[1]
|
Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology, 76, 2982-3021.
|
[2]
|
刘明波, 何新叶, 杨晓红, 等.《中国心血管健康与疾病报告2023》要点解读[J]. 中国心血管杂志, 2024, 29(4): 305-324.
|
[3]
|
Lee, C.R., Luzum, J.A., Sangkuhl, K., Gammal, R.S., Sabatine, M.S., Stein, C.M., et al. (2022) Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clinical Pharmacology & Therapeutics, 112, 959-967.
|
[4]
|
Ned, R.M. (2010) Genetic Testing for CYP450 Polymorphisms to Predict Response to Clopidogrel: Current Evidence and Test Availability. Application: Pharmacogenomics. PLOS Currents, 2, RRN1180. https://doi.org/10.1371/currents.rrn1180
|
[5]
|
Rothenbacher, D., Hoffmann, M.M., Breitling, L.P., Rajman, I., Koenig, W. and Brenner, H. (2013) Cytochrome P450 2C19*2 Polymorphism in Patients with Stable Coronary Heart Disease and Risk for Secondary Cardiovascular Disease Events: Results of a Long-Term Follow-Up Study in Routine Clinical Care. BMC Cardiovascular Disorders, 13, Article No. 61. https://doi.org/10.1186/1471-2261-13-61
|
[6]
|
Xi, Z., Fang, F., Wang, J., AlHelal, J., Zhou, Y. and Liu, W. (2017) CYP2C19 Genotype and Adverse Cardiovascular Outcomes after Stent Implantation in Clopidogrel-Treated Asian Populations: A Systematic Review and Meta-Analysis. Platelets, 30, 229-240. https://doi.org/10.1080/09537104.2017.1413178
|
[7]
|
Palmerini, T., Bruno, A.G., Gilard, M., Morice, M., Valgimigli, M., Montalescot, G., et al. (2019) Risk-Benefit Profile of Longer-Than-1-Year Dual-Antiplatelet Therapy Duration after Drug-Eluting Stent Implantation in Relation to Clinical Presentation. Circulation: Cardiovascular Interventions, 12, e007541. https://doi.org/10.1161/circinterventions.118.007541
|
[8]
|
Palmerini, T., Bruno, A.G., Redfors, B., Valgimigli, M., Taglieri, N., Feres, F., et al. (2021) Risk-Benefit of 1-Year DAPT after DES Implantation in Patients Stratified by Bleeding and Ischemic Risk. Journal of the American College of Cardiology, 78, 1968-1986. https://doi.org/10.1016/j.jacc.2021.08.070
|
[9]
|
中华医学会心血管病学分会动脉粥样硬化与冠心病学组, 中华医学会心血管病学分会介入心脏病学组, 中国医师协会心血管内科医师分会血栓防治专业委员会, 等. 冠心病双联抗血小板治疗中国专家共识[J]. 中华心血管病杂志, 2021, 49(5): 432-454.
|
[10]
|
LaRosa, A.R., Swabe, G.M. and Magnani, J.W. (2022) Income and Antiplatelet Adherence Following Percutaneous Coronary Intervention. International Journal of Cardiology Cardiovascular Risk and Prevention, 14, Article 200140. https://doi.org/10.1016/j.ijcrp.2022.200140
|
[11]
|
Luu, N.M., Dinh, A.T., Nguyen, T.T.H. and Nguyen, V.H. (2019) Adherence to Antiplatelet Therapy after Coronary Intervention among Patients with Myocardial Infarction Attending Vietnam National Heart Institute. BioMed Research International, 2019, Article ID: 6585040.
|
[12]
|
Rasko, J.E.J., Samelson-Jones, B.J., George, L.A., Giermasz, A., Ducore, J.M., Teitel, J.M., et al. (2025) Fidanacogene Elaparvovec for Hemophilia B—A Multiyear Follow-Up Study. New England Journal of Medicine, 392, 1508-1517. https://doi.org/10.1056/nejmoa2307159
|
[13]
|
Pereira, N.L., Rihal, C., Lennon, R., Marcus, G., Shrivastava, S., Bell, M.R., et al. (2021) Effect of CYP2C19 Genotype on Ischemic Outcomes during Oral P2Y12 Inhibitor Therapy: A Meta-Analysis. JACC: Cardiovascular Interventions, 14, 739-750. https://doi.org/10.1016/j.jcin.2021.01.024
|
[14]
|
Jiang, Q., Huang, K., Yin, L., Kong, H., Yang, Z. and Hu, S. (2024) Effect of Ticagrelor versus Clopidogrel after Off-Pump Coronary Artery Bypass Grafting on Postoperative Atrial Fibrillation: A Cohort Study. Journal of the American Heart Association, 13, e035424. https://doi.org/10.1161/jaha.124.035424
|
[15]
|
龚磊. CYP2 C19: 氯吡格雷代谢的关键酶? [J]. 心血管病学进展, 2017, 38(2): 222-225.
|
[16]
|
张爱玲, 杨莉萍, 胡欣. 亚洲健康人群CYP2C19等位基因发生率的合并分析[J]. 中国循证医学杂志, 2013, 13(12): 1431-1439.
|
[17]
|
Bhat, K.G., Pillai, R.K.J., Lodhi, H., Guleria, V.S., Abbot, A.K., Gupta, L., et al. (2023) Pharmacogenomic Evaluation of CYP2C19 Alleles Linking Low Clopidogrel Response and the Risk of Acute Coronary Syndrome in Indians. The Journal of Gene Medicine, 26, e3634. https://doi.org/10.1002/jgm.3634
|
[18]
|
曹银银, 潘其扬, 李健, 等. 川崎病合并冠状动脉病变患儿氯吡格雷抵抗与基因变异性的关系[J]. 中华儿科杂志, 2024, 62(10): 981-988.
|
[19]
|
Bhattacharyya, T. Nicholls, S.J., Topol, E.J., et al. (2008) Relationship of Paraoxonase 1 (PON1) Gene Polymorphisms and Functional Activity with Systemic Oxidative Stress and Cardiovascular Risk. JAMA, 299, 1265-1276. https://doi.org/10.1001/jama.299.11.1265
|
[20]
|
Pan, Y., Chen, W., Wang, Y., Li, H., Johnston, S.C., Simon, T., et al. (2019) Association between ABCB1 Polymorphisms and Outcomes of Clopidogrel Treatment in Patients with Minor Stroke or Transient Ischemic Attack: Secondary Analysis of a Randomized Clinical Trial. JAMA Neurology, 76, 552-560. https://doi.org/10.1001/jamaneurol.2018.4775
|
[21]
|
Asmamaw Mengstie, M., Teshome Azezew, M., Asmamaw Dejenie, T., Teshome, A.A., Tadele Admasu, F., Behaile Teklemariam, A., et al. (2024) Recent Advancements in Reducing the Off-Target Effect of CRISPR-Cas9 Genome Editing. Biologics: Targets and Therapy, 18, 21-28. https://doi.org/10.2147/btt.s429411
|
[22]
|
Kato-Inui, T., Takahashi, G., Hsu, S. and Miyaoka, Y. (2018) Clustered Regularly Interspaced Short Palindromic Repeats (Crispr)/Crispr-Associated Protein 9 with Improved Proof-Reading Enhances Homology-Directed Repair. Nucleic Acids Research, 46, 4677-4688. https://doi.org/10.1093/nar/gky264
|
[23]
|
Zhang, L., Che, C., Du, Y., Han, L., Wang, J., Zhang, C., et al. (2025) N-Homocysteinylation of β-Arrestins Biases GPCR Signaling and Promotes Platelet Activation. Blood, 145, 2374-2389. https://doi.org/10.1182/blood.2024025593
|
[24]
|
Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S. and Gregory, P.D. (2010) Genome Editing with Engineered Zinc Finger Nucleases. Nature Reviews Genetics, 11, 636-646. https://doi.org/10.1038/nrg2842
|
[25]
|
Christian, M., Cermak, T., Doyle, E.L., et al. (2010) Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics, 186, 757-761. https://doi.org/10.1534/genetics.110.120717
|
[26]
|
Gupta, R.M. and Musunuru, K. (2014) Expanding the Genetic Editing Tool Kit: ZFNs, TALENs, and CRISPR-Cas9. Journal of Clinical Investigation, 124, 4154-4161. https://doi.org/10.1172/jci72992
|
[27]
|
徐学武, 俞卫锋. 第三代腺病毒载体的研究进展[J]. 生物技术, 2005, 15(3): 79-82.
|
[28]
|
Goepfert, C., Imai, M., Brouard, S., Csizmadia, E., Kaczmarek, E. and Robson, S.C. (2000) CD39 Modulates Endothelial Cell Activation and Apoptosis. Molecular Medicine, 6, 591-603. https://doi.org/10.1007/bf03401797
|
[29]
|
Muruve, D.A. (2004) The Innate Immune Response to Adenovirus Vectors. Human Gene Therapy, 15, 1157-1166. https://doi.org/10.1089/hum.2004.15.1157
|
[30]
|
Naso, M.F., Tomkowicz, B., Perry, W.L. and Strohl, W.R. (2017) Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs, 31, 317-334. https://doi.org/10.1007/s40259-017-0234-5
|
[31]
|
Li, F., Yang, X., Liu, J., Shu, K., Shen, C., Chen, T., et al. (2019) Antithrombotic Effect of ShRNA Target F12 Mediated by Adeno-Associated Virus. Molecular Therapy-Nucleic Acids, 16, 295-301. https://doi.org/10.1016/j.omtn.2019.02.026
|
[32]
|
Mcclements, M.E. and Maclaren, R.E. (2017) Adeno-Associated Virus (AAV) Dual Vector Strategies for Gene Therapy Encoding Large Transgenes. The Yale Journal of Biology and Medicine, 90, 611-23.
|
[33]
|
Costa Verdera, H., Kuranda, K. and Mingozzi, F. (2020) AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Molecular Therapy: The Journal of the American Society of Gene Therapy, 28, 723-746. https://doi.org/10.1016/j.ymthe.2019.12.010
|
[34]
|
Fu, Q., Polanco, A., Lee, Y.S. and Yoon, S. (2023) Critical Challenges and Advances in Recombinant Adeno-Associated Virus (rAAV) Biomanufacturing. Biotechnology and Bioengineering, 120, 2601-2621. https://doi.org/10.1002/bit.28412
|
[35]
|
Pfeiffer, F., Gröber, C., Blank, M., Händler, K., Beyer, M., Schultze, J.L., et al. (2018) Systematic Evaluation of Error Rates and Causes in Short Samples in Next-Generation Sequencing. Scientific Reports, 8, Article No. 10950. https://doi.org/10.1038/s41598-018-29325-6
|
[36]
|
王国华, 吕军鸿, 雷晓玲, 等. 单分子PCR产物错误率分析[J]. 生物化学与生物物理进展, 2004, 31(2): 159-162.
|
[37]
|
刘姗姗, 岳素文, 江洪, 等. 一种新的引物二聚体形成机制[J]. 华中科技大学学报(医学版), 2014, 43(1): 53-58.
|
[38]
|
Nikpay, M., Goel, A., Won, H.H., et al. (2015) A Comprehensive 1000 Genomes-Based Genome-Wide Association Meta-Analysis of Coronary Artery Disease. Nature Genetics, 47, 1121-1130. https://doi.org/10.1038/ng.3396
|
[39]
|
The Coronary Artery Disease (C4D) Genetics Consortium (2011) A Genome-Wide Association Study in Europeans and South Asians Identifies Five New Loci for Coronary Artery Disease. Nature Genetics, 43, 339-344. https://doi.org/10.1038/ng.782
|
[40]
|
Huang, X. and Yang, Y. (2009) Innate Immune Recognition of Viruses and Viral Vectors. Human Gene Therapy, 20, 293-301. https://doi.org/10.1089/hum.2008.141
|
[41]
|
Lek, A., Wong, B., Keeler, A., et al. (2023) Unexpected Death of a Duchenne Muscular Dystrophy Patient in an N-of-1 Trial of rAAV9-Delivered CRISPR-Transactivator. Preprint. https://doi.org/10.1101/2023.05.16.23289881
|
[42]
|
Dhungel, B.P., Winburn, I., da Fonseca Pereira, C., Huang, K., Chhabra, A. and Rasko, J.E.J. (2024) Understanding AAV Vector Immunogenicity: From Particle to Patient. Theranostics, 14, 1260-1288. https://doi.org/10.7150/thno.89380
|
[43]
|
Fan, H. and Johnson, C. (2011) Insertional Oncogenesis by Non-Acute Retroviruses: Implications for Gene Therapy. Viruses, 3, 398-422. https://doi.org/10.3390/v3040398
|
[44]
|
van der Loo, J.C.M., Swaney, W.P., Grassman, E., Terwilliger, A., Higashimoto, T., Schambach, A., et al. (2012) Critical Variables Affecting Clinical-Grade Production of the Self-Inactivating Gamma-Retroviral Vector for the Treatment of X-Linked Severe Combined Immunodeficiency. Gene Therapy, 19, 872-876. https://doi.org/10.1038/gt.2012.37
|
[45]
|
Tenenbaum, L., Lehtonen, E. and Monahan, P. (2003) Evaluation of Risks Related to the Use of Adeno-Associated Virus-Based Vectors. Current Gene Therapy, 3, 545-565. https://doi.org/10.2174/1566523034578131
|
[46]
|
Guo, C., Ma, X., Gao, F. and Guo, Y. (2023) Off-Target Effects in CRISPR/Cas9 Gene Editing. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1143157. https://doi.org/10.3389/fbioe.2023.1143157
|
[47]
|
Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., et al. (2019) Cytosine Base Editor Generates Substantial Off-Target Single-Nucleotide Variants in Mouse Embryos. Science, 364, 289-292. https://doi.org/10.1126/science.aav9973
|
[48]
|
Brokowski, C. and Adli, M. (2019) CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of Molecular Biology, 431, 88-101. https://doi.org/10.1016/j.jmb.2018.05.044
|
[49]
|
Ran, F.A., Hsu, P.D., Lin, C., Gootenberg, J.S., Konermann, S., Trevino, A.E., et al. (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell, 154, 1380-1389. https://doi.org/10.1016/j.cell.2013.08.021
|
[50]
|
Xiong, X., Liu, K., Li, Z., Xia, F., Ruan, X., He, X., et al. (2023) Split Complementation of Base Editors to Minimize Off-Target Edits. Nature Plants, 9, 1832-1847. https://doi.org/10.1038/s41477-023-01540-8
|