E2F转录因子5在食管腺癌中高表达
High Expression of E2F Transcription Factor 5 in Esophageal Adenocarcinoma
DOI: 10.12677/acm.2025.1582324, PDF, HTML, XML,    科研立项经费支持
作者: 陈 瑜, 陈吉添, 黄 怡, 劳燕燕:广西钦州市灵山县人民医院病理科,广西 钦州;吴科俊:广西医科大学第一附属医院病理科,广西 南宁;董伊禹, 莫弘博, 陈国强, 宁彦焜, 李 蓉*:广西医科大学第一附属医院肿瘤内科,广西 南宁
关键词: 食管腺癌E2F5CRISPR-Cas9免疫微环境轴突导向Esophageal Adenocarcinoma E2F5 CRISPR-Cas9 Immune Microenvironment Axon Guidance
摘要: 背景:E2F转录因子5 (E2F Transcription Factor 5, E2F5)在多种肿瘤中表达异常升高且与肿瘤进展密切相关,然而其在食管腺癌(Esophageal Adenocarcinoma, EAC)中mRNA表达水平的变化及其对肿瘤细胞增殖、免疫微环境的影响尚未被系统研究。目的:探究E2F5在EAC中mRNA水平表达特征及敲除E2F5对EAC细胞增殖的影响。方法:在mRNA层面,通过整合来自基因表达综合数据库(Gene Expression Omnibus, GEO)和癌症基因组图谱(The Cancer Genome Atlas, TCGA)等公共数据库中EAC和非EAC样本的芯片及RNA测序数据,采用标准化均数差(Standard Mean Difference, SMD)进行分析。在细胞水平,基于依赖性图谱(Dependency Map, DEPMap)数据库中CRISPR-Cas9敲除筛选数据,评估E2F5对EAC细胞增殖的影响。通过单样本基因集富集分析(Single Sample Gene Set Enrichment Analysis, ssGSEA)评估E2F5表达与免疫细胞浸润的相关性,并对E2F5高低表达共调控基因进行KEGG和GO富集分析。结果:共纳入EAC样本322例,非EAC对照组样本551例。E2F5 mRNA在EAC中显著上调,SMD为1.02 (95% CI [0.24; 1.79])。分析CRISPR敲除筛选结果相关数据证实E2F5是EAC细胞增殖的关键调控因子,其中SH10TC细胞系对E2F5依赖性较强(SCORE < 0)。免疫浸润分析表明,Th2细胞和辅助T细胞与E2F5表达呈显著正相关(R > 0.2, P < 0.05),而大多数其他免疫细胞浸润与E2F5高表达呈负相关。功能富集分析显示,E2F5在EAC中主要参与细胞周期和蛋白质加工等过程;而MAPK、Ras、Hippo、mTOR等信号通路及轴突导向与表皮发育等功能被显著富集。结论:本研究揭示了E2F5作为EAC潜在生物标志物和治疗靶点的价值,为深入研究EAC的发病机制提供重要的理论依据。
Abstract: Background: E2F Transcription Factor 5 (E2F5) exhibits abnormally elevated expression in multiple tumors and is closely associated with tumor progression. However, the changes in mRNA expression in Esophageal Adenocarcinoma (EAC) and its effects on tumor cell proliferation and immune microenvironment have not been systematically studied. Objective: To investigate the mRNA level expression characteristics of E2F5 in EAC and the effect of knockdown of E2F5 on EAC cell proliferation. Methods: At the mRNA level, integrated microarray and RNA sequencing data from EAC and non-EAC samples were obtained from public databases, including Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). And the Standardized Mean Difference (SMD) was employed for analysis. At the cellular level, the effect of E2F5 on the proliferation of EAC cells was assessed based on CRISPR-Cas9 knockdown screening data from the Dependency Map (DEPMap) database. The correlation between E2F5 expression and immune cell infiltration was assessed using Single Sample Gene Set Enrichment Analysis (ssGSEA). KEGG and GO enrichment analyses were performed on co-regulated genes by high and low E2F5 expression. Results: A total of 322 EAC samples and 551 non-EAC control samples were included. E2F5 mRNA was significantly upregulated in EAC, with an SMD of 1.02 (95% CI [0.24; 1.79]). Analysis of CRISPR knockout screening data confirmed that E2F5 is a key regulator of EAC cell proliferation, with the SH10TC cell line showing strong dependency on E2F5 (SCORE < 0). Immune infiltration analysis revealed that Th2 cells and helper T cells showed a significant positive correlation with E2F5 expression (R > 0.2, P < 0.05), whereas most other immune cell infiltrations were negatively correlated with high E2F5 expression. Functional enrichment analysis showed that E2F5 was primarily involved in cell cycle and protein processing in EAC, and was significantly enriched in signaling pathways such as MAPK, Ras, Hippo, and mTOR, as well as functions like axon guidance and epidermal development. Conclusion: This study reveals the value of E2F5 as a potential biomarker and therapeutic target of EAC, providing an important theoretical basis for in-depth research of the pathogenesis of EAC.
文章引用:陈瑜, 吴科俊, 董伊禹, 莫弘博, 陈国强, 宁彦焜, 陈吉添, 黄怡, 劳燕燕, 李蓉. E2F转录因子5在食管腺癌中高表达[J]. 临床医学进展, 2025, 15(8): 978-991. https://doi.org/10.12677/acm.2025.1582324

1. 引言

据美国癌症协会在2025年发布的癌症统计数据,食管癌患者的生存率较低,且预后管理表现较差[1]。中国新发布的2022年癌症数据统计显示,虽然食管癌发病率呈下降趋势,但依然占据男性癌症死亡原因的前五位[2]。食管腺癌EAC属于食管癌的主要亚型之一,主要由胃食管反流、肥胖以及不良生活习惯等因素诱发,且发病不易觉察。目前,EAC的治疗仍以手术切除、化学疗法为主,但术后并发症影响长期死亡率,且放化疗手段不适于高危肿瘤患者[3]。即使已有研究提出通过数字手段和计算机技术加强对早期EAC的筛查,开发用于预测EAC的工具以改善患者健康,但此类模型仍面临着实施上的挑战[4] [5]

E2F5属于E2F转录因子家族,是被确定的8个具有转录活性成分的人类基因之一[6]。作为细胞周期G0/G1期的调节因子,E2F5与肿瘤抑制蛋白p130和p107相互作用,以一系列机制增强细胞增殖,影响肿瘤进展。已明确E2F5表达上调借助潜在机制影响胃癌、胆囊癌、肝细胞癌、卵巢癌、胰腺癌[7]-[11]等的恶性发生。目前仅1篇文献报道上调的E2F5参与EAC肿瘤免疫表型的关键过程,并与细胞周期和较高的风险评分相关,但仍缺乏针对于EAC中E2F5差异表达的研究,E2F5表达作用于EAC的机制与过程尚不明确[12]。因此,有必要对E2F5在EAC中的表达及影响进行深入发掘研究。

本文将目光聚焦于EAC中E2F5的相关研究。首先通过整合全球公共数据库获取大量EAC样本并综合分析E2F5表达情况确定E2F5在EAC中的显著高表达。后基于DEPMap数据库中CRISPR-Cas9筛选结果分析EAC细胞系,评估E2F5敲低对EAC细胞系增殖的影响。其次,探索E2F5与EAC的高、低共表达基因内在的关系,以免疫浸润分析确认E2F5在EAC免疫微环境中的作用,后对共表达基因进行KEGG和GO富集分析,挖掘影响EAC的相关通路,多方位研究EAC中E2F5上调的影响。

2. 材料与方法

2.1. 分析确认EAC中E2F5的转录组学和细胞表达

2.1.1. 全球公共数据库获取相关EAC相关E2F5的mRNA数据集

为了解E2F5在EAC和非EAC中的表达,在基因表达综合数据库(Gene Expression Omnibu, GEO)、阵列表达数据库(Array Express)、癌症基因组图谱(The Cancer Genome Atlas, TGCA)、基因型–组织表达数据库(Genotype-Tissue Expression, GTEx)、序列读取档案库(Sequence Read Archive, SRA)检索EAC相关表达数据并纳入,纳入标准如下:1) 样本类型为智人;2) 实验组包含EAC患者样本,对照组包含非EAC患者样本;3) 样本量至少为三个。排除标准如下:1) 数据不相关;2) 样本缺乏关于E2F5的记录。经过筛选最终获得7个有效数据集。为保证分析真实有效,将收集到的数据进行预处理:提取数据整理成表达矩阵和样本信息,将探针ID转换为基因符号,对数据进行log2(x + 1)转换以标准化,并进行清理。

2.1.2. EAC中E2F5的表达以及CRISPR-Cas9敲除E2F5对细胞生长的影响

基于DEPMap数据库[13],评估E2F5在不同EAC细胞系中的表达水平以及CRISPR抑制效应。DEPMap数据库提供了丰富的肿瘤细胞系基因表达、突变和CRISPR抑制数据,为研究人员分析特定基因在不同细胞系中的功能提供了高通量数据支持。筛选出CRISPR-Cas9技术敲低E2F5的EAC表达相关细胞系数据,以算法计算基因依赖性评分,系统评估E2F5对细胞系生长的作用。本研究通过气泡图展示了不同EAC细胞系中E2F5的表达差异。

2.1.3. E2F5在EAC中免疫层次的分析

从大型的癌症基因组学数据库TGCA中获取EAC样本数据,TCGA-ESAD是TCGA数据库中EAC的数据集。RNA测序(RNA Sequencing, RNAseq)是一种高通量测序技术,用于分析细胞或组织中的RNA表达谱,借助参考基因组剪接转录本比对软件(Spliced Transcripts Alignment to a Reference, STAR)分析EAC样本的基因表达差异,每百万转录本(Transcripts Per Million, TPM)标准化基因表达数据分析RNAsq数据中基因相对表达水平。过滤去除数据集中正常样本和无临床信息的样本,log2处理减少数据分布的偏斜性,使得数据更符合正态分布,便于后续的统计分析。

基于R包GSVA (1.46.0)中提供的ssGSEA算法[14],根据已标准化整合的数据分析E2F5在EAC中的免疫表达,通过ESTIMATE算法评分计算,评估EAC样本中基质细胞和免疫细胞浸润程度,在E2F5与免疫细胞的差异表达中挖掘E2F5在免疫环境中对EAC的作用。

2.2. E2F5在EAC中的潜在作用

KEGG是整合基因组、化学和系统功能信息的综合性数据库,提供分子相互作用网络图以系统解析基因与基因组的功能;GO提供生物过程(Biological Process, BP)、分子功能(Molecular Function, MF)和细胞组分(Cellular Component, CC)描述基因和蛋白质功能的标准化分类,注释基因和蛋白质的功能。为了在EAC样本中鉴定出过表达和负表达基因,设定标准如下:1) 该基因必须出现在至少3项独立研究中;2) 95%CI不能包含零。对于与E2F5共表达的基因,采用斯皮尔曼相关性分析,标准如下:1) 共表达现象必须在至少10项研究中被观察到;2) 斯皮尔曼相关系数r ≥ 0.30为正相关(负相关r ≤ −0.3);3) 显著性水平(p值) < 0.05。随后,这些EAC中的过表达基因与E2F5共表达的基因取交集。R语言环境下借助clusterProfiler包对共表达基因进行KEGG与GO富集分析,探索EAC中E2F5与其高、低共表达基因作用网络中潜在的机制,以进一步评估E2F5表达对EAC进展的影响。

2.3. 统计分析

对本文所用多数据库获取并整理后的表达谱,借助R包metafor计算SMD,rma函数用于拟合固定效应和随机效应模型,计算I2τ2以评估数据集的异质性。最后用forest函数绘制森林图整理数据与分析结果,展示E2F5在EAC中的表达效果。另外,辅以漏斗图对称分析和回归图Begg’s检验,分别直观、精准量化分析统计检验结果,以更全面的方式评估数据的发表偏倚(p ≥ 0.05提示结果不具有显著的发表偏倚)。

R软件中pROC包构建样本受试者工作特征曲线(Receiver Operating Characteristic, ROC)后,计算阈值下的敏感性和特异性。mada包拟合sROC,以AUC进一步评估,若AUC值在0.5~1之间,表示模型具有良好的分类能力。

3. 结果

3.1. EAC中E2F5呈现高表达

3.1.1. E2F5在EAC中高表达

Figure 1. Flowchart for screening inclusion of relevant E2F5 mRNA data in the EAC

1. EAC中相关E2F5 mRNA数据筛选纳入流程图

Figure 2. Comprehensive analysis of E2F5 expression differences in EAC: (A) Summary and forest plot of E2F5 expression SMD in EAC; (B) Funnel plot; (C) Regression plot Begg’s test for publication bias

2. 综合分析EAC中E2F5的表达差异:(A) EAC中E2F5表达SMD汇总及森林图;(B) 漏斗图;(C) 回归图Begg’s检验发表偏倚

Figure 3. Expression ability of E2F5 in EAC: (A) sROC curve assessment; (B) Total sensitivity (Summary) was 0.69; (C) Total specificity (Summary) was 0.72

3. E2F5在EAC中的表达能力:(A) sROC曲线评估;(B) 总敏感性(Summary)为0.69;(C) 总特异性(Summary)为0.72

EAC相关mRNA数据集筛选过程的流程图如图1所示。通过筛选来自公共数据库GEO、ArrayExpress、TGCA、GTEx、SRA的数据集,最终获得7个数据集(GPL10558、GPL17692、GPL6244、GPL96、GSE13898、GSE28302、TGCA_GTEx)用于进一步综合分析。详细信息包括样本数量、均值、标准差、权重,共纳入EAC样本322例,非EAC对照组样本551例(合n = 873),与森林图整合显示如下,可见E2F5在EAC和非EAC样本中存在较显著的差距,即E2F5在EAC样本中高表达,SMD为1.02,95% CI [0.24; 1.79] (图2(A))。此外,漏斗图直观显示(图2(B))及Begg’s图的分析(图2(C): p = 0.851)表明以上整合不存在发表偏倚。图3(A)显示sROC的AUC = 0.85 [0.82~0.88],且敏感性0.70 [0.56~0.81],特异性[0.73~0.94],各个数据集样本的敏感性0.69 (95%CI)和特异性0.72 (95%CI) (图3(B)图3(C))。

3.1.2. CRISPR-Cas9敲低E2F5对EAC细胞生长的影响

获取DEPMap中经CRISPR-Cas9技术敲除筛选E2F5成分的6个细胞系(IS076A、MKN45、SNU601、SH10TC、SNU1、SNU5),并以算法评估技术处理后EAC细胞的生长状况,并再次检测E2F5表达情况。CRISPR-Cas9处理E2F5导致EAC细胞系表达水平显著下调,即抑制分数均评估为负值(图4(A)图4(B))。其中SH10TC细胞系处理后抑制表现突出,表明此细胞系的增殖生长对E2F5有较高的依赖性;尽管仍存在相对较高的E2F5表达,细胞系SNU5抑制分数 < −0.100且结果显著,这表明E2F5作为EAC生长调控复杂网络的组分之一。总而言之,敲低E2F5后EAC细胞整体活力明显下降,可认为E2F5是影响EAC细胞生长的重要基因。

Figure 4. Results of analyzing data related to E2F5 knockdown in EAC by CRISPR-Cas9 technology: (A) Results of inhibition score assessment in EAC cell lines after CRISPR knockdown of E2F5; (B) E2F5 expression in EAC cell lines

4. 分析CRISPR-Cas9技术敲除EAC中E2F5相关数据结果:(A) CRISPR敲除E2F5后EAC细胞系抑制分数评估结果;(B) EAC细胞系中E2F5表达情况

3.1.3. 高表达E2F5与EAC中免疫细胞浸润的关系

ssGSEA方法评估不同免疫细胞的浸润程度,并将EAC与E2F5的免疫浸润相关分析结果进行可视化转换,结果呈现如图5所示。据相关性分析结果可知,EAC免疫环境中各类免疫细胞大部分与E2F5表达呈负相关且表现出较高的显著性(图5(A): R < 0, P: 0.2~0.3),但在不同类型免疫细胞中显著性存在波动:大部分免疫细胞如抗原呈递细胞、DC细胞、iDC细胞和肥大细胞负相关(图5(A): P: −0.4~−0.2),仅Th2细胞、辅助T细胞与E2F5表达呈高正相关(图5(A): R > 0)且显著性较高,暗示E2F5在EAC免疫环境中较为敏感,这有助于理解E2F5在肿瘤免疫微环境中的潜在机制。

根据数据中患者E2F5表达量中位数分为高表达组和低表达组,进一步富集分析EAC免疫环境中各类免疫细胞中E2F5的表达分布,以箱线图呈现如下。EAC环境中大部分免疫细胞富集评分在0.2~0.6之间,且除分布较广的TReg细胞和分布较窄的Th17细胞外,高表达E2F5样品中的富集评分低于低表达样品,整体差异不明显;另外,辅助T细胞、CD8T细胞的E2F5高低表达富集评分高于0.6 (图5(C))。进一步利用ESTIMATE方法计算比较了不同E2F5表达水平下的StromalScore、ImmuneScore和ESTIMATE Score (图5(B)图5(D)),结果均显示不同程度的负相关。综上,可认为E2F5表达上调抑制EAC环境下免疫细胞富集与表达效果,同时表明E2F5可能抑制EAC免疫活性以干扰免疫微环境的功能。

Figure 5. Results related to E2F5 immune infiltration in EAC: (A) Relationship between E2F5 and each immune cell in the EAC immune milieu; (B) Correlation of E2F5 gene expression with different immune infiltration scores; (C) Box line plot analysis of the distribution of E2F5 gene expression in different immune cell types; (D) Differences in the distribution of three immune infiltration scores of E2F5 gene in high and low expression groups

5. EAC中E2F5免疫浸润相关结果:(A) E2F5与EAC免疫环境中各免疫细胞的关系;(B) E2F5基因表达与不同免疫浸润评分的相关性;(C) 箱线图分析不同免疫细胞类型中E2F5基因的表达分布;(D) E2F5基因在高低表达组中三种免疫浸润评分的分布差异

3.2. E2F5在EAC中的潜在致病机制

为深入探究E2F5在EAC中的潜在作用机制,我们对获取的数据进行了系统分析。将EAC中E2F5高表达共调控基因以及EAC中低表达基因与E2F5共表达基因的交集分别在R语言环境下进行KEGG富集分析,并将结果可视化为条形图。

Figure 6. KEGG pathway enrichment of E2F5 overexpression-related genes in EAC: (A) (B) Pathway enrichment of positively related genes co-expressed with E2F5 in EAC

6. EAC中E2F5过表达相关基因的KEGG通路富集:(A) (B) EAC中与E2F5共表达的正相关基因通路富集

Figure 7. KEGG pathway enrichment of E2F5 overexpression-related genes in EAC: (A) (B) Pathway enrichment of negatively related genes co-expressed with E2F5 in EAC

7. EAC中E2F5过表达相关基因的KEGG通路富集:(A) (B) EAC中与E2F5共表达的负相关基因通路富集

KEGG富集分析结果显示,在E2F5正相关基因中(图6),细胞周期、内质网中蛋白质加工及核质转运相关通路被显著富集。值得注意的是,图6(A)中肌萎缩侧索硬化症相关通路和图6(B)中病毒颗粒–乙型肝炎病毒相关通路的富集也为我们之前对EAC与E2F5免疫浸润分析的结论提供了佐证。对于E2F5负相关基因的分析(图7)则揭示了多条细胞间信号转导通路的显著富集,包括MAPK、Ras、Hippo和mTOR信号通路。这表明E2F5可能通过下调这些关键信号通路的活性影响EAC细胞的增殖和生长,进而促进肿瘤扩散和恶化。此外,轴突导向、内吞作用和多种代谢相关通路(如脂肪酸降解、β-丙氨酸代谢和花生四烯酸代谢)也与E2F5低表达基因密切相关,初步展示了EAC中E2F5相关的复杂调控网络。

Figure 8. GO enrichment analysis of positively related genes co-expressed with E2F5 in EAC

8. GO富集分析EAC中与E2F5共表达的正相关基因

为进一步全面了解E2F5在EAC中的功能,我们还对相关基因集进行了GO富集分析。对E2F5正相关基因的GO分析(图8)表明,E2F5与EAC细胞有丝分裂过程显著相关,尤其在染色体分离过程中发挥重要作用。在分子功能方面,E2F5可能通过影响ATP水解酶、DNA解旋酶等酶活性以及有机阴离子跨膜转运活性,参与DNA复制、修复和代谢过程,从而调控细胞周期进程。细胞组分分析则显示纺锤体、染色体区域等与细胞分裂、染色体结构和细胞膜相关的结构被显著富集,进一步支持E2F5在EAC细胞分裂过程中的关键作用。

Figure 9. GO enrichment analysis of negatively related genes co-expressed with E2F5 in EAC

9. GO富集分析EAC中与E2F5共表达的负相关基因

对于E2F5负相关基因的GO分析(图9),生物过程分析显示表皮发育、皮肤发育和上皮细胞分化等通路被显著富集;分子功能分析表明肌钙蛋白、肌动蛋白黏合等与细胞粘附和细胞骨架结构相关的功能受到影响;细胞组分分析则证实这些基因在细胞结构、细胞连接和细胞运动方面存在紧密联系。这些结果共同表明,E2F5在调控EAC细胞的增殖、分化和迁移过程中可能发挥多方面的重要作用。

4. 讨论

本研究基于多公共数据库的873个样本,揭示E2F5在EAC中显著上调。分析DEPMap数据库中CRISPR-Cas9筛选结果,发现抑制E2F5表达导致细胞增殖活性显著下降。此外,由通路富集分析揭示E2F5在EAC中的潜在调控机制,借助免疫浸润分析进一步阐明E2F5对EAC肿瘤微环境的影响,为深入理解E2F5在EAC发生发展中的关键作用提供重要依据。

我们证实E2F5在EAC中的高表达促进其进展,且目前研究表明E2F5的高表达与多种腺癌具有显著相关性。前列腺癌阳性组织中观察到E2F5的高表达与较高Gleason评分和较高的患者生化复发风险相关,即与前列腺癌的恶性进展相关[15] [16],且E2F5表达敲低会抑制三阴性乳腺癌细胞增殖[17]。另外,在食管鳞癌中E2F5的过表达常与患者较差的预后状况对应[18],靶向E2F5表达下调则抑制口腔鳞癌细胞迁移[19],以上证据均提示E2F5表达上调与疾病的恶性进展相关。然而在高级别胶质瘤中,其分级进展中并未检测到E2F5表达显著上调,但E2F5仍与患者预后较差显著相关,这可能与E2F家族成员不同的功能以及胶质瘤特点相关[20]

E2F5作为E2F家族成员中的经典阻遏蛋白,其特殊的核输出序列能与转录因子二聚化伴侣家族成员结合,形成转录抑制复合物DREAM并将细胞周期维持在G0期,同时影响衰老表型[21] [22]。当复合物解离则E2F5激活下游基因转录,包括增强多纤毛细胞的转录程序,且此过程涉及中心粒扩增与细胞骨架重塑[23] [24]。而EAC中上皮细胞发育和分化显示与E2F5的负相关基因关联,我们基于E2F家族“阈值模型”和DREAM复合物在衰老细胞非致瘤永生化的双重作用推测[6] [25],认为这些基因的下调可能是一种代偿,其通过抑制上皮细胞的过度发育和分化,从而在短期抑制癌细胞的扩散。

目前EAC发病率正在迅速增加且尤其发生在男性以及西方国家中,基于TGCA等提供的综合EAC基因组有助于识别潜在机制与新靶标以改善EAC治疗手段[26] [27]。此前Pflug等人也曾在研究中表明,E2F5对NF-κB诱导激酶的转录诱导促进GBM细胞集体侵袭,且该通路在EAC中也被报道,即E2F5在二者之间或有重叠的作用机制[28] [29]。而基质细胞蛋白CCN1在EAC中的表达导致肿瘤坏死超家族TRAIL/DR5介导的凋亡细胞死亡,同时使NF-κB信号转导减弱而抑制细胞生长,展示出与EAC中E2F5相反的作用结果[30]。由PI3K/AKT/mTOR等通路失调可识别EAC的前兆巴雷特食管[31],其中mTOR信号通路在EAC中E2F5负相关基因的通路富集中被提及。此外,基于蛋白质组学分析发现蔓越莓原花青素可逆转食管反流诱导的蛋白质改变,且基因富集分析显示剪接体、代谢通路和IL-17信号传导与逆转直接相关,同时涉及与氧化磷酸化、肌生成、脂肪生成、MYC靶标和P53相关标志物的削弱[32]。而我们的富集结果显示,EAC中E2F5低表达基因与轴突导向和包括脂肪酸降解等在内的代谢通路相关,以上表明E2F5在EAC中的表达或与巴雷特食管产生关联,且蔓越莓原花青素可能参与E2F5作用于EAC的下游环节的调控。目前仅确定E2F家族中转录激活因子E2F1的过表达与巴雷特食管腺癌的增殖程度下降与预后改善有关[33],而暂无相关E2F5的研究,此外考虑到E2F5与E2F1相反的作用结果,或可认为E2F5过表达将导致巴雷特食管的恶性增殖与不良预后,但仍需要进一步验证巴雷特食管组织中E2F5的表达、功能和其中的因果关系以明确其合理性。

从胃食管反流病向巴雷特食管、EAC的进展显示免疫细胞在其中的因果关系,即随着疾病进展到EAC,免疫细胞的功能发生转变,开始营造一个支持肿瘤进展而非预防的环境[34]。目前已证明,E2F5的过表达使得CD8+ T细胞毒性下降,从而引发肿瘤组织中免疫逃逸等异常现象[8]。EAC泛凋亡相关基因的综合研究中免疫浸润分析表明,EAC高危人群与Th1和Th2细胞相关的细胞周期和通路、肿瘤抗原释放和免疫细胞浸润到肿瘤中,E2F5作为高风险基因与其关联[12]。另外,有研究认为,由于TReg细胞对促肿瘤的Th17淋巴细胞具有抑制作用,在EAC免疫微环境中有良好的预后相关[35]。而EAC中高表达E2F5的免疫浸润结果显示,TReg细胞、Th17细胞均呈负表达但分布范围较广,一方面展示肿瘤异质性,一方面表明E2F5的高表达可能破坏TReg细胞与Th17细胞之间的平衡而使得EAC恶化。目前VIMP被确定为是通过E2F5转录调节通路在CD4+ T细胞产生细胞因子的一种蛋白,其作为内源性抑制剂和疾病治疗靶点,以逆转免疫浸润模式的可能而具有EAC治疗开发的潜力[36]

集中在ncRNA的研究报道microRNA、长链非编码RNA及环状RNA通过调节Wnt/β-catenin等关键信号通路与EAC进展关联,ncRNA在生物体液中稳定的特性使其有作为早期检测和监测EAC的非侵入性生物标志物的潜力[29]。近来发现多种miRNAs通过靶向E2F5来影响肿瘤细胞的增殖、凋亡、迁移、侵袭和耐药,但暂无相关E2F5与EAC中miRNAs间关系的研究[37]。此外,EAC中的微生物菌群失调与DNA甲基化状态相关且涉及从巴雷特食管发展到EAC的过程[38],而E2F5靶向焦虑相关miRNA与MAPK的通路[39] MAPK同样与EAC中高表达的E2F5存在关联,基于对肠–脑–微生物轴的认知,有可能进一步挖掘EAC患者脑转移的原因[40] [41]

5. 结论

本研究通过多角度多组学的系统整合分析,首次初步地明确了EAC中高表达E2F5与疾病、免疫环境和潜在机制的关联,为理解EAC的发展过程提供了新视角,表明E2F5在EAC中具有显著转化医学潜力,为进一步研究提供重要的科学依据。未来研究可进一步探讨E2F5在巴雷特食管向EAC进展中的机制与关键信号通路的相互作用,完善EAC中高表达E2F5在ncRNA层次的研究并探索其中关联,以期开发基于ncRNA的早期检测和监测EAC的非侵入性生物标志物。

致 谢

感谢本研究各个公共数据平台。

基金项目

广西壮族自治区卫生健康委员会科研课题(编号:Z-A20230472);钦州市科学研究与技术开发计划项目(20223056)。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H. and Jemal, A. (2025) Cancer Statistics, 2025. CA: A Cancer Journal for Clinicians, 75, 10-45.
https://doi.org/10.3322/caac.21871
[2] Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53.
https://doi.org/10.1016/j.jncc.2024.01.006
[3] Joseph, A., Raja, S., Kamath, S., Jang, S., Allende, D., McNamara, M., et al. (2022) Esophageal Adenocarcinoma: A Dire Need for Early Detection and Treatment. Cleveland Clinic Journal of Medicine, 89, 269-279.
https://doi.org/10.3949/ccjm.89a.21053
[4] Kunzmann, A.T. and Rubenstein, J.H. (2023) Identifying Individuals at Risk of Esophageal Adenocarcinoma: Challenges, Existing Tools and Future Steps. Current Opinion in Gastroenterology, 39, 320-325.
https://doi.org/10.1097/mog.0000000000000938
[5] Alderete, I.S., Nakata, K. and Hartwig, M.G. (2023) Esophageal Adenocarcinoma: One Size Might Not Fit All. The Annals of Thoracic Surgery, 116, 578-579.
https://doi.org/10.1016/j.athoracsur.2023.04.003
[6] Trimarchi, J.M. and Lees, J.A. (2002) Sibling Rivalry in the E2F Family. Nature Reviews Molecular Cell Biology, 3, 11-20.
https://doi.org/10.1038/nrm714
[7] Li, L., Liu, J. and Huang, W. (2022) E2F5 Promotes Proliferation and Invasion of Gastric Cancer through Directly Upregulating UBE2T Transcription. Digestive and Liver Disease, 54, 937-945.
https://doi.org/10.1016/j.dld.2021.09.003
[8] Chen, L., Guo, S., Zhang, D., Li, X. and Chen, J. (2023) E2F5 Targeted by Let-7d-5p Facilitates Cell Proliferation, Metastasis and Immune Escape in Gallbladder Cancer. Digestive Diseases and Sciences, 69, 463-475.
https://doi.org/10.1007/s10620-023-08209-4
[9] Sheng, J., Luo, Y., Lv, E., Liang, H., Tao, H., Yu, C., et al. (2023) LINC01980 Induced by TGF-Beta Promotes Hepatocellular Carcinoma Metastasis via miR-376b-5p/E2F5 Axis. Cellular Signalling, 112, Article ID: 110923.
https://doi.org/10.1016/j.cellsig.2023.110923
[10] Malgundkar, S.H., Burney, I., Al Moundhri, M., Al Kalbani, M., Lakhtakia, R., Okamoto, A., et al. (2021) E2F5 Promotes the Malignancy of Ovarian Cancer via the Regulation of Hippo and Wnt Pathways. Genetic Testing and Molecular Biomarkers, 25, 179-186.
https://doi.org/10.1089/gtmb.2020.0166
[11] Tang, Y., Gao, G., Xia, W. and Wang, J. (2022) METTL3 Promotes the Growth and Metastasis of Pancreatic Cancer by Regulating the m6A Modification and Stability of E2F5. Cellular Signalling, 99, Article ID: 110440.
https://doi.org/10.1016/j.cellsig.2022.110440
[12] Fu, H., Liu, M., Li, H., Yu, L., Song, H., Chu, X., et al. (2025) Deciphering the Prognostic Landscape of Esophageal Adenocarcinoma: A PANoptosis-Related Gene Signature. Journal of Cancer, 16, 183-200.
https://doi.org/10.7150/jca.102180
[13] Sannigrahi, M.K., Cao, A.C., Rajagopalan, P., Sun, L., Brody, R.M., Raghav, L., et al. (2023) A Novel Pipeline for Prioritizing Cancer Type‐Specific Therapeutic Vulnerabilities Using DepMap Identifies PAK2 as a Target in Head and Neck Squamous Cell Carcinomas. Molecular Oncology, 18, 336-349.
https://doi.org/10.1002/1878-0261.13558
[14] Hänzelmann, S., Castelo, R. and Guinney, J. (2013) GSVA: Gene Set Variation Analysis for Microarray and RNA-Seq Data. BMC Bioinformatics, 14, Article No. 7.
https://doi.org/10.1186/1471-2105-14-7
[15] Han, Z., Mo, R., Cai, S., Feng, Y., Tang, Z., Ye, J., et al. (2022) Differential Expression of E2F Transcription Factors and Their Functional and Prognostic Roles in Human Prostate Cancer. Frontiers in Cell and Developmental Biology, 10, Article 831329.
https://doi.org/10.3389/fcell.2022.831329
[16] Wang, Y., Hu, H., Liu, H., Zhou, D., Zhang, Y., Li, L., et al. (2024) Study of the Role of E2F1 and TMEM132A in Prostate Cancer Development. Frontiers in Bioscience-Landmark, 29, Article 360.
https://doi.org/10.31083/j.fbl2910360
[17] Inagaki, Y., Wu, D., Fujiwara, K., Ishizuka, Y., Oguni, A., Tokunaga, T., et al. (2020) Knockdown of E2F5 Induces Cell Death via the Tp53-Dependent Pathway in Breast Cancer Cells Carrying Wild-Type Tp53. Oncology Reports, 44, 2241-2252.
https://doi.org/10.3892/or.2020.7761
[18] Yu, Y., Jin, B., Jia, R., Shi, L., Chen, Y., Ge, J., et al. (2024) Exosomes Loaded with the Anti-Cancer Molecule miR-1-3p Inhibit Intrapulmonary Colonization and Growth of Human Esophageal Squamous Carcinoma Cells. Journal of Translational Medicine, 22, Article No. 1166.
https://doi.org/10.1186/s12967-024-05997-9
[19] Wang, Z., Zhang, H., Li, F. and Huang, C. (2024) Knockdown of RNA-Binding Protein IMP3 Suppresses Oral Squamous Cell Carcinoma Proliferation by Destabilizing E2F5 Transcript. Aging, 16, 1897-1910.
https://doi.org/10.18632/aging.205466
[20] Yu, H., Li, Z. and Wang, M. (2020) Expression and Prognostic Role of E2F Transcription Factors in High‐Grade Glioma. CNS Neuroscience & Therapeutics, 26, 741-753.
https://doi.org/10.1111/cns.13295
[21] Hwang, Y. and Kim, M.J. (2025) Emerging Role of the DREAM Complex in Cancer and Therapeutic Opportunities. International Journal of Molecular Sciences, 26, Article No. 322.
https://doi.org/10.3390/ijms26010322
[22] Schmidt, A., Allmann, S., Schwarzenbach, C., Snyder, P., Chen, J., Nagel, G., et al. (2024) The p21CIP1-CDK4-DREAM Axis Is a Master Regulator of Genotoxic Stress-Induced Cellular Senescence. Nucleic Acids Research, 52, 6945-6963.
https://doi.org/10.1093/nar/gkae426
[23] Lewis, M. and Stracker, T.H. (2021) Transcriptional Regulation of Multiciliated Cell Differentiation. Seminars in Cell & Developmental Biology, 110, 51-60.
https://doi.org/10.1016/j.semcdb.2020.04.007
[24] Hazan, R., Mori, M., Danielian, P.S., Guen, V.J., Rubin, S.M., Cardoso, W.V., et al. (2021) E2F4’s Cytoplasmic Role in Multiciliogenesis Is Mediated via an N-Terminal Domain That Binds Two Components of the Centriole Replication Machinery, Deup1 and SAS6. Molecular Biology of the Cell, 32, ar1.
https://doi.org/10.1091/mbc.e21-01-0039
[25] Tian, J., Jiang, L., Li, H., Dan, J. and Luo, Y. (2023) The Dual Role of the DREAM/G2M Pathway in Non‐Tumorigenic Immortalization of Senescent Cells. FEBS Open Bio, 14, 331-343.
https://doi.org/10.1002/2211-5463.13748
[26] Sheikh, M., Roshandel, G., McCormack, V. and Malekzadeh, R. (2023) Current Status and Future Prospects for Esophageal Cancer. Cancers, 15, Article No. 765.
https://doi.org/10.3390/cancers15030765
[27] Williams, T.J., Hlaing, P., Maher, A.M., Walker, N., Kendall, B.J., Holtmann, G., et al. (2024) Preinjection with Ligation-Assisted Endoscopic Mucosal Resection for Barrett’s Dysplasia and Early Esophageal Adenocarcinoma: Characteristic Histological Features of the Depth of Resection. Journal of Clinical Gastroenterology, 59, 321-324.
https://doi.org/10.1097/mcg.0000000000002026
[28] Pflug, K.M., Lee, D.W., McFadden, K., Herrera, L. and Sitcheran, R. (2023) Transcriptional Induction of NF-κB-Inducing Kinase by E2F4/5 Facilitates Collective Invasion of GBM Cells. Scientific Reports, 13, Article No. 13093.
https://doi.org/10.1038/s41598-023-38996-9
[29] Sheng, S., Guo, J., Lu, C. and Hu, X. (2025) Non-Coding RNAs in Thoracic Disease: Barrett’s Esophagus and Esophageal Adenocarcinoma. Clinica Chimica Acta, 571, Article ID: 120242.
https://doi.org/10.1016/j.cca.2025.120242
[30] Xing, L., Jiang, Z., Xu, R., Dang, T., Wu, J., Chai, J., et al. (2025) CCN1 Promotes APRIL/BAFF Signaling in Esophageal Squamous Cell Carcinoma but Attenuates It in Esophageal Adenocarcinoma. Scientific Reports, 15, Article No. 1808.
https://doi.org/10.1038/s41598-025-86228-z
[31] de Melo Viana, T.C., Nakamura, E.T., Park, A., Filardi, K.F.X.C., de Almeida Leite, R.M., Baltazar, L.F.S.R., et al. (2025) Molecular Abnormalities and Carcinogenesis in Barrett’s Esophagus: Implications for Cancer Treatment and Prevention. Genes, 16, Article No. 270.
https://doi.org/10.3390/genes16030270
[32] Zhang, Y., Lee, M., de Jesus, E., Weh, K., Howard, C., Remmer, H., et al. (2025) Proteomic Profiling Informs Mechanisms of Esophageal Adenocarcinoma Inhibition by Cranberry Proanthocyanidins. Molecular Nutrition & Food Research, 69, e70102.
https://doi.org/10.1002/mnfr.70102
[33] Evangelou, K., Kotsinas, A., Mariolis-Sapsakos, T., Giannopoulos, A., Tsantoulis, P.K., Constantinides, C., et al. (2007) E2F-1 Overexpression Correlates with Decreased Proliferation and Better Prognosis in Adenocarcinomas of Barrett Oesophagus. Journal of Clinical Pathology, 61, 601-605.
https://doi.org/10.1136/jcp.2007.050963
[34] Zhang, T. and Tang, X. (2025) Untangling Immune Cell Contributions in the Progression from GERD to Barrett’s Esophagus and Esophageal Cancer: Insights from Genetic Causal Analysis. International Immunopharmacology, 150, Article ID: 114271.
https://doi.org/10.1016/j.intimp.2025.114271
[35] Barchi, A., Dell’Anna, G., Massimino, L., Mandarino, F.V., Vespa, E., Viale, E., et al. (2025) Unraveling the Pathogenesis of Barrett’s Esophagus and Esophageal Adenocarcinoma: The “Omics” Era. Frontiers in Oncology, 14, Article 1458138.
https://doi.org/10.3389/fonc.2024.1458138
[36] Capelle, C.M., Zeng, N., Danileviciute, E., Rodrigues, S.F., Ollert, M., Balling, R., et al. (2021) Identification of VIMP as a Gene Inhibiting Cytokine Production in Human CD4+ Effector T Cells. iScience, 24, Article ID: 102289.
https://doi.org/10.1016/j.isci.2021.102289
[37] 李婷婷, 朱心怡, 李思浓, 邵阳光. miRNAs调控E2F5在癌症发生发展中的作用及其机制研究进展[J]. 现代肿瘤医学, 2023, 31(2): 367-373.
[38] Shijimaya, T., Tahara, T., Yamazaki, J., Kobayashi, S., Matsumoto, Y., Nakamura, N., et al. (2024) Distinct Microbiome Dysbiosis and Epigenetic Anomaly in Esophageal Adenocarcinoma and Its Underlying Barrett’s Esophagus. Clinical Epigenetics, 16, Article No. 184.
https://doi.org/10.1186/s13148-024-01801-z
[39] Amini, J., Beyer, C., Zendedel, A. and Sanadgol, N. (2023) MAPK Is a Mutual Pathway Targeted by Anxiety-Related miRNAs, and E2F5 Is a Putative Target for Anxiolytic miRNAs. Biomolecules, 13, Article No. 544.
https://doi.org/10.3390/biom13030544
[40] Ray, D., Bose, P., Mukherjee, S., Roy, S. and Kaity, S. (2025) Recent Drug Delivery Systems Targeting the Gut-Brain-Microbiome Axis for the Management of Chronic Diseases. International Journal of Pharmaceutics, 680, Article ID: 125776.
https://doi.org/10.1016/j.ijpharm.2025.125776
[41] Lawson, N.M., Ye, L., Cho, C.Y., Zhao, B., Mitchell, T., Martín-Barrio, I., et al. (2025) Recurrent ERBB2 Alterations Are Associated with Esophageal Adenocarcinoma Brain Metastases. medRxiv.