[1]
|
Chen, P., Lin, X.H., Yang, B., Gao, Y., Xiao, Y., Li, L., Zhang, H., Li, L., Zheng, Z., Wang, J.Z. and Chou, S.L. (2024) Cellulose Separators for Rechargeable Batteries with High Safety: Advantages, Strategies, and Perspectives. Advanced Functional Materials, 34, Article ID: 202409368. https://doi.org/10.1002/adfm.202409368
|
[2]
|
Zheng, Z.J., Ye, H. and Guo, Z.P. (2025) Bacterial Cellulose Applications in Electrochemical Energy Storage Devices. Advanced Materials, 37, Article ID: 202412908. https://doi.org/10.1002/adma.202412908
|
[3]
|
Zhao, T., Xiao, P.C., Luo, M.L., Nie, S.Q., Li, F.Z. and Liu, Y.J. (2024) Eco-Friendly Lithium Separators: A Frontier Exploration of Cellulose-Based Materials. International Journal of Molecular Sciences, 25, Article ID: 25136822. https://doi.org/10.3390/ijms25136822
|
[4]
|
Farooq, A., Wanyan, H., Lu, S.C., Mosisa, M.T., Zhou, X.X., Xiao, H., Liu, K., Huang, L.L., Chen, L.H. and Wu, H. (2025) A Review on Cellulose-Based Derivatives and Composites for Sustainable Rechargeable Batteries. International Journal of Biological Macromolecules, 308, Article ID: 142528. https://doi.org/10.1016/j.ijbiomac.2025.142528
|
[5]
|
Wang, J. and Miao, Y.E. (2025) Cellulose Nanocrystals-Based Nanocomposites for Sustainable Energy Storage Technologies: From Aligned Microstructures to Tailored Performances. Composites Communications, 54, Article ID: 102258. https://doi.org/10.1016/j.coco.2025.102258
|
[6]
|
Ko, Y.S., Jung, H.Y., Jung, H.W., Ko, S.M., Lee, J.T. and You, J.M. (2025) A New Strategy for Accelerating Redox Kinetics in Lithium-Ion Batteries: Highly Porous Poly(Ethylene Glycol)/Nanocellulose Separators. Carbohydrate Polymers, 356, Article ID: 123372. https://doi.org/10.1016/j.carbpol.2025.123372
|
[7]
|
Hu, Z.J., Liu, Q.X., Zhang, Q.H., Zhang, J.C., Chen, L. and Xu, S.Y. (2024) Facile Fabrication of Regenerated Cellulose-based Separators for High-Performance Lithium-Ion Batteries by Regulating Degrees of Polymerization. International Journal of Biological Macromolecules, 268, Article ID: 131854. https://doi.org/10.1016/j.ijbiomac.2024.131854
|
[8]
|
Li, Z.H., Lu, Z.T., Zhang, T.Y., Qin, B.S., Yan, W., Dong, L., Dong, J., Ma, C.X., Chen, Z.P., Li, W., et al. (2024) Structure Optimization for Cellulose-Based Separator through Fiber Size Regulation for High Performance Lithium Metal Batteries. Batteries & Supercaps, 7, Article ID: 202400435. https://doi.org/10.1002/batt.202400435
|
[9]
|
Song, Y.H., Zhao, G.L., Zhang, S.H., Xie, C., Yang, R.D. and Li, X.F. (2024) Chitosan Nanofiber Paper Used as Separator for High Performance and Sustainable Lithium-Ion Batteries. Carbohydrate Polymers, 329, Article ID: 121530. https://doi.org/10.1016/j.carbpol.2023.121530
|
[10]
|
Lee, C. and Kang, S.W. (2024) Derivation of Porous Cellulose Propionate Using Hydrated Hydroxyl Groups and Hydraulic Pressure. International Journal of Biological Macromolecules, 262, Article ID: 130240. https://doi.org/10.1016/j.ijbiomac.2024.130240
|
[11]
|
Lee, J., Kim, H., Jeong, S., Yang, J., Suhr, J., Jo, J. and Koo, B. (2025) Enhanced Lithium-Ion Battery Separators via Facile Fabrication of Sulfonated Cellulose Nanofiber. Cellulose, 32, 277-294. https://doi.org/10.1007/s10570-024-06274-0
|
[12]
|
Asadnia, M., Sadat-Shojai, M., Moslehi, M. and Hamidi, F. (2024) Zwitterionic Cellulosic Membrane as a New Separator with Enhanced Ionic Conductivity and Performance for Lithium-Ion Batteries. Cellulose, 31, 4395-4407. https://doi.org/10.1007/s10570-024-05903-y
|
[13]
|
Li, Y.H., Jia, S.T., Chen, Z., Li, C.D., Guo, H.F., Zhang, Y.L., Duan, C.J., Lim, K.H., Sunarso, J. and Kawi, S. (2024) Tailoring Amino-Functionalized Cellulose Separators for Improved Lithium-Ion Battery Performance. Journal of Energy Storage, 96, Article ID: 112671. https://doi.org/10.1016/j.est.2024.112671
|
[14]
|
Jia, S.T., Chen, Z., Li, Y.H., Li, C.D., Duan, C.J., Lim, K.H. and Kawi, S. (2024) Construction of Greenly Biodegradable Bacterial Cellulose/UiO-66-NH Composite Separators for Efficient Enhancing Performance of Lithium-Ion Battery. International Journal of Biological Macromolecules, 269, Article ID: 131988. https://doi.org/10.1016/j.ijbiomac.2024.131988
|
[15]
|
Lin, M., Zhang, J.J., Wang, Y.Y., Xiong, Y. and Luo, X.G. (2024) High Ionic-Conductivity of Poly(Vinyl Alcohol)/Cellulose Porous Composite Separators Prepared via Hydrogen-Bond Reconstruction for Lithium Metal Batteries. Acs Applied Polymer Materials, 6, 14853-14861. https://doi.org/10.1021/acsapm.4c03069
|
[16]
|
Das, M., Ghosh, K. and Raja, M.W. (2024) Flexible Ceramic Based ‘Paper Separator’ with Enhanced Safety for High Performance Lithium-Ion Batteries: Probing the Effect of Ceramics Impregnation on Electrochemical Performances. Journal of Power Sources, 606, Article ID: 234573. https://doi.org/10.1016/j.jpowsour.2024.234573
|
[17]
|
He, X.H., Wang, J.R., Zhong, X.Q., Zhang, F.Q., Shao, Z.B. and Wang, Y.Z. (2025) Multifunctional Separators with High Safety and Regulated ion Transport for Lithium-Ion Batteries. Journal of Power Sources, 626, Article ID: 235794. https://doi.org/10.1016/j.jpowsour.2024.235794
|
[18]
|
Yuan, Z.X., Zhang, Y.L., Zhang, H., Zhang, S.J., Wang, D., Zhang, B.T., Zhang, J.J. and Cui, G.L. (2024) Bacterial Cellulose Separator with High Young’s Modulus Effectively Inhibits Lithium Dendrites. Acta Chimica Sinica, 82, 849-855. https://doi.org/10.6023/A24040141
|
[19]
|
Zhu, Z.F., Shi, X.Y., Zhou, J., Li, X.F., Liu, Y., Li, Y.W., Xiong, Y. and Zhu, Y.S. (2024) A Gel Polymer Electrolyte obtained from Cellulose Acetate/Polyvinylidene Fluoride Composite Electrospun Membrane for Safe Lithium Metal Batteries with High-Rate Capability. Polymer, 308, Article ID: 127412. https://doi.org/10.1016/j.polymer.2024.127412
|
[20]
|
Lin, G., Tong, L.F., Zhao, C.X., Wu, Y.P. and Jia, K. (2025) Controlled Phase Separation of Regenerated Cellulose with Super-Engineering Thermoplastics into Porous Membranes with Hierarchical Morphology as High-Performance Separators for Lithium-Ion Batteries. Journal of Membrane Science, 716, Article ID: 123505. https://doi.org/10.1016/j.memsci.2024.123505
|
[21]
|
Zhang, X.Y., Zhang, J.Y., Wang, G., Zhang, C.H., Fan, L.L., Cao, Y.D., Liu, H. and Gao, G.G. (2025) Constructing Dendrite-Suppressing Separators Based on Cellulose Acetate and Polyoxometalates toward Uniform Lithium Electrodeposition. Dalton Transactions, 54, 1665-1676. https://doi.org/10.1039/D4DT03157A
|
[22]
|
Cheng, C., Yang, R.D., Wang, Y., Guo, X.H. and Sheng, J. (2024) Dual-Network Bacterial Cellulose-Based Separators with High Wet Strength and a Dual Ion Transport Mechanism for Uniform Lithium Deposition. Journal of Materials Chemistry A, 13, 730-742. https://doi.org/10.1039/D4TA06151A
|
[23]
|
Zhao, C.Y., Wu, H.Y., Gao, X.J., Cheng, C., Cai, S.P., Yang, X.F. and Sun, R.C. (2025) Separator Engineering: Assisting Lithium Salt Dissociation and Constructing LIF-Rich Solid Electrolyte Interphases for High-Rate Lithium Metal Batteries. Journal of Colloid and Interface Science, 677, 1084-1094. https://doi.org/10.1016/j.jcis.2024.08.151
|
[24]
|
Zhang, Y.X., Cheng, L., Zhu, Y.J., Wu, J., Yu, H.P., Xie, S.D., Li, D.D., Wang, Z.H. and Li, H. (2025) Reversible Li Plating Regulation on Graphite Anode through a Barium Sulfate Nanofibers-Based Dielectric Separator for Fast Charging and High-Safety Lithium-Ion Battery. Journal of Energy Chemistry, 101, 511-523. https://doi.org/10.1016/j.jechem.2024.08.053
|
[25]
|
Qi, X.T., Huang, Z.Q., Zhang, Z., Wei, J.C. and Yang, Z.Y. (2024) Dendrite-Free Lithium Metal Battery Enabled by Mesoporous Silica Host Layer Mediated Cellulose/PVDF Janus Separator. Journal of Colloid and Interface Science, 663, 716-724. https://doi.org/10.1016/j.jcis.2024.02.188
|
[26]
|
Choi, H.J., Kim, J.W., Bae, H., Kim, J. and Kim, D.W. (2024) Lithiophilic Protective Dual Layer Enabling Stable Electrodeposition of Lithium at High Current Density. Journal of the Electrochemical Society, 171, Article ID: 100521. https://doi.org/10.1149/1945-7111/ad8482
|
[27]
|
Li, Z.H., Qian, P.S., Li, H.Y., Xiao, H., Chen, J. and Li, G.R. (2024) Phosphorylated Cellulose Nanofibers Establishing Reliable Ion-Sieving Barriers for Durable Lithium-Sulfur Batteries. Journal of Energy Chemistry, 92, 619-628. https://doi.org/10.1016/j.jechem.2024.02.002
|
[28]
|
Guo, H.N., Dong, W.X., Fang, Z.Y., Hu, L., Chen, J.W. and Chen, L.F. (2025) Nitrogen-Doped Graphene/Cellulose Fibers Double-Coated Asymmetric Separator for High-Performance Lithium-Sulfur Batteries. Advanced Sustainable Systems, 9, Article ID: 202401047. https://doi.org/10.1002/adsu.202401047
|
[29]
|
Ji, C.H., Wu, S.L., Tang, F., Yu, Y.T., Hung, F.L. and Wei, Q.F. (2024) Cationic Cellulose Nanofiber Solid Electrolytes: A Pathway to High Lithium-Ion Migration and Polysulfide Adsorption for Lithium-Sulfur Batteries. Carbohydrate Polymers, 335, Article ID: 122075. https://doi.org/10.1016/j.carbpol.2024.122075
|
[30]
|
Zhang, M.S., Wu, L.M., Zhu, B. and Liu, Y.G. (2024) Performance Enhancement of Lithium-Metal Batteries Using the Three-Dimensional Porous Network Structure a Metal-Organic Framework-Aramid Cellulose-MXene Composite Separator. International Journal of Hydrogen Energy, 59, 263-271. https://doi.org/10.1016/j.ijhydene.2024.01.283
|
[31]
|
Cheng, C., Wu, H.Y., Chen, X.Y., Cai, S.P., Tian, Y.K., Yang, X.F. and Gao, X.J. (2024) ZIF-67-Derived Flexible Sulfur Cathode with Improved Redox Kinetics for High-Performance Li-S Batteries. Molecules, 29, Article ID: 29081833. https://doi.org/10.3390/molecules29081833
|
[32]
|
Mao, H., Da, X., Shen, H., Zhao, W.S., Li, X.Y., Su, Y.Q., Ding, S.J. and Yu, W. (2024) Cellulose-Based Separator Woven by Double-Layer-Configuration Fibers for High S-Load Li-S Batteries. Electrochimica Acta, 492, Article ID: 144363. https://doi.org/10.1016/j.electacta.2024.144363
|