[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
Wilcken, N.R. (2023) The Importance of Early Breast Cancer Treatment: Delay Can Be Deadly. Medical Journal of Australia, 219, 408-408. https://doi.org/10.5694/mja2.52123
|
[3]
|
沈敏娟, 卫敏佳, 何佳颖, 等. 乳腺微钙化促进乳腺癌骨转移的研究进展[J]. 中国病理生理杂志, 2021, 37(2): 369-374.
|
[4]
|
Azam, S., Eriksson, M., Sjölander, A., Gabrielson, M., Hellgren, R., Czene, K., et al. (2021) Mammographic Microcalcifications and Risk of Breast Cancer. British Journal of Cancer, 125, 759-765. https://doi.org/10.1038/s41416-021-01459-x
|
[5]
|
Rizwan, A., Paidi, S.K., Zheng, C., Cheng, M., Barman, I. and Glunde, K. (2018) Mapping the Genetic Basis of Breast Microcalcifications and Their Role in Metastasis. Scientific Reports, 8, Article No. 11067. https://doi.org/10.1038/s41598-018-29330-9
|
[6]
|
Haka, A.S., Shafer-Peltier, K.E., Fitzmaurice, M., Crowe, J., Dasari, R.R. and Feld, M.S. (2002) Identifying Microcalcifications in Benign and Malignant Breast Lesions by Probing Differences in Their Chemical Composition Using Raman Spectroscopy. Cancer Researc, 62, 5375-5380.
|
[7]
|
Kunitake, J.A.M.R., Sudilovsky, D., Johnson, L.M., Loh, H., Choi, S., Morris, P.G., et al. (2023) Biomineralogical Signatures of Breast Microcalcifications. Science Advances, 9, e3152. https://doi.org/10.1126/sciadv.ade3152
|
[8]
|
Sharma, T., Sharma, A., Maheshwari, R., Pachori, G., Kumari, P. and Mandal, C.C. (2020) Docosahexaenoic Acid (DHA) Inhibits Bone Morphogenetic Protein-2 (BMP-2) Elevated Osteoblast Potential of Metastatic Breast Cancer (MDA-MB-231) Cells in Mammary Microcalcification. Nutrition and Cancer, 72, 873-883. https://doi.org/10.1080/01635581.2019.1651879
|
[9]
|
Clemenceau, A., Chang, S., Hanna, M., Durocher, F. and Diorio, C. (2022) Association between Vitamin D and Calcium Intakes, Breast Microcalcifications, Breast Tissue Age-Related Lobular Involution and Breast Density. Menopause, 29, 1404-1415. https://doi.org/10.1097/gme.0000000000002070
|
[10]
|
Huan, J., Xing, L., Qin, X., Gao, Z., Pan, X. and Zhao, Z. (2012) Expression and Clinical Significance of Osteopontin in Calcified Breast Tissue. Asian Pacific Journal of Cancer Prevention, 13, 5219-5223. https://doi.org/10.7314/apjcp.2012.13.10.5219
|
[11]
|
Wang, X., Chao, L., Ma, G., Chen, L., Jin, G., Hua, M., et al. (2010) Primary Breast Carcinoma: Association of Mammographic Calcifications with Osteopontin Expression. Radiology, 254, 69-78. https://doi.org/10.1148/radiol.2541090675
|
[12]
|
Scimeca, M., Bonfiglio, R., Menichini, E., Albonici, L., Urbano, N., De Caro, M., et al. (2019) Microcalcifications Drive Breast Cancer Occurrence and Development by Macrophage-Mediated Epithelial to Mesenchymal Transition. International Journal of Molecular Sciences, 20, Article 5633. https://doi.org/10.3390/ijms20225633
|
[13]
|
Zhang, L., Hao, C., Wu, Y., Zhu, Y., Ren, Y. and Tong, Z. (2019) Microcalcification and BMP-2 in Breast Cancer: Correlation with Clinicopathological Features and Outcomes. OncoTargets and Therapy, 12, 2023-2033. https://doi.org/10.2147/ott.s187835
|
[14]
|
Cox, R.F., Hernandez-Santana, A., Ramdass, S., McMahon, G., Harmey, J.H. and Morgan, M.P. (2012) Microcalcifications in Breast Cancer: Novel Insights into the Molecular Mechanism and Functional Consequence of Mammary Mineralisation. British Journal of Cancer, 106, 525-537. https://doi.org/10.1038/bjc.2011.583
|
[15]
|
Westendorf, J.J. (2006) Transcriptional Co-Repressors of Runx2. Journal of Cellular Biochemistry, 98, 54-64. https://doi.org/10.1002/jcb.20805
|
[16]
|
陈晨, 张丽娜, 顾林. Runt相关转录因子2和骨桥蛋白在乳腺癌组织中的表达及临床意义[J]. 肿瘤, 2019, 39(2): 107-115.
|
[17]
|
Wang, S., Jiang, H., Zheng, C., Gu, M. and Zheng, X. (2022) Secretion of BMP-2 by Tumor-Associated Macrophages (TAM) Promotes Microcalcifications in Breast Cancer. BMC Cancer, 22, Article No. 34. https://doi.org/10.1186/s12885-021-09150-3
|
[18]
|
Wang, S., Gu, M., Jiang, H. and Zheng, X. (2020) BMP-2 Upregulates the AKT/mTOR Pathway in Breast Cancer with Microcalcification and Indicates a Poor Prognosis. Clinical and Translational Oncology, 22, 1263-1271. https://doi.org/10.1007/s12094-019-02248-y
|
[19]
|
Li, X., Lu, W., Fu, X., Zhang, Y., Yang, K., Zhong, N., et al. (2013) BMP4 Increases Canonical Transient Receptor Potential Protein Expression by Activating P38 MAPK and ERK1/2 Signaling Pathways in Pulmonary Arterial Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 49, 212-220. https://doi.org/10.1165/rcmb.2012-0051oc
|
[20]
|
Scimeca, M., Giocondo, R., Montanaro, M., Granaglia, A., Bonfiglio, R., Tancredi, V., et al. (2020) BMP-2 Variants in Breast Epithelial to Mesenchymal Transition and Microcalcifications Origin. Cells, 9, Article 1381. https://doi.org/10.3390/cells9061381
|
[21]
|
Komori, T. (2009) Regulation of Osteoblast Differentiation by Runx2. In: Choi, Y., Ed., Advances in Experimental Medicine and Biology, Vol. 658, Springer, 43-49. https://doi.org/10.1007/978-1-4419-1050-9_5
|
[22]
|
Giacobbi, E., Bonfiglio, R., Rotondaro, G., Servadei, F., Smirnov, A., Palumbo, V., et al. (2025) Implications of Mineralization Biomarkers in Breast Cancer Outcomes Beyond Calcifications. International Journal of Molecular Sciences, 26, Article 645. https://doi.org/10.3390/ijms26020645
|
[23]
|
张挚, 吴江, 梁冰, 等. 缺氧诱导因子-1α与乳腺浸润性导管癌上皮-间质转化的关系[J]. 山东医药, 2012, 52(3): 90-92.
|
[24]
|
Tian, Y., Zhao, L., Gui, Z., Liu, S., Liu, C., Yu, T., et al. (2023) PI3K/AKT Signaling Activates HIF1α to Modulate the Biological Effects of Invasive Breast Cancer with Microcalcification. npj Breast Cancer, 9, Article No. 93. https://doi.org/10.1038/s41523-023-00598-z
|
[25]
|
Tian, Y., Zhao, L., Gui, Z., Liu, S., Liu, C., Yu, T., et al. (2023) Clinical and Pathological Features Analysis of Invasive Breast Cancer with Microcalcification. Cancer Medicine, 12, 11351-11362. https://doi.org/10.1002/cam4.5848
|
[26]
|
Tarantino, U., Greggi, C., Cariati, I., Visconti, V.V., Gasparini, M., Cateni, M., et al. (2021) The Role of PTX3 in Mineralization Processes and Aging-Related Bone Diseases. Frontiers in Immunology, 11, Article ID: 622772. https://doi.org/10.3389/fimmu.2020.622772
|
[27]
|
Bonfiglio, R., Scimeca, M., Toschi, N., Pistolese, C.A., Giannini, E., Antonacci, C., et al. (2018) Radiological, Histological and Chemical Analysis of Breast Microcalcifications: Diagnostic Value and Biological Significance. Journal of Mammary Gland Biology and Neoplasia, 23, 89-99. https://doi.org/10.1007/s10911-018-9396-0
|
[28]
|
夏利敏, 霍永平, 马祥敏, 等. 乳腺癌微钙化与PTX3、BMP2蛋白表达的相关性研究[J]. 中国优生与遗传杂志, 2024, 32(11): 2316-2320.
|
[29]
|
姜雪, 祖国, 姜力群, 等. HER2阳性浸润性乳腺癌X射线摄影微钙化特点[J]. 中华肿瘤防治杂志, 2019, 26(17): 1280-1283.
|
[30]
|
吴翊楠. 乳腺癌中微钙化与临床病理特征的相关性[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2022.
|
[31]
|
冉寅芳, 刘强, 张高尚, 等. 乳腺X线评估微钙化与乳腺癌发病及其乳腺癌分子生物学预后的关系[J]. 齐齐哈尔医学院学报, 2025, 46(5): 475-478.
|
[32]
|
Naseem, M., Murray, J., Hilton, J.F., Karamchandani, J., Muradali, D., Faragalla, H., et al. (2015) Mammographic Microcalcifications and Breast Cancer Tumorigenesis: A Radiologic-Pathologic Analysis. BMC Cancer, 15, Article No. 307. https://doi.org/10.1186/s12885-015-1312-z
|
[33]
|
薛成伟. 乳腺癌钼靶片钙化特征及其与HER2、VEGF表达的关系[J]. 中华普外科手术学杂志(电子版), 2018, 12(4): 358-360.
|
[34]
|
李冬芹, 陈伟志. 乳腺癌微钙化与ER、PR及HER-2表达相关性研究[J]. 锦州医科大学学报, 2020, 41(2): 48-52.
|
[35]
|
黄选东, 周雪瑞, 沈阳, 等. 乳腺癌VEGF的表达与肿瘤血管生成的关系[J]. 徐州医学院学报, 2005(6): 90-92.
|
[36]
|
李青春, 姜浩, 刘进才, 钟警, 罗光华, 秦郁. 乳腺癌组织中VEGF的表达及其与微小钙化、毛刺征形成的关系[J]. 实用放射学杂志, 2014, 30(9): 1470-1472.
|
[37]
|
李青春, 姜浩, 刘进才, 等. 乳腺癌毛刺征、微小钙化与VEGF表达的相关性[J]. 海南医学, 2014, 25(11): 1621-1623.
|
[38]
|
Ran, Z., Hou, L., Guo, H., Wang, K. and Li, X. (2018) Expression of VEGF, COX-2 and MMP-9 in Breast Cancer and Their Relationship with Ultrasound Findings. International Journal of Clinical and Experimental Pathology, 11, 4264-4269
|
[39]
|
Zhang, Y., Dang, S., Wan, Y., Yang, F. and Li, T. (2017) Influence of VEGF, COX-2, and MMP-9 Expression on the Molyb-Denum-Targeted X-Ray in Breast Cancer. European Journal of Gynaecological Oncology, 38, 45-48.
|
[40]
|
Nie, M., Qin, Y., Zhu, J., Li, Y. and Wang, Z. (2018) Correlation between Ultrasonic Features and Expression Levels of C-erbB-2, VEGF and Nm23 in Breast Cancer. Oncology Letters, 16, 1701-1707. https://doi.org/10.3892/ol.2018.8777
|
[41]
|
Chen, L., Duan, H., Tang, X., Ma, C., Yang, L., Xie, Z., et al. (2022) A Mammography-Based Nomogram for Prediction of Malignancy in Breast Suspicious Calcification. Academic Radiology, 29, 1022-1028. https://doi.org/10.1016/j.acra.2021.09.003
|
[42]
|
Avdan Aslan, A., Gültekin, S., Esendağli Yilmaz, G. and Kurukahvecioğlu, O. (2021) Is There Any Association between Mammographic Features of Microcalcifications and Breast Cancer Subtypes in Ductal Carcinoma in Situ? Academic Radiology, 28, 963-968. https://doi.org/10.1016/j.acra.2020.05.032
|
[43]
|
Wang, J., Zhao, L., Hu, X., Lv, L., Zhang, X., Lu, M., et al. (2024) Clinicopathological Characteristics and Prognostic Significance of Casting-Type Calcifications in Patients with Invasive Breast Cancer Presenting with Microcalcification. Scientific Reports, 14, Article No. 13351. https://doi.org/10.1038/s41598-024-64353-5
|
[44]
|
Reis, J., Oliveira, T., Pereira, A., Infante, P., Leal, N. and Faísca, P. (2020) Microtomographic Characterization of Calcifications in Canine Mammary Tumours. Veterinary and Comparative Oncology, 18, 281-291. https://doi.org/10.1111/vco.12545
|
[45]
|
van Leeuwen, M.M., Doyle, S., van den Belt-Dusebout, A.W., van der Mierden, S., Loo, C.E., Mann, R.M., et al. (2023) Clinicopathological and Prognostic Value of Calcification Morphology Descriptors in Ductal Carcinoma in Situ of the Breast: A Systematic Review and Meta-Analysis. Insights into Imaging, 14, Article No. 213. https://doi.org/10.1186/s13244-023-01529-z
|
[46]
|
Lilleborge, M., Falk, R.S., Hovda, T., Holmen, M.M., Ursin, G. and Hofvind, S. (2021) Patterns of Aggressiveness: Risk of Progression to Invasive Breast Cancer by Mammographic Features of Calcifications in Screen-Detected Ductal Carcinoma in Situ. Acta Radiologica, 63, 586-595. https://doi.org/10.1177/02841851211006319
|
[47]
|
Kim, J., Kim, E., Kim, M.J., Moon, H.J. and Yoon, J.H. (2017) “Category 4A” Microcalcifications: How Should This Subcategory Be Applied to Microcalcifications Seen on Mammography? Acta Radiologica, 59, 147-153. https://doi.org/10.1177/0284185117709036
|
[48]
|
Sefidbakht, S., Beizavi, Z., Kanaani Nejad, F., Pishdad, P., Sadighi, N., Ghoddusi Johari, M., et al. (2024) Association of Imaging and Pathological Findings of Breast Cancer in Very Young Women: Report of a Twenty-Year Retrospective Study. Clinical Imaging, 110, Article 110094. https://doi.org/10.1016/j.clinimag.2024.110094
|
[49]
|
Cen, D., Xu, L., Li, N., Chen, Z., Wang, L., Zhou, S., et al. (2017) BI-RADS 3-5 Microcalcifications Can Preoperatively Predict Breast Cancer HER2 and Luminal a Molecular Subtype. Oncotarget, 8, 13855-13862. https://doi.org/10.18632/oncotarget.14655
|
[50]
|
何莹, 王敏芳, 郑莎莎, 等. 乳腺癌微钙化与HER2、ER、PR、Ki67的相关性分析[J]. 中国超声医学杂志, 2022, 38(6): 633-636.
|
[51]
|
Xu, S., Wang, Q. and Hong, Z. (2024) The Correlation between Multi-Mode Ultrasonographic Features of Breast Cancer and Axillary Lymph Node Metastasis. Frontiers in Oncology, 14, Article ID: 1433872. https://doi.org/10.3389/fonc.2024.1433872
|
[52]
|
Schrup, S., Hardway, H., Vierkant, R.A., Winham, S.J., Jensen, M.R., McCauley, B., et al. (2024) Microcalcifications in Benign Breast Biopsies: Association with Lesion Type and Risk. Breast Cancer Research and Treatment, 208, 543-551. https://doi.org/10.1007/s10549-024-07448-x
|
[53]
|
Li, Y., Cao, J., Zhou, Y., Mao, F., Shen, S. and Sun, Q. (2019) Mammographic Casting-Type Calcification Is an Independent Prognostic Factor in Invasive Breast Cancer. Scientific Reports, 9, Article No. 10544. https://doi.org/10.1038/s41598-019-47118-3
|
[54]
|
金家承, 陈鹏超. 超声影像学特征评估乳腺癌腋窝淋巴结转移的影响因素分析[J]. 浙江医学, 2023, 45(20): 2208-2211.
|
[55]
|
Hu, Y., Mao, L., Wang, M., Li, Z., Li, M., Wang, C., et al. (2023) New Insights into Breast Microcalcification for Poor Prognosis: NACT Cohort and Bone Metastasis Evaluation Cohort. Journal of Cancer Research and Clinical Oncology, 149, 7285-7297. https://doi.org/10.1007/s00432-023-04668-4
|