[1]
|
Li, M., Li, X., Guo, Y., Miao, Z., Liu, X., Guo, S., et al. (2020) Development and Assessment of an Individualized Nomogram to Predict Colorectal Cancer Liver Metastases. Quantitative Imaging in Medicine and Surgery, 10, 397-414. https://doi.org/10.21037/qims.2019.12.16
|
[2]
|
Kanth, P. and Inadomi, J.M. (2021) Screening and Prevention of Colorectal Cancer. BMJ, 374, n1855. https://doi.org/10.1136/bmj.n1855
|
[3]
|
张利文, 方梦捷, 臧亚丽, 等. 影像组学的发展与应用[J]. 中华放射学杂志, 2017, 51(1): 75-77.
|
[4]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
|
[5]
|
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., et al. (2012) Radiomics: The Process and the Challenges. Magnetic Resonance Imaging, 30, 1234-1248. https://doi.org/10.1016/j.mri.2012.06.010
|
[6]
|
van Timmeren, J.E., Cester, D., Tanadini-Lang, S., Alkadhi, H. and Baessler, B. (2020) Radiomics in Medical Imaging—“How-To” Guide and Critical Reflection. Insights into Imaging, 11, Article No. 91. https://doi.org/10.1186/s13244-020-00887-2
|
[7]
|
谢凯, 孙鸿飞, 林涛, 等. 影像组学中特征提取研究进展[J]. 中国医学影像技术, 2017, 33(12): 1792-1796.
|
[8]
|
Merok, M.A., Ahlquist, T., Røyrvik, E.C., Tufteland, K.F., Hektoen, M., Sjo, O.H., et al. (2013) Microsatellite Instability Has a Positive Prognostic Impact on Stage II Colorectal Cancer after Complete Resection: Results from a Large, Consecutive Norwegian Series. Annals of Oncology, 24, 1274-1282. https://doi.org/10.1093/annonc/mds614
|
[9]
|
Ribic, C.M., Sargent, D.J., Moore, M.J., Thibodeau, S.N., French, A.J., Goldberg, R.M., et al. (2003) Tumor Microsatellite-Instability Status as a Predictor of Benefit from Fluorouracil-Based Adjuvant Chemotherapy for Colon Cancer. New England Journal of Medicine, 349, 247-257. https://doi.org/10.1056/nejmoa022289
|
[10]
|
Kather, J.N., Pearson, A.T., Halama, N., Jäger, D., Krause, J., Loosen, S.H., et al. (2019) Deep Learning Can Predict Microsatellite Instability Directly from Histology in Gastrointestinal Cancer. Nature Medicine, 25, 1054-1056. https://doi.org/10.1038/s41591-019-0462-y
|
[11]
|
Sepulveda, A.R., Hamilton, S.R., Allegra, C.J., Grody, W., Cushman-Vokoun, A.M., Funkhouser, W.K., et al. (2017) Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. American Journal of Clinical Pathology, 147, 221-260. https://doi.org/10.1093/ajcp/aqw209
|
[12]
|
Itakura, H., Achrol, A.S., Mitchell, L.A., Loya, J.J., Liu, T., Westbroek, E.M., et al. (2015) Magnetic Resonance Image Features Identify Glioblastoma Phenotypic Subtypes with Distinct Molecular Pathway Activities. Science Translational Medicine, 7, 303ra138. https://doi.org/10.1126/scitranslmed.aaa7582
|
[13]
|
Cao, Y., Zhang, G., Zhang, J., Yang, Y., Ren, J., Yan, X., et al. (2021) Predicting Microsatellite Instability Status in Colorectal Cancer Based on Triphasic Enhanced Computed Tomography Radiomics Signatures: A Multicenter Study. Frontiers in Oncology, 11, Article 687771. https://doi.org/10.3389/fonc.2021.687771
|
[14]
|
Ma, Y., Lin, C., Liu, S., Wei, Y., Ji, C., Shi, F., et al. (2022) Radiomics Features Based on Internal and Marginal Areas of the Tumor for the Preoperative Prediction of Microsatellite Instability Status in Colorectal Cancer. Frontiers in Oncology, 12, Article 1020349. https://doi.org/10.3389/fonc.2022.1020349
|
[15]
|
Ying, M., Pan, J., Lu, G., Zhou, S., Fu, J., Wang, Q., et al. (2022) Development and Validation of a Radiomics-Based Nomogram for the Preoperative Prediction of Microsatellite Instability in Colorectal Cancer. BMC Cancer, 22, Article No. 524. https://doi.org/10.1186/s12885-022-09584-3
|
[16]
|
Zhu, G., Pei, L., Xia, H., Tang, Q. and Bi, F. (2021) Role of Oncogenic KRAS in the Prognosis, Diagnosis and Treatment of Colorectal Cancer. Molecular Cancer, 20, Article No. 143. https://doi.org/10.1186/s12943-021-01441-4
|
[17]
|
Zhou, P., Goffredo, P., Ginader, T., Thompson, D., Hrabe, J., Gribovskaja‐Rupp, I., et al. (2020) Impact of KRAS Status on Tumor Response and Survival after Neoadjuvant Treatment of Locally Advanced Rectal Cancer. Journal of Surgical Oncology, 123, 278-285. https://doi.org/10.1002/jso.26244
|
[18]
|
Kawada, K., Nakamoto, Y., Kawada, M., Hida, K., Matsumoto, T., Murakami, T., et al. (2012) Relationship between 18f-Fluorodeoxyglucose Accumulation and KRAS/BRAF Mutations in Colorectal Cancer. Clinical Cancer Research, 18, 1696-1703. https://doi.org/10.1158/1078-0432.ccr-11-1909
|
[19]
|
Chen, S., Chiang, H., Chen, W.T., Hsieh, T., Yen, K., Chiang, S., et al. (2014) Correlation between PET/CT Parameters and KRAS Expression in Colorectal Cancer. Clinical Nuclear Medicine, 39, 685-689. https://doi.org/10.1097/rlu.0000000000000481
|
[20]
|
Lovinfosse, P., Koopmansch, B., Lambert, F., Jodogne, S., Kustermans, G., Hatt, M., et al. (2016) 18F-FDG PET/CT Imaging in Rectal Cancer: Relationship with Therasmutational Status. The British Journal of Radiology, 89, Article ID: 20160212. https://doi.org/10.1259/bjr.20160212
|
[21]
|
Yang, L., Dong, D., Fang, M., Zhu, Y., Zang, Y., Liu, Z., et al. (2018) Can CT-Based Radiomics Signature Predict KRAS/NRAS/BRAF Mutations in Colorectal Cancer? European Radiology, 28, 2058-2067. https://doi.org/10.1007/s00330-017-5146-8
|
[22]
|
He, K., Liu, X., Li, M., Li, X., Yang, H. and Zhang, H. (2020) Noninvasive KRAS Mutation Estimation in Colorectal Cancer Using a Deep Learning Method Based on CT Imaging. BMC Medical Imaging, 20, Article No. 59. https://doi.org/10.1186/s12880-020-00457-4
|
[23]
|
Hu, J., Xia, X., Wang, P., Peng, Y., Liu, J., Xie, X., et al. (2022) Predicting Kirsten Rat Sarcoma Virus Gene Mutation Status in Patients with Colorectal Cancer by Radiomics Models Based on Multiphasic CT. Frontiers in Oncology, 12, Article 848798. https://doi.org/10.3389/fonc.2022.848798
|
[24]
|
Sauer, R., Liersch, T., Merkel, S., Fietkau, R., Hohenberger, W., Hess, C., et al. (2012) Preoperative versus Postoperative Chemoradiotherapy for Locally Advanced Rectal Cancer: Results of the German CAO/ARO/AIO-94 Randomized Phase III Trial after a Median Follow-Up of 11 Years. Journal of Clinical Oncology, 30, 1926-1933. https://doi.org/10.1200/jco.2011.40.1836
|
[25]
|
朱洁, 沈浮, 袁渊, 等. 磁共振影像组学对直肠癌新辅助治疗后病理完全反应的评估价值[J]. 放射学实践, 2022, 37(4): 426-431.
|
[26]
|
Chen, B., Xie, H., Li, Y., Jiang, X., Xiong, L., Tang, X., et al. (2022) MRI-Based Radiomics Features to Predict Treatment Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer: A Single Center, Prospective Study. Frontiers in Oncology, 12, Article 801743. https://doi.org/10.3389/fonc.2022.801743
|
[27]
|
Horvat, N., Veeraraghavan, H., Khan, M., Blazic, I., Zheng, J., Capanu, M., et al. (2018) MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology, 287, 833-843. https://doi.org/10.1148/radiol.2018172300
|
[28]
|
Cui, Y., Yang, X., Shi, Z., Yang, Z., Du, X., Zhao, Z., et al. (2018) Radiomics Analysis of Multiparametric MRI for Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. European Radiology, 29, 1211-1220. https://doi.org/10.1007/s00330-018-5683-9
|
[29]
|
曹伟, 荣耀, 刘洪. CT与MRI对直肠癌术前诊断与分期的临床价值对比[J]. 实用癌症杂志, 2016, 31(11): 1851-1853.
|
[30]
|
Glimelius, B.L.G. (2002) The Role of Preoperative and Postoperative Radiotherapy in Rectal Cancer. Clinical Colorectal Cancer, 2, 82-92. https://doi.org/10.3816/ccc.2002.n.014
|
[31]
|
Lin, X., Zhao, S., Jiang, H., Jia, F., Wang, G., He, B., et al. (2021) A Radiomics-Based Nomogram for Preoperative T Staging Prediction of Rectal Cancer. Abdominal Radiology, 46, 4525-4535. https://doi.org/10.1007/s00261-021-03137-1
|
[32]
|
Cheng, Y., Yu, Q., Meng, W. and Jiang, W. (2022) Clinico-Radiologic Nomogram Using Multiphase CT to Predict Lymph Node Metastasis in Colon Cancer. Molecular Imaging and Biology, 24, 798-806. https://doi.org/10.1007/s11307-022-01730-4
|
[33]
|
李芊, 周欣元, 汪晓东, 等. 影像组学技术与结直肠癌临床应用研究进展[J]. 中国普外基础与临床杂志, 2019, 26(10): 1253-1258.
|
[34]
|
Zhang, X., Zhang, Y., Zhang, G., Qiu, X., Tan, W., Yin, X., et al. (2022) Deep Learning with Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Frontiers in Oncology, 12, Article 773840. https://doi.org/10.3389/fonc.2022.773840
|
[35]
|
左艳, 黄钢, 聂生东. 深度学习在医学影像智能处理中的应用与挑战[J]. 中国图象图形学报, 2021, 26(2): 305-315.
|