[1]
|
Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H. and Jemal, A. (2025) Cancer Statistics, 2025. CA: A Cancer Journal for Clinicians, 75, 10-45. https://doi.org/10.3322/caac.21871
|
[2]
|
Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53. https://doi.org/10.1016/j.jncc.2024.01.006
|
[3]
|
Joseph, A., Raja, S., Kamath, S., Jang, S., Allende, D., McNamara, M., et al. (2022) Esophageal Adenocarcinoma: A Dire Need for Early Detection and Treatment. Cleveland Clinic Journal of Medicine, 89, 269-279. https://doi.org/10.3949/ccjm.89a.21053
|
[4]
|
Kunzmann, A.T. and Rubenstein, J.H. (2023) Identifying Individuals at Risk of Esophageal Adenocarcinoma: Challenges, Existing Tools and Future Steps. Current Opinion in Gastroenterology, 39, 320-325. https://doi.org/10.1097/mog.0000000000000938
|
[5]
|
Alderete, I.S., Nakata, K. and Hartwig, M.G. (2023) Esophageal Adenocarcinoma: One Size Might Not Fit All. The Annals of Thoracic Surgery, 116, 578-579. https://doi.org/10.1016/j.athoracsur.2023.04.003
|
[6]
|
Trimarchi, J.M. and Lees, J.A. (2002) Sibling Rivalry in the E2F Family. Nature Reviews Molecular Cell Biology, 3, 11-20. https://doi.org/10.1038/nrm714
|
[7]
|
Li, L., Liu, J. and Huang, W. (2022) E2F5 Promotes Proliferation and Invasion of Gastric Cancer through Directly Upregulating UBE2T Transcription. Digestive and Liver Disease, 54, 937-945. https://doi.org/10.1016/j.dld.2021.09.003
|
[8]
|
Chen, L., Guo, S., Zhang, D., Li, X. and Chen, J. (2023) E2F5 Targeted by Let-7d-5p Facilitates Cell Proliferation, Metastasis and Immune Escape in Gallbladder Cancer. Digestive Diseases and Sciences, 69, 463-475. https://doi.org/10.1007/s10620-023-08209-4
|
[9]
|
Sheng, J., Luo, Y., Lv, E., Liang, H., Tao, H., Yu, C., et al. (2023) LINC01980 Induced by TGF-Beta Promotes Hepatocellular Carcinoma Metastasis via miR-376b-5p/E2F5 Axis. Cellular Signalling, 112, Article ID: 110923. https://doi.org/10.1016/j.cellsig.2023.110923
|
[10]
|
Malgundkar, S.H., Burney, I., Al Moundhri, M., Al Kalbani, M., Lakhtakia, R., Okamoto, A., et al. (2021) E2F5 Promotes the Malignancy of Ovarian Cancer via the Regulation of Hippo and Wnt Pathways. Genetic Testing and Molecular Biomarkers, 25, 179-186. https://doi.org/10.1089/gtmb.2020.0166
|
[11]
|
Tang, Y., Gao, G., Xia, W. and Wang, J. (2022) METTL3 Promotes the Growth and Metastasis of Pancreatic Cancer by Regulating the m6A Modification and Stability of E2F5. Cellular Signalling, 99, Article ID: 110440. https://doi.org/10.1016/j.cellsig.2022.110440
|
[12]
|
Fu, H., Liu, M., Li, H., Yu, L., Song, H., Chu, X., et al. (2025) Deciphering the Prognostic Landscape of Esophageal Adenocarcinoma: A PANoptosis-Related Gene Signature. Journal of Cancer, 16, 183-200. https://doi.org/10.7150/jca.102180
|
[13]
|
Sannigrahi, M.K., Cao, A.C., Rajagopalan, P., Sun, L., Brody, R.M., Raghav, L., et al. (2023) A Novel Pipeline for Prioritizing Cancer Type‐Specific Therapeutic Vulnerabilities Using DepMap Identifies PAK2 as a Target in Head and Neck Squamous Cell Carcinomas. Molecular Oncology, 18, 336-349. https://doi.org/10.1002/1878-0261.13558
|
[14]
|
Hänzelmann, S., Castelo, R. and Guinney, J. (2013) GSVA: Gene Set Variation Analysis for Microarray and RNA-Seq Data. BMC Bioinformatics, 14, Article No. 7. https://doi.org/10.1186/1471-2105-14-7
|
[15]
|
Han, Z., Mo, R., Cai, S., Feng, Y., Tang, Z., Ye, J., et al. (2022) Differential Expression of E2F Transcription Factors and Their Functional and Prognostic Roles in Human Prostate Cancer. Frontiers in Cell and Developmental Biology, 10, Article 831329. https://doi.org/10.3389/fcell.2022.831329
|
[16]
|
Wang, Y., Hu, H., Liu, H., Zhou, D., Zhang, Y., Li, L., et al. (2024) Study of the Role of E2F1 and TMEM132A in Prostate Cancer Development. Frontiers in Bioscience-Landmark, 29, Article 360. https://doi.org/10.31083/j.fbl2910360
|
[17]
|
Inagaki, Y., Wu, D., Fujiwara, K., Ishizuka, Y., Oguni, A., Tokunaga, T., et al. (2020) Knockdown of E2F5 Induces Cell Death via the Tp53-Dependent Pathway in Breast Cancer Cells Carrying Wild-Type Tp53. Oncology Reports, 44, 2241-2252. https://doi.org/10.3892/or.2020.7761
|
[18]
|
Yu, Y., Jin, B., Jia, R., Shi, L., Chen, Y., Ge, J., et al. (2024) Exosomes Loaded with the Anti-Cancer Molecule miR-1-3p Inhibit Intrapulmonary Colonization and Growth of Human Esophageal Squamous Carcinoma Cells. Journal of Translational Medicine, 22, Article No. 1166. https://doi.org/10.1186/s12967-024-05997-9
|
[19]
|
Wang, Z., Zhang, H., Li, F. and Huang, C. (2024) Knockdown of RNA-Binding Protein IMP3 Suppresses Oral Squamous Cell Carcinoma Proliferation by Destabilizing E2F5 Transcript. Aging, 16, 1897-1910. https://doi.org/10.18632/aging.205466
|
[20]
|
Yu, H., Li, Z. and Wang, M. (2020) Expression and Prognostic Role of E2F Transcription Factors in High‐Grade Glioma. CNS Neuroscience & Therapeutics, 26, 741-753. https://doi.org/10.1111/cns.13295
|
[21]
|
Hwang, Y. and Kim, M.J. (2025) Emerging Role of the DREAM Complex in Cancer and Therapeutic Opportunities. International Journal of Molecular Sciences, 26, Article No. 322. https://doi.org/10.3390/ijms26010322
|
[22]
|
Schmidt, A., Allmann, S., Schwarzenbach, C., Snyder, P., Chen, J., Nagel, G., et al. (2024) The p21CIP1-CDK4-DREAM Axis Is a Master Regulator of Genotoxic Stress-Induced Cellular Senescence. Nucleic Acids Research, 52, 6945-6963. https://doi.org/10.1093/nar/gkae426
|
[23]
|
Lewis, M. and Stracker, T.H. (2021) Transcriptional Regulation of Multiciliated Cell Differentiation. Seminars in Cell & Developmental Biology, 110, 51-60. https://doi.org/10.1016/j.semcdb.2020.04.007
|
[24]
|
Hazan, R., Mori, M., Danielian, P.S., Guen, V.J., Rubin, S.M., Cardoso, W.V., et al. (2021) E2F4’s Cytoplasmic Role in Multiciliogenesis Is Mediated via an N-Terminal Domain That Binds Two Components of the Centriole Replication Machinery, Deup1 and SAS6. Molecular Biology of the Cell, 32, ar1. https://doi.org/10.1091/mbc.e21-01-0039
|
[25]
|
Tian, J., Jiang, L., Li, H., Dan, J. and Luo, Y. (2023) The Dual Role of the DREAM/G2M Pathway in Non‐Tumorigenic Immortalization of Senescent Cells. FEBS Open Bio, 14, 331-343. https://doi.org/10.1002/2211-5463.13748
|
[26]
|
Sheikh, M., Roshandel, G., McCormack, V. and Malekzadeh, R. (2023) Current Status and Future Prospects for Esophageal Cancer. Cancers, 15, Article No. 765. https://doi.org/10.3390/cancers15030765
|
[27]
|
Williams, T.J., Hlaing, P., Maher, A.M., Walker, N., Kendall, B.J., Holtmann, G., et al. (2024) Preinjection with Ligation-Assisted Endoscopic Mucosal Resection for Barrett’s Dysplasia and Early Esophageal Adenocarcinoma: Characteristic Histological Features of the Depth of Resection. Journal of Clinical Gastroenterology, 59, 321-324. https://doi.org/10.1097/mcg.0000000000002026
|
[28]
|
Pflug, K.M., Lee, D.W., McFadden, K., Herrera, L. and Sitcheran, R. (2023) Transcriptional Induction of NF-κB-Inducing Kinase by E2F4/5 Facilitates Collective Invasion of GBM Cells. Scientific Reports, 13, Article No. 13093. https://doi.org/10.1038/s41598-023-38996-9
|
[29]
|
Sheng, S., Guo, J., Lu, C. and Hu, X. (2025) Non-Coding RNAs in Thoracic Disease: Barrett’s Esophagus and Esophageal Adenocarcinoma. Clinica Chimica Acta, 571, Article ID: 120242. https://doi.org/10.1016/j.cca.2025.120242
|
[30]
|
Xing, L., Jiang, Z., Xu, R., Dang, T., Wu, J., Chai, J., et al. (2025) CCN1 Promotes APRIL/BAFF Signaling in Esophageal Squamous Cell Carcinoma but Attenuates It in Esophageal Adenocarcinoma. Scientific Reports, 15, Article No. 1808. https://doi.org/10.1038/s41598-025-86228-z
|
[31]
|
de Melo Viana, T.C., Nakamura, E.T., Park, A., Filardi, K.F.X.C., de Almeida Leite, R.M., Baltazar, L.F.S.R., et al. (2025) Molecular Abnormalities and Carcinogenesis in Barrett’s Esophagus: Implications for Cancer Treatment and Prevention. Genes, 16, Article No. 270. https://doi.org/10.3390/genes16030270
|
[32]
|
Zhang, Y., Lee, M., de Jesus, E., Weh, K., Howard, C., Remmer, H., et al. (2025) Proteomic Profiling Informs Mechanisms of Esophageal Adenocarcinoma Inhibition by Cranberry Proanthocyanidins. Molecular Nutrition & Food Research, 69, e70102. https://doi.org/10.1002/mnfr.70102
|
[33]
|
Evangelou, K., Kotsinas, A., Mariolis-Sapsakos, T., Giannopoulos, A., Tsantoulis, P.K., Constantinides, C., et al. (2007) E2F-1 Overexpression Correlates with Decreased Proliferation and Better Prognosis in Adenocarcinomas of Barrett Oesophagus. Journal of Clinical Pathology, 61, 601-605. https://doi.org/10.1136/jcp.2007.050963
|
[34]
|
Zhang, T. and Tang, X. (2025) Untangling Immune Cell Contributions in the Progression from GERD to Barrett’s Esophagus and Esophageal Cancer: Insights from Genetic Causal Analysis. International Immunopharmacology, 150, Article ID: 114271. https://doi.org/10.1016/j.intimp.2025.114271
|
[35]
|
Barchi, A., Dell’Anna, G., Massimino, L., Mandarino, F.V., Vespa, E., Viale, E., et al. (2025) Unraveling the Pathogenesis of Barrett’s Esophagus and Esophageal Adenocarcinoma: The “Omics” Era. Frontiers in Oncology, 14, Article 1458138. https://doi.org/10.3389/fonc.2024.1458138
|
[36]
|
Capelle, C.M., Zeng, N., Danileviciute, E., Rodrigues, S.F., Ollert, M., Balling, R., et al. (2021) Identification of VIMP as a Gene Inhibiting Cytokine Production in Human CD4+ Effector T Cells. iScience, 24, Article ID: 102289. https://doi.org/10.1016/j.isci.2021.102289
|
[37]
|
李婷婷, 朱心怡, 李思浓, 邵阳光. miRNAs调控E2F5在癌症发生发展中的作用及其机制研究进展[J]. 现代肿瘤医学, 2023, 31(2): 367-373.
|
[38]
|
Shijimaya, T., Tahara, T., Yamazaki, J., Kobayashi, S., Matsumoto, Y., Nakamura, N., et al. (2024) Distinct Microbiome Dysbiosis and Epigenetic Anomaly in Esophageal Adenocarcinoma and Its Underlying Barrett’s Esophagus. Clinical Epigenetics, 16, Article No. 184. https://doi.org/10.1186/s13148-024-01801-z
|
[39]
|
Amini, J., Beyer, C., Zendedel, A. and Sanadgol, N. (2023) MAPK Is a Mutual Pathway Targeted by Anxiety-Related miRNAs, and E2F5 Is a Putative Target for Anxiolytic miRNAs. Biomolecules, 13, Article No. 544. https://doi.org/10.3390/biom13030544
|
[40]
|
Ray, D., Bose, P., Mukherjee, S., Roy, S. and Kaity, S. (2025) Recent Drug Delivery Systems Targeting the Gut-Brain-Microbiome Axis for the Management of Chronic Diseases. International Journal of Pharmaceutics, 680, Article ID: 125776. https://doi.org/10.1016/j.ijpharm.2025.125776
|
[41]
|
Lawson, N.M., Ye, L., Cho, C.Y., Zhao, B., Mitchell, T., Martín-Barrio, I., et al. (2025) Recurrent ERBB2 Alterations Are Associated with Esophageal Adenocarcinoma Brain Metastases. medRxiv.
|