Inflammasome Activation via the mtROS Pathway in Renal Tubular Epithelial Cells of Diabetic Kidneys. Cell Death & Disease, 12, Article No. 523. https://doi.org/10.1038/s41419-021-03813-6
|
[14]
|
Tang, G., Li, S., Zhang, C., Chen, H., Wang, N. and Feng, Y. (2021) Clinical Efficacies, Underlying Mechanisms and Molecular Targets of Chinese Medicines for Diabetic Nephropathy Treatment and Management. Acta Pharmaceutica Sinica B, 11, 2749-2767. https://doi.org/10.1016/j.apsb.2020.12.020
|
[15]
|
Cheng, D., Gao, L., Su, S., Sargsyan, D., Wu, R., Raskin, I., et al. (2019) Moringa Isothiocyanate Activates Nrf2: Potential Role in Diabetic Nephropathy. The AAPS Journal, 21, Article No. 31. https://doi.org/10.1208/s12248-019-0301-6
|
[16]
|
He, M. and Shi, B. (2017) Gut Microbiota as a Potential Target of Metabolic Syndrome: The Role of Probiotics and Prebiotics. Cell & Bioscience, 7, Article No. 54. https://doi.org/10.1186/s13578-017-0183-1
|
[17]
|
熊淑琪. 胆汁酸生理功能及其与肠道微生物互作研究进展[J]. 生物技术通报, 2023, 39(4): 187-200.
|
[18]
|
Zhang, L., Wang, Z., Zhang, X., et al. (2022) Alterations of the Gut Microbiota in Patients with Diabetic Nephropathy. Microbiology Spectrum, 10, e0032422. https://doi.org/10.1128/spectrum.00324-22
|
[19]
|
于晓依, 常畅, 陈天笑, 等. 王不留行黄酮苷改善糖尿病肾病小鼠肠道菌群紊乱和肾脏脂质沉积的研究[J]. 华西药学杂志, 2024, 39(1): 36-42.
|
[20]
|
曾霖, 张鹏翔, 黄倩, 等. 基于短链脂肪酸防治代谢性疾病的研究进展[J]. 中国全科医学, 2022, 25(9): 1141-1147.
|
[21]
|
卢林, 杨景云, 李丹红. 脾虚湿盛泄泻患者肠道微生态及舌部菌群变化的临床观察[J]. 中国微生态学杂志, 2007, 19(4): 333-334.
|
[22]
|
周光炎. 免疫学原理3版[M]. 北京: 科技出版社, 2013: 177-178.
|
[23]
|
吴三明, 张万岱. 脾虚泄泻患者肠道微生态学的初步研究[J]. 中国中西医结合脾胃杂志, 1996, 4(4): 203-204.
|
[24]
|
王卓, 彭颖, 李晓波. 四君子汤对两种脾虚模型大鼠肠道菌群紊乱的影响[J]. 中国中西医结合杂志, 2009, 29(9): 825-827.
|
[25]
|
Zhang, L., Long, J., Jiang, W., et al. (2016) Trends in Chronic Kidney Disease in China. New England Journal of Medicine, 375, 905-906.
|
[26]
|
Wei, L., Jiang, Y., Wang, Y., et al. (2020) Protective Effects of Combination of Radix Astragali and Radix Salviae Miltiorrhizae on Kidney of Spontaneously Hypertensive Rats and Renal Intrinsic Cells. Chinese Journal of Integrative Medicine, 26, 46-53.
|
[27]
|
蔡红蝶, 宿树兰, 郭建明, 等. 丹参对糖尿病肾损伤大鼠肠道菌群多样性的影响[J]. 中国中药杂志, 2021, 46(2): 426-435.
|
[28]
|
于晓依, 常畅, 陈天笑, 等. 王不留行黄酮苷改善糖尿病肾病小鼠肠道菌群紊乱和肾脏脂质沉积的研究[J]. 华西药学杂志, 2024, 39(1): 36-42.
|
[29]
|
尹欢欢. 肉桂醛通过肠道菌群改善糖尿病肾病早期蛋白尿的机制初探[D]: [博士学位论文]. 北京: 北京协和医学院, 2021.
|
[30]
|
Zheng, H., Whitman, S.A., Wu, W., Wondrak, G.T., Wong, P.K., Fang, D., et al. (2011) Therapeutic Potential of Nrf2 Activators in Streptozotocin-Induced Diabetic Nephropathy. Diabetes, 60, 3055-3066. https://doi.org/10.2337/db11-0807
|
[31]
|
Wang, L., Liang, Q., Lin, A., Chen, X., Wu, Y., Zhang, B., et al. (2020) Puerarin Increases Survival and Protects against Organ Injury by Suppressing NF-κB/JNK Signaling in Experimental Sepsis. Frontiers in Pharmacology, 11, Article ID: 560. https://doi.org/10.3389/fphar.2020.00560
|
[32]
|
Zeng, X., Zeng, J., Lin, X., Ni, Y., Jiang, C., Li, D., et al. (2021) Puerarin Ameliorates Caerulein-Induced Chronic Pancreatitis via Inhibition of MAPK Signaling Pathway. Frontiers in Pharmacology, 12, Article ID: 686992. https://doi.org/10.3389/fphar.2021.686992
|
[33]
|
Barro, L., Hsiao, J., Chen, C., Chang, Y. and Hsieh, M. (2021) Cytoprotective Effect of Liposomal Puerarin on High Glucose-Induced Injury in Rat Mesangial Cells. Antioxidants, 10, Article 1177. https://doi.org/10.3390/antiox10081177
|
[34]
|
董佳兴. 葛根芩连汤调节DM大鼠肠道代谢物SCFAs介导GPR43-AMPK通路防治糖尿病肾病的分子机制[D]: [硕士学位论文]. 合肥: 安徽中医药大学, 2023.
|
[35]
|
吕晶, 唐曼曼, 陈长兰. 葛根芩连汤全方和拆方治疗糖尿病及其并发症的研究进展[J]. 辽宁大学学报: 自然科学版, 2022, 49(1): 54-60.
|
[36]
|
杜小梅, 潘薇, 梁颖兰, 等. 参芪地黄汤加减治疗气阴两虚型糖尿病肾病疗效观察及对肠道菌群和炎症因子的影响[J]. 中药新药与临床药理, 2021, 32(4): 566-572.
|
[37]
|
艾珊珊, 崔涛, 周乐, 等. 基于“肠-肾轴”理论探讨益肾化湿颗粒改善糖尿病肾病的临床疗效及作用机制[J]. 南京中医药大学学报, 2022, 38(12): 1103-1109.
|
[38]
|
Rukavina Mikusic, N.L., Kouyoumdzian, N.M. and Choi, M.R. (2020) Gut Microbiota and Chronic Kidney Disease: Evidences and Mechanisms That Mediate a New Communication in the Gastrointestinal-Renal Axis. Pflügers Archiv-European Journal of Physiology, 472, 303-320. https://doi.org/10.1007/s00424-020-02352-x
|
[39]
|
刘双江, 刘宏伟, 汪锴, 等. 狄氏副拟杆菌通过产生琥珀酸和次级胆汁酸减轻肥胖和代谢功能障碍[J]. 科学新闻, 2020(2): 106.
|
[40]
|
王晓丽, 李春霞, 陈倩, 等. 肾炎康复片对糖尿病肾病小鼠粪便中短链脂肪酸的调节作用[J]. 天津中医药, 2021, 38(10): 1324-1329.
|
[41]
|
Chen, Q., Ren, D., Wu, J., Yu, H., Chen, X., Wang, J., et al. (2021) Shenyan Kangfu Tablet Alleviates Diabetic Kidney Disease through Attenuating Inflammation and Modulating the Gut Microbiota. Journal of Natural Medicines, 75, 84-98. https://doi.org/10.1007/s11418-020-01452-3
|
[42]
|
李鑫, 洪素珍, 李宝华, 等. 升清降浊胶囊通过调节肠道菌群对db/db糖尿病肾病小鼠肾脏的保护作用及其机制探讨[J]. 中药新药与临床药理, 2022, 33(6): 742-753.
|
[43]
|
沙琦, 宗音, 赵艳, 等. 黄葵胶囊对糖尿病肾病肠道菌群的影响及机制研究[J]. 中华中医药学刊, 2021, 39(4): 196-199.
|
[44]
|
曾玉群. 大黄及其活性物质灌肠对慢性肾脏病模型大鼠作用的分子机制[D]: [博士学位论文]. 广州: 广州中医药大学, 2017.
|
[45]
|
冯程程, 藏登, 陈茜, 等. 糖肾灌肠方经肠道干预糖尿病肾病小鼠模型的肠道菌群研究[J]. 实用中医内科杂志, 2022(4): 75-79+148-151.
|