影像组学在结直肠癌诊疗中的应用进展
Application Progress of Radiomics in Diagnosis and Treatment of Colorectal Cancer
DOI: 10.12677/acm.2025.1582338, PDF, HTML, XML,    科研立项经费支持
作者: 张 晨*, 王志强#, 于 莹, 刘艳娜:北华大学附属医院医学影像科,吉林 吉林
关键词: 结直肠癌影像组学影像学检查应用进展Colorectal Cancer Radiomics Radiological Examination Application Progress
摘要: 结直肠癌是常见的消化系统恶性肿瘤。近年来其发病率不断升高。因此,结直肠癌的早期诊断、疗效预测和个性化诊疗至关重要。传统成像技术在结直肠癌的早期诊断等方面的应用价值有限。影像组学是一种基于高通量纹理特征的医学图像分析技术,可用于全身各系统疾病的筛查、诊断及预后评价等,是目前医学影像领域的研究热点。现对影像组学技术在结直肠癌诊断和治疗方面的研究现状和发展趋势予以综述。
Abstract: Colorectal cancer is a common malignant tumor of the digestive system. Its incidence has been increasing in recent years. Therefore, early diagnosis, efficacy prediction and personalized treatment of colorectal cancer are crucial. Conventional imaging techniques have limited value in applications such as early diagnosis of colorectal cancer. Radiomics is a medical image analysis technology based on high-throughput texture features, which can be used for screening, diagnosis and prognosis evaluation of diseases of various systems in the whole body, and it is the current research hotspot in the field of medical imaging. This article reviews the research status and development trend of radiomics in the diagnosis and treatment of colorectal cancer.
文章引用:张晨, 王志强, 于莹, 刘艳娜. 影像组学在结直肠癌诊疗中的应用进展[J]. 临床医学进展, 2025, 15(8): 1092-1097. https://doi.org/10.12677/acm.2025.1582338

1. 引言

结直肠癌(colorectal cancer, CRC)是常见的恶性肿瘤之一,死亡率居肿瘤死亡率第二位[1]。结直肠癌(CRC)在我国的发病率逐年升高[2],对其进行早期筛查、治疗和预后评估,是提高生存率的关键。结肠镜检查作为结直肠癌早期诊断的重要方法,其对患者的配合程度和操作者的经验都有相对较高的要求,且仅能观察腔内肿瘤的基本形态。而传统影像仅能显示肿瘤的直观信息,对病灶微结构的信息反映有限[3]。近年来,医学影像的分析技术得到了快速发展,通过从影像数据中提取大量定量特征,影像组学也用于分析图像信息。目前,影像组学技术的临床应用主要涵盖以下几个方面:对肿瘤进行早期诊断,肿瘤分期分型,疾病的鉴别诊断以及进行辅助诊疗的疗效预测。现对近年来影像组学在结直肠肿瘤诊疗中的研究进行综述。

2. 影像组学概述

荷兰学者Lambin [4]在2012年首次提出了“影像组学”这一概念,后经Kumar [5]等人进一步完善。影像组学是一种从MRI、PET/CT、CT、超声等影像中高通量提取定量影像特征并加以分析,从而获得肿瘤内部异质信息的一种新兴技术。

应用其构建模型,为个体化诊疗提供重要的参考信息。

影像组学的工作流程主要包括[6]:(1) 数据采集:数据来源较广泛,常见的包括MRI、CT、PET、超声等影像。(2) 图像分割:通过手动、半自动或全自动等方法,将影像分成若干个具有特殊属性的区域,并勾画病灶的感兴趣区(region of interest, ROI)。(3) 特征提取:对图像进行处理后,最后进行特征提取。目前常用的影像组学特征包括[7]纹理特征、空间几何特征、一阶统计量特征,变换特征等。(4) 建立模型:影像组学模型的构建主要包括三个阶段:特征提取、构建模型和模型验证。

3. 影像组学技术在结直肠癌中的临床应用

3.1. 预测结直肠癌微卫星不稳定状态

微卫星不稳定性(microsatellite instability, MSI)已广泛应用于临床诊断中,是指DNA复制时,由于 DNA错配修复(mismatch repair, MMR)机制失灵,导致DNA重复片段增多或减少,从而导致微卫星长度发生改变。微卫星不稳定性对结直肠癌的筛查、预后及治疗方案的制定具有重要意义。MSI患者通常预后较好,淋巴结扩散和转移发生可能性较小[8]。相比于微卫星稳定(microsatellite-stable, MSS)的结直肠癌患者,MSI状态的患者免疫治疗效果更好,而嘧啶类或氟尿嘧啶类药物的辅助化疗对其无明显影响[9] [10]。目前,临床上通过聚合酶链反应(polymerase chain reaction, PCR)、免疫组织化学(immunohistochemistry, IHC)等技术对肿瘤组织中的MSI状态进行检测,两种方法均为有创且费用昂贵[11]。另外,对于不能手术的病人,由于肿瘤异质性,少量的组织标本可能无法精确反映微卫星不稳定状态[12]

Cao等[13]回顾性分析了502例结直肠癌患者。分别从动脉期、延迟期和静脉期CT图像中提取原发肿瘤的影像组学特征。采用最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)方法保留与MSI状态密切相关的特征。结果显示与动脉期或静脉期模型相比,延迟期模型显示出优异的预测性能。Ma等[14]在230例CRC患者的腹部增强CT上对肿瘤面积最大的病灶(感兴趣区域)进行手动分割,随后将每个ROI分别向内缩小1、2和3 mm,结果显示在测试队列中,基于3毫米内收的模型 可以无创地反映肿瘤异质性和遗传不稳定性,其产生了最高的平均曲线下面积(area under curve, AUC)为0.908。Ying等[15]对276例CRC患者的腹部增强CT图像建立影像组学列线图模型。经验证表明,临床–影像组学列线图模型的最高AUC值分别为0.87 [95%CI (0.81, 0.93)]和0.90 [95%CI (0.83, 0.96)],从而证明了临床–影像组学列线图模型具有术前预测微卫星不稳定状态的潜力。

3.2. 预测结直肠癌患者的KRAS突变状态

KRAS是一种G蛋白,与肿瘤发生发展密切相关。约有40%的结直肠癌患者存在KRAS突变。过度表达表皮生长因子受体(epidermal growth factor receptor, EGFR),即酪氨酸激酶受体,在结直肠癌的发生发展中起着关键作用[16]。抗EGFR抗体(西妥昔单抗等)对结直肠癌患者具有治疗作用。有研究结果表明,野生型KRAS基因的患者可从西妥昔单抗治疗中获益,而突变型患者不但没有受益,反而会增加发生不良反应的风险[17]。既往有几项研究使用PET/CT和18-F氟脱氧葡萄糖PET/CT来评估CRC的KRAS突变信息[18]-[20]。此外,还应用了一种基于CT的影像组学方法进行CRC患者的无创KRAS突变估计[21]

He等[22]提出了一个残差网络(residual neural network, ResNet)模型,该模型使用门静脉期CT图像来估计训练队列中轴位、冠状位和矢状位的KRAS突变,并在测试队列中评估该模型,轴位的ResNet模型在测试队列中的曲线下面积(AUC)值为0.90。结果表明,使用深度学习(DL)模型对CRC患者治疗前CT图像进行计算机化评估,有精确预测KRAS突变的潜力。Hu等[23]从非增强期(NCP)、动脉期(AP)和静脉期(VP) CT中提取1316个定量影像组学特征。在此基础上,利用逻辑回归(LR)、支持向量机(SVM)和随机树(RT)等3种方法,建立KRAS基因突变的预测模型。结果显示,在三组单相模型中,采用LR算法的双相(AP + VP)模型在测试队列中的AUC值为0.826。上述研究表明,选择不同期相的CT图像,构建适合的影像组学模型,对KRAS基因突变进行无创性评估,而目前相关研究多为单中心回顾性研究,且研究对象的数量有限,特征筛选以及模型建立,需要进一步多中心研究的支持。

3.3. 评估LRAC患者nCRT后的病理完全缓解

局部晚期直肠癌(locally advanced rectal cancer, LARC)约占新发直肠癌的70%,新辅助放化疗(neoadjuvant chemoradiotherapy, nCRT)联合全直肠系膜切除术(total mesorectal excision, TME) [24]是目前治疗局部进展期结直肠癌的标准方案。然而,病理完全缓解(pathologic complete response, pCR)只能在手术后切除的标本中得到证实。在医学影像领域,基于磁共振成像技术的影像组学为新辅助治疗pCR提供了新的思路[25]

Chen等[26]研究了137例患者的T2WI图像,在瘤内和瘤周图像中提取了1301个影像组学特征。结果表明,临床–影像组学组合模型在验证队列中的AUC值为0.871,在预测治疗反应方面表现出最佳性能。Horvat等[27]纳入114例LARC患者,手动勾画基于T2WI的ROI,结果表明基于T2WI的影像组学模型在预测pCR方面的诊断性能高于T2WI和弥散加权成像(diffusion weighted imaging, DWI)。T2加权成像作为肿瘤感兴趣区分割的主要序列,在临床应用中常与T1加权成像、表观弥散系数(ADC)及动态增强MRI (DCE-MRI)等序列联合使用。Cui等[28]基于186例LARC患者的影像信息,构建T2WI、T1WI-CE和ADC三种序列联合的预测模型。结果显示,训练集和验证集中该预测模型均能良好地区分pCR,ROC曲线下面积分别为0.948和0.966。

3.4. 评估结直肠癌的分期

结直肠癌的分期不同,治疗方法也有不同的选择[29]。对于T1,T2期的患者,首选手术切除;而T3,T4期的患者多先行nCRT降期后再手术。准确的术前分期不仅能影响患者的长期预后,也是制定个体化治疗策略的关键依据。合适的术前决策还能提高患者的5年生存率[30]

Lin等[31]对268 例直肠癌患者的MRI图像进行分析研究,构建不同分期的预测模型,评估其对T1~T2期和T3~T4期的分类性能,结果表明,对于结直肠肿瘤术前T分期,影像组学有较好的预测价值。Cheng等[32]基于结直肠癌患者的平扫、动脉期及门脉期CT图像,提取影像组学特征,并与淋巴结状态相结合建立列线图,发现列线图对结直肠癌淋巴结转移有更高的预测价值。

4. 总结与展望

相对于活检,影像组学具有无创、可重复等技术优势,为患者病情监测及预后评估提供了更安全可靠的途径。影像组学技术在精准医疗发展过程中展现出巨大的应用潜力[33]。影像组学通过挖掘影像中的高通量定量特征,运用算法分析建立预测模型。构建可用于不同疾病诊断、预后评估及疗效预测的量化模型,为临床个体化治疗方案的制定提供重要信息。现已成为临床医学与生物医学工程的热门课题。但是,将其进一步应用在结直肠癌诊疗中还面临着很多问题,如:① 影像获取与重建的可重复性问题;② 扫描设备和后处理程序等没有进行标准化,造成出现不同的结果;③ ROI勾画存在较大差异;④ 影像组学研究是基于大量的医学影像数据,对于罕见类型的结直肠肿瘤,研究发展受到多重因素的限制[34]。尽管目前影像组学研究还面临着诸多挑战,但我们有理由相信,随着多学科的交叉融合及技术的不断进步,影像组学将与多学科协同合作,共同推动医学影像诊断向精准医疗方向深入[35]

基金项目

吉林省教育厅科学技术研究项目(JJKH20220075KJ)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Li, M., Li, X., Guo, Y., Miao, Z., Liu, X., Guo, S., et al. (2020) Development and Assessment of an Individualized Nomogram to Predict Colorectal Cancer Liver Metastases. Quantitative Imaging in Medicine and Surgery, 10, 397-414.
https://doi.org/10.21037/qims.2019.12.16
[2] Kanth, P. and Inadomi, J.M. (2021) Screening and Prevention of Colorectal Cancer. BMJ, 374, n1855.
https://doi.org/10.1136/bmj.n1855
[3] 张利文, 方梦捷, 臧亚丽, 等. 影像组学的发展与应用[J]. 中华放射学杂志, 2017, 51(1): 75-77.
[4] Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446.
https://doi.org/10.1016/j.ejca.2011.11.036
[5] Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., et al. (2012) Radiomics: The Process and the Challenges. Magnetic Resonance Imaging, 30, 1234-1248.
https://doi.org/10.1016/j.mri.2012.06.010
[6] van Timmeren, J.E., Cester, D., Tanadini-Lang, S., Alkadhi, H. and Baessler, B. (2020) Radiomics in Medical Imaging—“How-To” Guide and Critical Reflection. Insights into Imaging, 11, Article No. 91.
https://doi.org/10.1186/s13244-020-00887-2
[7] 谢凯, 孙鸿飞, 林涛, 等. 影像组学中特征提取研究进展[J]. 中国医学影像技术, 2017, 33(12): 1792-1796.
[8] Merok, M.A., Ahlquist, T., Røyrvik, E.C., Tufteland, K.F., Hektoen, M., Sjo, O.H., et al. (2013) Microsatellite Instability Has a Positive Prognostic Impact on Stage II Colorectal Cancer after Complete Resection: Results from a Large, Consecutive Norwegian Series. Annals of Oncology, 24, 1274-1282.
https://doi.org/10.1093/annonc/mds614
[9] Ribic, C.M., Sargent, D.J., Moore, M.J., Thibodeau, S.N., French, A.J., Goldberg, R.M., et al. (2003) Tumor Microsatellite-Instability Status as a Predictor of Benefit from Fluorouracil-Based Adjuvant Chemotherapy for Colon Cancer. New England Journal of Medicine, 349, 247-257.
https://doi.org/10.1056/nejmoa022289
[10] Kather, J.N., Pearson, A.T., Halama, N., Jäger, D., Krause, J., Loosen, S.H., et al. (2019) Deep Learning Can Predict Microsatellite Instability Directly from Histology in Gastrointestinal Cancer. Nature Medicine, 25, 1054-1056.
https://doi.org/10.1038/s41591-019-0462-y
[11] Sepulveda, A.R., Hamilton, S.R., Allegra, C.J., Grody, W., Cushman-Vokoun, A.M., Funkhouser, W.K., et al. (2017) Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. American Journal of Clinical Pathology, 147, 221-260.
https://doi.org/10.1093/ajcp/aqw209
[12] Itakura, H., Achrol, A.S., Mitchell, L.A., Loya, J.J., Liu, T., Westbroek, E.M., et al. (2015) Magnetic Resonance Image Features Identify Glioblastoma Phenotypic Subtypes with Distinct Molecular Pathway Activities. Science Translational Medicine, 7, 303ra138.
https://doi.org/10.1126/scitranslmed.aaa7582
[13] Cao, Y., Zhang, G., Zhang, J., Yang, Y., Ren, J., Yan, X., et al. (2021) Predicting Microsatellite Instability Status in Colorectal Cancer Based on Triphasic Enhanced Computed Tomography Radiomics Signatures: A Multicenter Study. Frontiers in Oncology, 11, Article 687771.
https://doi.org/10.3389/fonc.2021.687771
[14] Ma, Y., Lin, C., Liu, S., Wei, Y., Ji, C., Shi, F., et al. (2022) Radiomics Features Based on Internal and Marginal Areas of the Tumor for the Preoperative Prediction of Microsatellite Instability Status in Colorectal Cancer. Frontiers in Oncology, 12, Article 1020349.
https://doi.org/10.3389/fonc.2022.1020349
[15] Ying, M., Pan, J., Lu, G., Zhou, S., Fu, J., Wang, Q., et al. (2022) Development and Validation of a Radiomics-Based Nomogram for the Preoperative Prediction of Microsatellite Instability in Colorectal Cancer. BMC Cancer, 22, Article No. 524.
https://doi.org/10.1186/s12885-022-09584-3
[16] Zhu, G., Pei, L., Xia, H., Tang, Q. and Bi, F. (2021) Role of Oncogenic KRAS in the Prognosis, Diagnosis and Treatment of Colorectal Cancer. Molecular Cancer, 20, Article No. 143.
https://doi.org/10.1186/s12943-021-01441-4
[17] Zhou, P., Goffredo, P., Ginader, T., Thompson, D., Hrabe, J., Gribovskaja‐Rupp, I., et al. (2020) Impact of KRAS Status on Tumor Response and Survival after Neoadjuvant Treatment of Locally Advanced Rectal Cancer. Journal of Surgical Oncology, 123, 278-285.
https://doi.org/10.1002/jso.26244
[18] Kawada, K., Nakamoto, Y., Kawada, M., Hida, K., Matsumoto, T., Murakami, T., et al. (2012) Relationship between 18f-Fluorodeoxyglucose Accumulation and KRAS/BRAF Mutations in Colorectal Cancer. Clinical Cancer Research, 18, 1696-1703.
https://doi.org/10.1158/1078-0432.ccr-11-1909
[19] Chen, S., Chiang, H., Chen, W.T., Hsieh, T., Yen, K., Chiang, S., et al. (2014) Correlation between PET/CT Parameters and KRAS Expression in Colorectal Cancer. Clinical Nuclear Medicine, 39, 685-689.
https://doi.org/10.1097/rlu.0000000000000481
[20] Lovinfosse, P., Koopmansch, B., Lambert, F., Jodogne, S., Kustermans, G., Hatt, M., et al. (2016) 18F-FDG PET/CT Imaging in Rectal Cancer: Relationship with Therasmutational Status. The British Journal of Radiology, 89, Article ID: 20160212.
https://doi.org/10.1259/bjr.20160212
[21] Yang, L., Dong, D., Fang, M., Zhu, Y., Zang, Y., Liu, Z., et al. (2018) Can CT-Based Radiomics Signature Predict KRAS/NRAS/BRAF Mutations in Colorectal Cancer? European Radiology, 28, 2058-2067.
https://doi.org/10.1007/s00330-017-5146-8
[22] He, K., Liu, X., Li, M., Li, X., Yang, H. and Zhang, H. (2020) Noninvasive KRAS Mutation Estimation in Colorectal Cancer Using a Deep Learning Method Based on CT Imaging. BMC Medical Imaging, 20, Article No. 59.
https://doi.org/10.1186/s12880-020-00457-4
[23] Hu, J., Xia, X., Wang, P., Peng, Y., Liu, J., Xie, X., et al. (2022) Predicting Kirsten Rat Sarcoma Virus Gene Mutation Status in Patients with Colorectal Cancer by Radiomics Models Based on Multiphasic CT. Frontiers in Oncology, 12, Article 848798.
https://doi.org/10.3389/fonc.2022.848798
[24] Sauer, R., Liersch, T., Merkel, S., Fietkau, R., Hohenberger, W., Hess, C., et al. (2012) Preoperative versus Postoperative Chemoradiotherapy for Locally Advanced Rectal Cancer: Results of the German CAO/ARO/AIO-94 Randomized Phase III Trial after a Median Follow-Up of 11 Years. Journal of Clinical Oncology, 30, 1926-1933.
https://doi.org/10.1200/jco.2011.40.1836
[25] 朱洁, 沈浮, 袁渊, 等. 磁共振影像组学对直肠癌新辅助治疗后病理完全反应的评估价值[J]. 放射学实践, 2022, 37(4): 426-431.
[26] Chen, B., Xie, H., Li, Y., Jiang, X., Xiong, L., Tang, X., et al. (2022) MRI-Based Radiomics Features to Predict Treatment Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer: A Single Center, Prospective Study. Frontiers in Oncology, 12, Article 801743.
https://doi.org/10.3389/fonc.2022.801743
[27] Horvat, N., Veeraraghavan, H., Khan, M., Blazic, I., Zheng, J., Capanu, M., et al. (2018) MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology, 287, 833-843.
https://doi.org/10.1148/radiol.2018172300
[28] Cui, Y., Yang, X., Shi, Z., Yang, Z., Du, X., Zhao, Z., et al. (2018) Radiomics Analysis of Multiparametric MRI for Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. European Radiology, 29, 1211-1220.
https://doi.org/10.1007/s00330-018-5683-9
[29] 曹伟, 荣耀, 刘洪. CT与MRI对直肠癌术前诊断与分期的临床价值对比[J]. 实用癌症杂志, 2016, 31(11): 1851-1853.
[30] Glimelius, B.L.G. (2002) The Role of Preoperative and Postoperative Radiotherapy in Rectal Cancer. Clinical Colorectal Cancer, 2, 82-92.
https://doi.org/10.3816/ccc.2002.n.014
[31] Lin, X., Zhao, S., Jiang, H., Jia, F., Wang, G., He, B., et al. (2021) A Radiomics-Based Nomogram for Preoperative T Staging Prediction of Rectal Cancer. Abdominal Radiology, 46, 4525-4535.
https://doi.org/10.1007/s00261-021-03137-1
[32] Cheng, Y., Yu, Q., Meng, W. and Jiang, W. (2022) Clinico-Radiologic Nomogram Using Multiphase CT to Predict Lymph Node Metastasis in Colon Cancer. Molecular Imaging and Biology, 24, 798-806.
https://doi.org/10.1007/s11307-022-01730-4
[33] 李芊, 周欣元, 汪晓东, 等. 影像组学技术与结直肠癌临床应用研究进展[J]. 中国普外基础与临床杂志, 2019, 26(10): 1253-1258.
[34] Zhang, X., Zhang, Y., Zhang, G., Qiu, X., Tan, W., Yin, X., et al. (2022) Deep Learning with Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Frontiers in Oncology, 12, Article 773840.
https://doi.org/10.3389/fonc.2022.773840
[35] 左艳, 黄钢, 聂生东. 深度学习在医学影像智能处理中的应用与挑战[J]. 中国图象图形学报, 2021, 26(2): 305-315.