|
[1]
|
Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I. and Dumat, C. (2017) A Comparison of Technologies for Remediation of Heavy Metal Contaminated Soils. Journal of Geochemical Exploration, 182, 247-268. [Google Scholar] [CrossRef]
|
|
[2]
|
Shah, V. and Daverey, A. (2020) Phytoremediation: A Multidisciplinary Approach to Clean up Heavy Metal Contaminated Soil. Environmental Technology & Innovation, 18, Article ID: 100774. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhu, Y., Xu, F., Liu, Q., Chen, M., Liu, X., Wang, Y., et al. (2019) Nanomaterials and Plants: Positive Effects, Toxicity and the Remediation of Metal and Metalloid Pollution in Soil. Science of the Total Environment, 662, 414-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., et al. (2016) Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicology and Environmental Safety, 126, 111-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Coelho, D.G., da Silva, V.M., Martins, A.O., de Araújo, H.H., de Souza Miranda, R., Araújo, E.F., et al. (2025) Unraveling the Unique and Associated Physiological Challenges of Iron, Manganese and Arsenic on Pistia stratiotes L. for Phytoremediation of Multi-Contaminated Water. Science of the Total Environment, 980, Article ID: 179517. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ma, F., Zhang, Q., Xu, D., Hou, D., Li, F. and Gu, Q. (2014) Mercury Removal from Contaminated Soil by Thermal Treatment with FeCl3 at Reduced Temperature. Chemosphere, 117, 388-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q., et al. (2018) Remediation of Multiple Heavy Metal-Contaminated Soil through the Combination of Soil Washing and in Situ Immobilization. Science of the Total Environment, 635, 92-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Regier, N., Larras, F., Bravo, A.G., Ungureanu, V., Amouroux, D. and Cosio, C. (2013) Mercury Bioaccumulation in the Aquatic Plant Elodea Nuttallii in the Field and in Microcosm: Accumulation in Shoots from the Water Might Involve Copper Transporters. Chemosphere, 90, 595-602. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Xie, H., Ma, Y., Wang, Y., Sun, F., Liu, R., Liu, X., et al. (2021) Biological Response and Phytoremediation of Perennial Ryegrass to Halogenated Flame Retardants and Cd in Contaminated Soils. Journal of Environmental Chemical Engineering, 9, Article ID: 106526. [Google Scholar] [CrossRef]
|
|
[10]
|
Li, T., Di, Z., Islam, E., Jiang, H. and Yang, X. (2011) Rhizosphere Characteristics of Zinc Hyperaccumulator Sedum alfredii Involved in Zinc Accumulation. Journal of Hazardous Materials, 185, 818-823. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Cai, X., Fu, J., Li, X., Peng, L., Yang, L., Liang, Y., et al. (2022) Low-Molecular-Weight Organic Acid-Mediated Tolerance and Pb Accumulation in Centipedegrass under Pb Stress. Ecotoxicology and Environmental Safety, 241, Article ID: 113755. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
da Silva, E.B., Mussoline, W.A., Wilkie, A.C. and Ma, L.Q. (2019) Arsenic Removal and Biomass Reduction of As-Hyperaccumulator Pteris Vittata: Coupling Ethanol Extraction with Anaerobic Digestion. Science of the Total Environment, 666, 205-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yaashikaa, P.R., Kumar, P.S., Jeevanantham, S. and Saravanan, R. (2022) A Review on Bioremediation Approach for Heavy Metal Detoxification and Accumulation in Plants. Environmental Pollution, 301, Article ID: 119035. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xu, Q., Cai, H., Li, W., Wu, M., Wu, Y. and Gong, X. (2022) Carbon Dot/Inorganic Nanomaterial Composites. Journal of Materials Chemistry A, 10, 14709-14731. [Google Scholar] [CrossRef]
|
|
[15]
|
Ozfidan-Konakci, C., Yildiztugay, E., Arikan-Abdulveli, B., Alp-Turgut, F.N., Baslak, C. and Yıldırım, M. (2024) The Characterization of Plant Derived-Carbon Dots and Its Responses on Chlorophyll a Fluorescence Kinetics, Radical Accumulation in Guard Cells, Cellular Redox State and Antioxidant System in Chromium Stressed-Lactuca sativa. Chemosphere, 356, Article ID: 141937. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhang, M., Hu, L., Wang, H., Song, Y., Liu, Y., Li, H., et al. (2018) One-Step Hydrothermal Synthesis of Chiral Carbon Dots and Their Effects on Mung Bean Plant Growth. Nanoscale, 10, 12734-12742. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, X., Li, R., Zhan, M., Hou, Q., Zhang, H., Wu, G., et al. (2024) Combined Magnetic Biochar and Ryegrass Enhanced the Remediation Effect of Soils Contaminated with Multiple Heavy Metals. Environment International, 185, Article ID: 108498. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, J., Baker, A.J.M., Ye, Z., Wang, H. and Shu, W. (2012) Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges. Critical Reviews in Environmental Science and Technology, 42, 2113-2152. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Serrano, M.F., López, J.E., Henao, N. and Saldarriaga, J.F. (2024) Phosphorus-Loaded Biochar-Assisted Phytoremediation to Immobilize Cadmium, Chromium, and Lead in Soils. ACS Omega, 9, 3574-3587. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sánchez, S., Baragaño, D., Gallego, J.R., López-Antón, M.A., Forján, R. and González, A. (2024) Valorization of Steelmaking Slag and Coal Fly Ash as Amendments in Combination with Betula Pubescens for the Remediation of a Highly As-and Hg-Polluted Mining Soil. Science of the Total Environment, 927, Article ID: 172297. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Huang, H., Zhao, R., Guo, G., He, Y., Chen, S., Zhu, Y., et al. (2024) Effect of Various Phosphorus Levels on the Extraction of Cd, the Transformation of P, and Phosphorus-Related Gene during the Phytoremediation of Cd Contaminated Soil. Environmental Research, 251, Article ID: 118389. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Liu, W., Yu, T., Cao, H., Peng, X., Yang, Y. and Li, R. (2023) Effects of EDTA and Organic Acids on Physiological Processes, Gene Expression Levels, and Cadmium Accumulation in Solanum nigrum under Cadmium Stress. Journal of Soil Science and Plant Nutrition, 23, 3823-3833. [Google Scholar] [CrossRef]
|
|
[23]
|
Jiang, M., Liu, S., Li, Y., Li, X., Luo, Z., Song, H., et al. (2019) EDTA-Facilitated Toxic Tolerance, Absorption and Translocation and Phytoremediation of Lead by Dwarf Bamboos. Ecotoxicology and Environmental Safety, 170, 502-512. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Guo, J., Xu, H., Yin, F., Cao, J., Xu, X., Li, C., et al. (2024) Synergistic Remediation of Cd-Contaminated Soil with Pure Natural Adsorption Material and Hyperaccumulator Plant. Agronomy, 14, Article No. 1299. [Google Scholar] [CrossRef]
|
|
[25]
|
Bakshi, M. and Kumar, A. (2023) Co-Application of TiO2 Nanoparticles and Hyperaccumulator Brassica juncea L. for Effective Cd Removal from Soil: Assessing the Feasibility of Using Nano-Phytoremediation. Journal of Environmental Management, 341, Article ID: 118005. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., et al. (2018) Impacts of Carbon Dots on Rice Plants: Boosting the Growth and Improving the Disease Resistance. ACS Applied Bio Materials, 1, 663-672. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, H., Kang, Y., Yang, N., Li, H., Huang, S., Liang, Z., et al. (2022) Inhibition of UV-B Stress in Lettuce through Enzyme-Like Scutellaria baicalensis Carbon Dots. Ecotoxicology and Environmental Safety, 246, Article ID: 114177. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhao, S., Li, C., Wu, C., Hu, J., Zhang, Z., Lei, B., et al. (2024) Effects of Multifunctional Cerium-Doped Carbon Dots on Photosynthetic Capacity and Nutritional Quality of Lettuce. Environmental Science: Nano, 11, 3137-3149. [Google Scholar] [CrossRef]
|
|
[29]
|
Zhang, Y., Huang, Y., Jiang, J., Chen, J., Han, W., Liu, Y., et al. (2024) Transfer, Transportation, and Adsorption of UV-B by Mg-N Co Doped Carbon Quantum Dots: Response of Growth Indicators, Antioxidant Effect and Mechanism Explanation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 307, Article ID: 123618. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Xiao, L., Guo, H., Wang, S., Li, J., Wang, Y. and Xing, B. (2019) Carbon Dots Alleviate the Toxicity of Cadmium Ions Cd2+) toward Wheat Seedlings. Environmental Science: Nano, 6, 1493-1506. [Google Scholar] [CrossRef]
|
|
[31]
|
Li, M., Zhang, P., Adeel, M., Guo, Z., Chetwynd, A.J., Ma, C., et al. (2021) Physiological Impacts of Zero Valent Iron, Fe3O4 and Fe2O3 Nanoparticles in Rice Plants and Their Potential as Fe Fertilizers. Environmental Pollution, 269, Article ID: 116134. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Antunes, D.R., Forini, M.M.L.H., Coqueiro, Y.A., Pontes, M.S., Lima, P.H.C., Cavalcante, L.A.F., et al. (2024) Effect of Hyaluronic Acid-Stabilized Silver Nanoparticles on Lettuce (Lactuca sativa L.) Seed Germination. Chemosphere, 364, Article ID: 143080. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kang, Y., Qin, H., Wang, G., Lei, B., Yang, X. and Zhong, M. (2024) Selenium Nanoparticles Mitigate Cadmium Stress in Tomato through Enhanced Accumulation and Transport of Sulfate/selenite and Polyamines. Journal of Agricultural and Food Chemistry, 72, 1473-1486. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Esfandiari, N., Bagheri, Z., Ehtesabi, H., Fatahi, Z., Tavana, H. and Latifi, H. (2019) Effect of Carbonization Degree of Carbon Dots on Cytotoxicity and Photo-Induced Toxicity to Cells. Heliyon, 5, e02940. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xu, Y., Lu, Y., Li, J., Liu, R. and Zhu, X. (2020) Effect of Graphene Quantum Dot Size on Plant Growth. Nanoscale, 12, 15045-15049. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Li, Y., Xu, X., Lei, B., Zhuang, J., Zhang, X., Hu, C., et al. (2021) Magnesium-Nitrogen Co-Doped Carbon Dots Enhance Plant Growth through Multifunctional Regulation in Photosynthesis. Chemical Engineering Journal, 422, Article ID: 130114. [Google Scholar] [CrossRef]
|
|
[37]
|
Su, L., Ma, X., Zhao, K., Shen, C., Lou, Q., Yin, D., et al. (2018) Carbon Nanodots for Enhancing the Stress Resistance of Peanut Plants. ACS Omega, 3, 17770-17777. [Google Scholar] [CrossRef]
|
|
[38]
|
Li, J., Xiao, L., Cheng, Y., Cheng, Y., Wang, Y., Wang, X., et al. (2019) Applications of Carbon Quantum Dots to Alleviate Cd2+ Phytotoxicity in Citrus Maxima Seedlings. Chemosphere, 236, Article ID: 124385. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Alikhani, M., Mirbolook, A., Sadeghi, J. and Lakzian, A. (2023) Effect of a New Slow-Release Zinc Fertilizer Based on Carbon Dots on the Zinc Concentration, Growth Indices, and Yield in Wheat (Triticum aestivum). Plant Physiology and Biochemistry, 200, Article ID: 107783. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Milenković, I., Zhou, Y.Q., Borišev, M., Serafim, L.F., Chen, J.Y., ElMetwally, A.E., et al. (2024) Modeling of Orange Carbon Dots-CO2 Interaction and Its Effects on Photosynthesis and Productivity in Maize and Green Beans. Journal of Environmental Informatics, 43, 80-91. [Google Scholar] [CrossRef]
|
|
[41]
|
Yan, X., Xu, Q., Li, D., Wang, J. and Han, R. (2021) Carbon Dots Inhibit Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis. Ecotoxicology and Environmental Safety, 216, Article ID: 112168. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Banerjee, R., Goswami, P., Chakrabarti, M., Chakraborty, D., Mukherjee, A. and Mukherjee, A. (2021) Cadmium Selenide (CdSe) Quantum Dots Cause Genotoxicity and Oxidative Stress in Allium cepa Plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 865, Article ID: 503338. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Abdel-Wahab, D.A., Othman, N.A.R.M. and Hamada, A.M. (2019) Effects of Copper Oxide Nanoparticles to Solanum nigrum and Its Potential for Phytoremediation. Plant Cell, Tissue and Organ Culture (PCTOC), 137, 525-539. [Google Scholar] [CrossRef]
|
|
[44]
|
Răcuciu, M., Barbu-Tudoran, L. and Oancea, S. (2025) Evaluation of Phytotoxicity and Genotoxicity of TMA-Stabilized Iron-Oxide Nanoparticle in Corn (Zea mays) Young Plants. Scientific Reports, 15, Article No. 18951. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, T., Wang, Q. and Rui, Y. (2025) The Impact of Nanomaterials on Plant Health: A Review of Exposure, Toxicity, and Control. Environmental Science: Nano, 12, 2965-2982. [Google Scholar] [CrossRef]
|
|
[46]
|
Dev, A., Srivastava, A.K. and Karmakar, S. (2017) Nanomaterial Toxicity for Plants. Environmental Chemistry Letters, 16, 85-100. [Google Scholar] [CrossRef]
|
|
[47]
|
Yan, A. and Chen, Z. (2019) Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. International Journal of Molecular Sciences, 20, Article No. 1003. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., Rehman, H.U., et al. (2020) Nanotechnology in Agriculture: Current Status, Challenges and Future Opportunities. Science of the Total Environment, 721, Article ID: 137778. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Azim, Z., Singh, N.B., Singh, A., Amist, N., Niharika, Khare, S., et al. (2022) A Review Summarizing Uptake, Translocation and Accumulation of Nanoparticles within the Plants: Current Status and Future Prospectus. Journal of Plant Biochemistry and Biotechnology, 32, 211-224. [Google Scholar] [CrossRef]
|
|
[50]
|
Li, J., Wang, Z., Zhang, Y., Cao, X., Lian, F. and Gu, S. (2023) Novel Selenium-Doped Carbon Quantum Dots Derived from Algae Effectively Enhanced the Delivery and Accumulation of Selenium in Tomato Plants (Lycopersicum esculentum) via Foliar Application. Environmental Science: Nano, 10, 866-878. [Google Scholar] [CrossRef]
|
|
[51]
|
Puglisi, I., La Bella, E., Rovetto, E.I., Stevanato, P., Fascella, G. and Baglieri, A. (2022) Morpho-Biometric and Biochemical Responses in Lettuce Seedlings Treated by Different Application Methods of Chlorella vulgaris Extract: Foliar Spray or Root Drench? Journal of Applied Phycology, 34, 889-901. [Google Scholar] [CrossRef]
|
|
[52]
|
Ji, Y., Yue, L., Cao, X., Chen, F., Li, J., Zhang, J., et al. (2023) Carbon Dots Promoted Soybean Photosynthesis and Amino Acid Biosynthesis under Drought Stress: Reactive Oxygen Species Scavenging and Nitrogen Metabolism. Science of the Total Environment, 856, Article ID: 159125. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Ji, Y., Cheng, B., Le Yue, Bai, S., Cao, X., Li, J., et al. (2024) Biomass-Derived Carbon Dots Enhanced Maize (Zea mays L.) Drought Tolerance by Regulating Phyllosphere Microorganisms and Ion Fluxes. Environmental and Experimental Botany, 226, Article ID: 105913. [Google Scholar] [CrossRef]
|
|
[54]
|
Yao, Y., Yue, L., Cao, X., et al. (2025) Carbon Dots Embedded in Nanoporous SiO2 Nanoparticles for Enhancing Photosynthesis in Agricultural Crops.
|
|
[55]
|
Liu, Y., Liu, D., Han, X., Chen, Z., Li, M., Jiang, L., et al. (2024) Magnesium-Doped Carbon Quantum Dot Nanomaterials Alleviate Salt Stress in Rice by Scavenging Reactive Oxygen Species to Increase Photosynthesis. ACS Nano, 18, 31188-31203. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Panahirad, S., Dadpour, M., Gohari, G., Akbari, A., Mahdavinia, G., Jafari, H., et al. (2023) Putrescine-Functionalized Carbon Quantum Dot (Put-CQD) Nanoparticle: A Promising Stress-Protecting Agent against Cadmium Stress in Grapevine (Vitis vinifera Cv. Sultana). Plant Physiology and Biochemistry, 197, Article ID: 107653. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Tian, R., Zhan, S., He, G., Wang, Z., Zhang, Z. and Wang, X. (2025) Research and Application Discussion on New Technology for Detecting Cadmium Ions Based on a Near-Red Light Carbon Dot Fluorescence Quenching Method. Analytical Methods, 17, 611-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Liu, X., Niu, X., Tian, Y., Jiang, Y., Cheng, C., Wang, T., et al. (2025) Adsorption Behavior of Carbon Dots on La3+ and the Multiple Effects on the Growth of Mung Bean Seedlings under La3+ Stress. Environmental Science: Nano, 12, 805-823. [Google Scholar] [CrossRef]
|
|
[59]
|
Chen, Q., Cao, X., Liu, B., Nie, X., Liang, T., Suhr, J., et al. (2021) Effects of Functional Carbon Nanodots on Water Hyacinth Response to Cd/Pb Stress: Implication for Phytoremediation. Journal of Environmental Management, 299, Article ID: 113624. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Chen, Q., Liu, B., Man, H., Chen, L., Wang, X., Tu, J., et al. (2020) Enhanced Bioaccumulation Efficiency and Tolerance for Cd(Ⅱ) in Arabidopsis Thaliana by Amphoteric Nitrogen-Doped Carbon Dots. Ecotoxicology and Environmental Safety, 190, Article ID: 110108. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Xing, G., Chen, Q., Sun, Y., Wang, J., Zhou, J., Sun, L., et al. (2024) Synergistic Promotion Mechanism and Structure-Function Relationship of Nonmetallic Atoms Doped Carbon Nanodots Driving Tagetes patula L. to Remediate Cadmium-Contaminated Soils. Journal of Hazardous Materials, 480, Article ID: 136479. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Yahaya Pudza, M., Zainal Abidin, Z., Abdul Rashid, S., Md Yasin, F., Noor, A.S.M. and Issa, M.A. (2020) Eco-Friendly Sustainable Fluorescent Carbon Dots for the Adsorption of Heavy Metal Ions in Aqueous Environment. Nanomaterials, 10, Article No. 315. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Chung Hui, K., Lun Ang, W. and Soraya Sambudi, N. (2021) Nitrogen and Bismuth-Doped Rice Husk-Derived Carbon Quantum Dots for Dye Degradation and Heavy Metal Removal. Journal of Photochemistry and Photobiology A: Chemistry, 418, Article ID: 113411. [Google Scholar] [CrossRef]
|
|
[64]
|
Kalantarian, K. and Sheibani, S. (2025) Ag and Carbon Quantum Dot-Modified Fe2O3/g-C3N4 Nanocomposites for Efficient Photocatalytic Degradation of Organic Pollutants and Hydrogen Production. International Journal of Hydrogen Energy, 140, 343-361. [Google Scholar] [CrossRef]
|
|
[65]
|
Zhu, L., Shen, D., Zhang, H., Luo, K.H. and Li, C. (2023) Fabrication of Z-Scheme Bi7O9i3/g-C3N4 Heterojunction Modified by Carbon Quantum Dots for Synchronous Photocatalytic Removal of Cr(Ⅵ) and Organic Pollutants. Journal of Hazardous Materials, 446, Article ID: 130663. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Zhou, Q., Huang, W., Xu, C., Liu, X., Yang, K., Li, D., et al. (2021) Novel Hierarchical Carbon Quantum Dots-Decorated BiOCl Nanosheet/Carbonized Eggshell Membrane Composites for Improved Removal of Organic Contaminants from Water via Synergistic Adsorption and Photocatalysis. Chemical Engineering Journal, 420, Article ID: 129582. [Google Scholar] [CrossRef]
|
|
[67]
|
Wu, P., Zhou, C., Li, Y., Zhang, M., Tao, P., Liu, Q., et al. (2021) Flower-Like FeOOH Hybridized with Carbon Quantum Dots for Efficient Photo-Fenton Degradation of Organic Pollutants. Applied Surface Science, 540, Article ID: 148362. [Google Scholar] [CrossRef]
|
|
[68]
|
Zhang, X., Wu, M., Hou, A., Xie, K., Li, F. and Gao, A. (2024) Boron-Doped Carbon Quantum Dot/Carbon Nanorod/Graphitic Carbon Nitride Composites for Photocatalytic Degradation of Organic Pollutants. ACS Applied Nano Materials, 7, 13501-13511. [Google Scholar] [CrossRef]
|
|
[69]
|
Xu, K., Zhang, Q., Wang, C., Xu, J., Bu, Y., Liang, B., et al. (2022) 0D Boron Carbon Nitride Quantum Dots Decorated 2D Bi4O5i2 as 0D/2D Efficient Visible-Light-Driven Photocatalysts for Tetracyclines Photodegradation. Chemosphere, 289, Article ID: 133230. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Huang, X., Qiao, K., Li, L., Liu, G., Xu, X., Lu, R., et al. (2019) Preparation of a Magnetic Graphene/Polydopamine Nanocomposite for Magnetic Dispersive Solid-Phase Extraction of Benzoylurea Insecticides in Environmental Water Samples. Scientific Reports, 9, Article No. 8919. [Google Scholar] [CrossRef] [PubMed]
|