纳米碳点在植物修复中的应用:生理响应与污染物清除机制
Carbon Nanodots in Phytoremediation: Physiological Response and Pollutant Removal Mechanisms
DOI: 10.12677/aep.2025.158122, PDF, HTML, XML,   
作者: 王 涵, 王 恒, 陈美凤, 张千峰*:安徽工业大学分子工程与应用化学研究所,安徽 马鞍山;袁 静*:铜陵学院建筑工程学院,安徽 铜陵
关键词: 碳点植物修复纳米材料协同作用生理响应Carbon Dots Phytoremediation Nanomaterials Cooperative Interaction Physiological Response
摘要: 碳点(CDs)是一种兼具荧光性、水溶性和低毒性的纳米材料,在环境修复领域展现出巨大潜力,本文系统综述了碳点与植物修复及植物生长之间的相互作用机制与研究进展。在介绍了碳点特性及植物修复主要类型(植物提取、降解、固定),并分析传统方法在效率与耐受性上的局限之后;从两个关键维度探讨了碳点的作用路径,植物生理调控方面,适宜浓度的碳点可以通过增强光合作用、促进养分吸收和提高抗逆性来促进植物生长,但高浓度可能产生毒性;污染物吸收与转运方面,碳点通过螯合作用促进重金属吸收,或借助光催化与微生物协同作用增强有机污染物降解。文中举例说明了碳点在重金属、苯酚和左氧氟沙星等有机污染物修复中的典型应用案例,涵盖土壤与水体等不同环境介质。通过结合宏观生物量观察与微观基因表达调控分析的多尺度研究方法,阐明了碳点的作用机制,并指出研究中尚存的争议(如荧光特性的直接作用)、环境风险(长期残留、二次污染)以及在实际应用上的限制。文章的结尾中也展望了功能定制、绿色合成及多技术协同等发展方向,为碳点在植物修复中的高效安全应用和实际应用提供理论依据。
Abstract: Carbon dots (CDs) are nanomaterials with both fluorescence, water solubility and low toxicity, which show great potential in the field of environmental remediation. In this paper, we systematically review the interaction mechanism and research progress between CDs and phytoremediation and plant growth. After introducing the characteristics of carbon dots and the main types of phytoremediation (phytoextraction, degradation, and immobilization), and analyzing the limitations of the traditional methods in terms of efficiency and tolerance, the pathways of carbon dots were discussed from two key dimensions. In terms of pollutant uptake and transport, carbon dots can promote the uptake of heavy metals through chelation, or enhance the degradation of organic pollutants through photocatalysis and microbial synergy. Examples of typical applications of carbon dots in the remediation of organic pollutants such as heavy metals, phenol and levofloxacin are illustrated in the paper, covering different environmental media such as soil and water. Through a multi-scale research method combining macro-biomass observation and micro-gene expression regulation analysis, the mechanism of action of carbon dots was elucidated, and the controversies (e.g., the direct effect of fluorescence properties), environmental risks (long-term residues, secondary pollution) and limitations in practical applications were pointed out. In the conclusion of the article, the development directions of functional customization, green synthesis and multi-technology synergy are also envisioned to provide theoretical basis for the efficient and safe application of carbon dots in phytoremediation as well as practical application.
文章引用:王涵, 王恒, 陈美凤, 袁静, 张千峰. 纳米碳点在植物修复中的应用:生理响应与污染物清除机制[J]. 环境保护前沿, 2025, 15(8): 1085-1098. https://doi.org/10.12677/aep.2025.158122

1. 绪论

随着工业化和城市化的发展,土壤受到不同程度和不同种类的污染,其中大部分来自于人为活动,自然来源的重金属分布较广,但是浓度较低。重金属在土壤中通过食物链来影响植物的生长,并且在土壤中难以降解;重金属对动物也有影响,食用长期暴露于重金属污染土壤中的农产品会导致慢性中毒,比如镉中毒会引发肾脏损害和骨骼病变,铅中毒会损害神经系统。目前土壤重金属修复的方法有物理、化学和生物方法[1]。物理修复技术有置换法、隔离法和玻璃化法,适用于面积小且污染严重的土壤,可以从根本上改善土壤性质,有效去除污染物,避免污染物进一步扩散,但是成本较高且有引起二次污染的风险。化学修复技术有化学淋洗法、固定化修复法和电动修复法,其修复效率高和低成本,是传统技术的替代方法。生物修复技术包括植物修复、动物修复和微生物修复,通过自然过程对重金属污染的土壤进行处理,因此可以减少场地清理费用[2]。这些修复技术在适用范围、成本和效率等各有利弊,并且在实际应用中都有局限性,因此单一的方法往往不能达到最佳的修复效果,所以需要把物理、化学和生物修复技术联合使用,才能发挥最好的效果。近年来,有研究人员利用纳米材料来填补植物修复的缺点[3]

本文主要讨论植物修复及其联合修复技术,植物修复成本较低,环境友好,适于大面积污染的土壤;但是也存在缺点,修复周期较长,植物对重金属的耐受性有限。植物修复方式主要有三种:植物吸收、植物挥发和植物固定[4] [5]。植物吸收是指利用对某种重金属有超富集能力的植物的根来吸收重金属,并从根转移到地上部分,最后通过收割地上部分来达到修复重金属污染的目的。这种方法要求植物对重金属有较强的耐受性,并且也有较强的转移重金属至地上部分的能力。1977年新西兰科学家Brooks等提出了超富集植被的观念,而后解释了重金属超富集植物[6],即可以超量吸附重金属且能将其运输至地上部分,在地上部分较普通植物积聚100倍以上重金属的植被[7]。目前的研究已经发现了很多种超积累植物,例如刘忠闯等人探究出酢浆草可以富集汞(Hg),并且随着培养基含汞量增大,酢浆草的汞转移率先增大后减小[8];黑麦草可以富集镉(Cd),黑麦草对镉具有较高的耐受性和积累能力,可在芽和根中积累大量的镉[9];东南景天可以富集锌(Zn),东南景天生长后根际和块状土壤中的水溶性锌和移动锌组分显着降低,可有效从非移动组分中动员锌[10];蜈蚣草对铅(Pb)的富集转移能力较强,两种高迁移率的铅形式是蜈蚣草根和茎中铅的主要形式,四种低迁移率的铅化学形式在叶片中占主导地位[11];凤尾蕨对砷的富集转移能力很强,砷(As)主要以氧化形式的砷酸盐(AsV)存在,AsIII通常储存在植物液泡中,但更多的AsV积累在细胞壁中,更加顽固,乙醇提取与厌氧消化相结合可以在处置前有效地去除P. Vittata生物质中残留的砷[12]。植物吸收是植物修复中最常用的方法。植物挥发是指利用植物来提取污染物,并在植物体内转化为易挥发的形态释放到大气中,从而达到修复重金属的效果,但是这种方法一般不推荐使用,会造成二次污染。植物固定是指植物将污染物吸收或吸附至植物的根系,使土壤或水中的污染物的移动性和生物可利用性降低。但是这种方法只是对重金属的暂时的处理方式,一般情况下重金属仍然留在原地,存在风险[13]

2. 碳点与植物修复的背景介绍

2.1. 碳点的定义与特性

碳点(Carbon Dots, CDs)是一类尺寸小于10 nm的准球形荧光碳纳米颗粒,2004年被首次发现[14]。其核心结构以碳元素为主体,表面富含亲水基团(如-COOH、-OH),兼具化学惰性、低分子量、可调光致发光、低毒性与高亲水性等特性。这些特性共同赋予碳点卓越的生物相容性与环境友好性[15]。碳点的粒径、表面官能团、结晶度与毒性等核心性质受其制备方法精准调控,并且会影响植物修复效果。例如,粒径会影响根系渗透效率,表面官能团会影响污染物吸附/催化活性,结晶度会影响其电子传递能力,碳点的毒性会对植物生理造成胁迫响应。碳点的合成分为自上而下法和自下而上法,前者包括激光烧烛法和电化学氧化法,后者包括水热/溶剂热法、微波法和模版法。激光烧烛法是以高能激光轰击石墨或碳纳米管,原料气化冷凝形成碳点,这种方法形成的产物粒径小(1∼5 nm)、结晶度高、荧光稳定,但是可能残留靶材金属杂质;电化学氧化法是在电解质溶液中电解石墨电极,通过阳极氧化剥离生成碳点,以该方法得到的碳点表面富含羧基/羟基(水溶性优异),通过调整电压可调控粒径(5∼10 nm),缺点是能耗较高;水热/溶剂热法是较常用的方法,该方法是以葡萄糖或柠檬酸等小分子碳源在高温高压溶液中碳化聚合形成的碳点,该方法合成的碳点粒径可控(5∼20 nm)、表面官能团丰富(-COOH/-NH2)、碳源可调荧光特性,适于规模化生产,缺点是需要消耗的时间长[16];微波法是用微波辐射加速碳源碳化(反应时间 ≈ 分钟级),该方法合成的碳点粒径均一性佳,但是局部过热可能导致结构缺陷;模板法是以介孔硅或聚合物为模板限制碳点生长,该方法可以精准控制碳点的粒径与形貌,但是模板去除步骤会增加成本[17]

2.2. 植物修复技术及外源添加物对植物修复的影响

植物修复被认为是一种能够有效地从环境中去除HM的环境友好技术。与传统的物理和化学修复方法相比,植物修复技术具有成本低、环境友好等优点。并具有一定的景观价值,不会造成二次污染。然而,尽管有这些好处,植物修复仍然面临着挑战,因为它对内部和外部环境因素的敏感性。研究者们采用了多种方法来提高重金属污染的植物修复效果,并取得了一定的进展[18]

外源成分的加入可以提高植物修复的效率,负载磷的生物炭对植物修复的影响被探究,其结果表明,负载磷的生物炭与黑麦草的联合施用,对土壤肥力的提高具有显著的促进作用,并且有助于提高HM在植物器官中的保留值,土壤中重金属的生物有效性保持在低于1 mg/kg的水平,当用负载磷的生物炭辅助植物修复时,金属固定化效率增加[19]。将低生态毒性的工业副产品(粉煤灰、炼钢炉渣)作为土壤改良剂,与毛桦(Betula pubescens)植物修复技术联用,系统评估了其单独施用及配施有机肥的效果,同时研究发现,副产品改良剂显著降低土壤污染物生物有效性、抑制污染淋溶,并减少植物体内污染物积累,同步促进毛桦生长与存活,单施有机肥则导致植物砷(As)富集量上升,同时诱导抗氧化化合物合成(如类胡萝卜素、游离脯氨酸) [20]。国内对此也有研究,例如采用盆栽试验研究了不同磷水平对植物修复过程中镉的提取、磷转化及磷相关基因的影响,结果表明适量施用磷肥可提高土壤pH值和电导率,促进土壤难溶性磷向有效态磷的转化,促进相关酶活性的释放,并诱导磷循环相关基因的表达[21]。利用乙二胺四乙酸(EDTA)来可以提高土壤中重金属的生物利用度,并促进它们被植物吸收[22]。研究发现,在镉(Cd)胁迫下,龙须草幼苗生长显著受抑且光合色素含量急剧下降;而添加柠檬酸(CA)可逆转毒性效应——使生物量提升3.01倍,光合色素恢复至对照组(CK)水平,并同步降低Cd诱导的氧化损伤标志物(丙二醛、脯氨酸、过氧化氢含量均下降),这表明CA通过协同促进生理恢复与缓解氧化应激,有效增强龙须草对Cd的耐受性,为植物修复技术提供了安全高效的调控策略[23]。有报道并制备了一种天然、绿色的镉吸附材料–淀粉/蒙脱石复合材料(SMC),并将其与镉超富集植物鬼针草(Bidens bipinnata)协同修复土壤镉污染,结果表明该处理对Cd的有效去除率为77.92%,田间试验结果表明,该处理可将污染土壤中Cd的浓度降低到农田风险筛选值以下,SMC和鬼针草的协同作用提高了污染土壤中Cd的修复效率[24]

由此我们得知,外源成分的加入对植物修复有着较为重要的影响,所以本文探讨碳纳米点的加入对植物生长和植物修复的影响,文章整体思路如图1所示。

Figure 1. Article ideas flowchart

1. 文章思路流程图

3. 碳点对植物修复的影响路径与机制

3.1. 对植物生理与生长的影响

3.1.1. 促进植物生长的机制

植物生长与外部生长环境和养分吸收有密切的关系,而纳米材料为优化植物生长状态提供了新视角[25],其中碳点(CDs)从多个方面展现出对植物生长具有调控作用,尤其在胁迫环境下的促进效应备受关注[26] [27]图2展示了纳米颗粒用于改善种子发芽、植物生长和生物量。

碳点通过促进植物代谢来促进植物生长[28] [29]。具体机制在镉离子Cd2+胁迫下表现为:碳点表面的羟基、羧基等官能团优先螯合镉离子Cd2+,减少镉离子Cd2+在根叶的转运积累,从而可以减少细胞结构破坏;同时,碳点可以增强根系活力以提升水分和养分的吸收效率,并通过维持叶绿体结构完整性和提高叶绿素a/b的含量,提高光系统II的光能转化效率。这些协同作用最终可以减轻镉离子Cd2+对小麦幼苗生长的抑制效应[30]

Table 1. Effects of nanomaterials on plants

1. 纳米材料对植物的影响

纳米材料

植物

影响

引用参考文献

铁基纳米颗粒零价铁(ZVI)、

Fe3O4和Fe2O3NPs

水稻

适宜浓度的ZVI和Fe3O4 NPs可以促进水稻生长,

可用作铁肥料,改善水稻的缺铁条件

[31]

银纳米颗粒

生菜

适宜浓度的HA-AgNPs使发芽率、存活率、

耐受性指数和种子吸水率显著提高

[32]

硒纳米颗粒

番茄

显示出生长参数、叶长和叶宽的显著增强

[33]

但是碳点对植物生长的促进作用存在显著的浓度效应,适当浓度下,其通过上述机制协同提升植物的抗逆性与代谢效率;但高浓度时,碳点可能因过度吸附于根系表面堵塞细胞间隙,或干扰离子跨膜运输通道,抑制植物对必需元素的吸收,甚至破坏细胞结构,表现出毒性[34]。这说明碳点的功能发挥与其理化性质(如粒径、表面电荷、官能团类型)、植物物种及环境胁迫类型密切相关[35]表1中列出了一些纳米材料对植物的影响。

引用自J. Agric. Food Chem. 2020, 68(7), 1935-1947。

Figure 2. Nanoparticles for improving seed germination, plant growth and biomass

2. 纳米颗粒用于改善种子发芽、植物生长和生物量

3.1.2. 碳点对植物的剂量依赖性效应

Figure 3. Toxicity due to different properties of carbon dots (CDs)

3. 碳点的不同特性导致的毒性

研究发现,当喷施适宜浓度的镁掺杂碳点(Mg、N-CDs)时,水稻的株高与鲜生物量均较对照组有所提升。镁(Mg)、N-CDs能显著增加水稻叶片中叶绿素a/b的含量,但会使水稻的碳水化合物含量下降。镁(Mg)、N-CDs也可以调控相关基因的表达,加快叶绿素在水稻体内的生物合成与代谢进程,以此提高水稻叶绿素的含量和活性。另外,碳点可被植物体内的辣根过氧化物酶和过氧化氢酶降解,降解后的物质可以作为叶绿素、光合蛋白及酶合成的前驱体,因为镁(Mg)和氮(N)元素都是这些生物分子的关键组成成分[36]。另一研究表明,碳点可以增强花生的抗逆性,CDs表面的酰胺和羟基使其具有亲水性和生物相容性。通过增强抗氧化酶活性,降低膜脂过氧化水平来缓解花生干旱胁迫生长抑制。适宜浓度的碳点不仅能促进花生生长、提高产量,还能增加果实饱满度和种子出芽率,并且研究发现花生种子中不含有碳点,这表明碳点对花生无毒性。此外,研究结果还表明,碳点可被花生根部吸收并转运至叶片,其亲水基团能够帮助保留和缓慢释放营养元素,同时减少水分流失[37]。Junli Li等人研究表明,Cd2+对柚子幼苗有强毒性,CDs对植物影响小。CDs可吸附Cd2+,减少其自由溶解浓度,降低进入植物根部的Cd2+量,并且不同浓度CDs对叶片Cd积累影响不同,600 mg/L CDs促进镉从根向叶转移,900 mg/L CDs会减少叶片镉含量,CDs能减轻Cd2+引起的氧化应激,激活抗氧化酶活性,降低相关基因表达[38]。将碳点用作锌微量元素的缓释载体,使其作为新型肥料来提高植物产量是首次报道,其实验结果表明,施加锌掺杂碳量子点后,小麦的多项生长指标均得到显著提升,例如根长、干重、穗数和千粒重等;同时,小麦籽粒中锌和氮的含量有所增加[39]。有研究报道了碳点减轻镉离子对小麦幼苗的毒性,结果表明CDs的加入使小麦茎长、可溶性糖和可溶性蛋白含量,叶片APX、CAT和POD活性都恢复到未受胁迫的水平,CDs可以缓解Cd2+对植物造成的非生物胁迫。总的来说,碳点通过增强植物的抗氧化酶活性、降低相关基因的表达来增强抗逆性,同时也会增加叶绿素的含量[40]。但是碳点对植物也有毒性,有研究发现,碳点会抑制拟南芥的根系生长,研究结果表明,CDs在根尖的分生组织核中积累,抑制主根分生组织区(PR)的生长,并且随着CDs浓度的增加,抑制效果也更显著,CDs通过下调DNA损伤修复基因和细胞周期调控基因的表达水平,抑制根分生组织区的细胞分裂活性,CDs介导的根分生组织发育抑制与根尖生长素浓度降低直接相关,是其最终抑制根系伸长生长的根本原因[41]。25 nM CdSe QDs有细胞毒性,50 nM具有遗传毒性,可增加微核形成、染色体畸变和DNA损伤,也可诱导ROS生成、线粒体膜电位下降、H2O2积累和脂质过氧化,洋葱根中的SOD、GPOD和GSH活性增加,CAT活性降低[42]。纳米氧化铜对龙葵的影响及其植物修复潜力,结果表明氧化铜纳米颗粒显著降低了愈伤组织细胞的鲜重、干重、含水量,引发氧化应激[43]。毒性与碳点粒径、尺寸、表面电荷等具有相关性(如小粒径碳点更易被植物吸收),如图3所示。根据相关研究表明,碳点的表面修饰显著影响其毒性阈值,例如生物质基碳点因富含羟基、羧基等基团,毒性普遍低于化学合成的碳点,如甘蔗渣衍生碳点的安全浓度可达500 mg/L,而乙二胺修饰碳点在100 mg/L时即表现出明显毒性[44]。未来可以结合转录组学与代谢组学,分析碳点对植物生长素、细胞分裂素等激素的干扰机制,并建立基于物种的安全阈值模型,两者共同为应用安全性提供依据。

3.2. 对污染物吸收与转运的调控

3.2.1. 碳点在植物体内的传输机制

了解碳点在植物体内的运输过程也是至关重要的,受纳米材料的结构特性和植物本身的结构的影响。纳米材料可以作为载体在植物体内运输特殊的材料、遗传物质和营养元素等,有利于植物的生长[45]。纳米材料进入植物体内的方式有两种:根际吸收和叶面喷施。

根际吸收的质外体途径是最主要的途径之一,纳米颗粒可经由根尖分生组织区、伸长区或成熟区(尤其是根毛区)的细胞间隙进入质外体(即细胞壁构成的网络空间) [46]。细胞壁孔隙的大小是主要限制因素,因此粒径较小的纳米颗粒更容易穿透,某些纳米颗粒也能通过破坏或修饰细胞壁结构来促进其进入。另一种方式是共质体途径,涉及纳米颗粒被根表皮细胞摄取进入细胞质[47] [48]。这种摄取可以是主动或被动的,可能通过内吞作用、膜转运蛋白、离子通道或孔隙形成等方式实现,进入细胞后,纳米颗粒便能通过胞间连丝在细胞网络内移动,即发生共质体运输。根毛可以增加吸收的表面积,有些纳米颗粒也会直接穿过细胞[49]

叶面喷施可以通过喷洒、沉降或气溶胶沉积在叶片表面[50]。气孔是纳米颗粒进入叶片最主要的途径,气孔孔径通常为十至数十微米,而纳米颗粒尺寸远小于气孔孔径。因此,纳米颗粒能直接随水分或气体扩散,通过开放的气孔开口进入叶片气腔,其表面亲水性或疏水性是决定其随水分进入效率的关键因素。表皮蜡质层和角质层构成了叶片的主要物理屏障,亲脂性纳米颗粒可能通过扩散或溶解穿透这层屏障;一些高浓度的纳米颗粒可能会使蜡质层或角质层形成微孔或裂缝从而进入这层屏障;表面活性剂等助剂的应用也能辅助纳米颗粒渗透蜡质层[51]。叶片表面的毛状体、腺毛或基毛等结构及细胞间隙也是纳米颗粒进入的位点或通道。纳米颗粒在禾本科的植物中可能伴随水分排出时的反流进入植株内部,因为禾本科植物的叶尖或叶缘,水孔是纳米颗粒的潜在入口。进入叶片后,纳米颗粒可定位于叶肉细胞的质外体空间(细胞间隙),或被叶肉细胞内化[52]。内化的颗粒随后能通过胞间连丝进行共质体运输,或经由维管束系统进行长距离运输[53]

纳米颗粒在植物组织内的进一步运输主要通过三种途径实现:质外体途径、共质体途径以及维管束运输(其中木质部是向上长距离运输的主要通道) [54]。纳米颗粒向木质部的装载需要其从根或叶的共质体或质外体空间进入无生命的导管或管胞,之后便可依赖蒸腾作用进行向上的长距离运输。韧皮部是植物体内糖、氨基酸等物质运输的主要通道,但纳米颗粒在该系统中的有效进入和长距离运输能力尚不明确,现有研究证据较少,这种运输可能受限于颗粒特性——小粒径和特定的表面修饰可能促进其进入筛管并随筛管流运抵库器官[55]。纳米颗粒的稳定性、聚集倾向、溶解性和与植物表面的相互作用,均受到环境因素如pH、离子强度、有机质含量及共存污染物的影响。

3.2.2. 碳点对植物修复重金属的影响及其增强植物抗逆性和生长的机制

碳点分为非金属掺杂和金属掺杂碳点,陈琼课题组对非金属掺杂碳点深有研究,还有其他研究人员也研究了很多种碳点对植物修复重金属的影响[56]。例如,添加碳点可以缓解Cd2+对小麦幼苗造成的胁迫,显著降低小麦幼苗根和叶中镉含量,提高根系活性并使叶绿素含量增加[57]。还有研究表明,柠檬酸基碳点可以减轻绿豆幼苗在La3+下的胁迫,该碳点可以通过吸附和改变植物的生理活性来缓解了适当浓度下的生长胁迫,实验结果还表明高浓度的碳点对植物的生长有毒性[58]。功能性碳纳米点对水葫芦Cd/Pb胁迫响应的影响,其研究结果表明,功能性碳纳米点(FCNS)和氮掺杂碳纳米点(N-FCNS)可以提高HMs去除效率,激活植物体内过量的HMs离子,减轻氧化损伤,并调节微量元素的吸收和相关基因的表达,提高植物对HMi胁迫的耐受性[59];还同时探究和报道了两性氮掺杂碳点提高拟南芥的生物积累效率和对Cd的耐受性,结果表明两性氮掺杂碳点(N-CDs)通过化学基团与金属离子之间的静电吸引和络合作用,对重污染水中的Cd2+具有优异的吸附能力,显著减轻了高Cd胁迫对拟南芥幼苗生长的毒性[60];通过探究非金属原子掺杂碳纳米点对万寿菊修复镉污染土壤的协同促进机制得到结论,氮和(或)硫元素掺杂碳纳米点通过界面反应、植物生理调节和环境影响等直接和间接机制调控镉在土壤–植物系统中的吸收和迁移,提高了镉的去除率,提高了污染土壤的植物修复效率[61];La3+胁迫下碳点对La3+的吸附行为及对绿豆幼苗生长的多重影响,结果表明柠檬酸基CDs (C-CDs)在水溶液体系中可以通过表面羧基和吡啶-n吸附La3+,并且C-CDs的存在诱导La在体内转化为无活性形式,显著影响La在植物体内的化学形态和分布[58]

总结上面的情况,碳点对植物修复的影响来源于两种,一种是碳点的抗氧化性可缓解污染物引起的氧化应激(如降低活性氧自由基积累)潜在毒性效应;另一种是碳点本身具有吸附的功能,能够和植物分别修复重金属的污染[62]。高浓度碳点可能抑制根系发育或干扰植物代谢(如破坏细胞膜完整性)。碳点可以促进植物对重金属的吸收,它作为载体协助重金属跨膜运输,例如通过螯合作用增强根系吸附。同时也可以调控重金属亚细胞分布,减少毒性离子在细胞质中的积累,促进其隔离至液泡或细胞壁[63]

3.2.3. 碳点在有机污染物去除中的作用

将银纳米颗粒(Ag NPs)和碳量子点(CQDs)构建为纳米复合材料,显著提升了其光催化性能,其中,Ag NPs利用表面等离子体共振效应增强了复合材料对可见光的吸收;CQDs则作为高效的电子传输介质,促进电荷转移并有效抑制电子–空穴复合。该方法使α-Fe2O3的粒径减小了,并且提高了光生电荷的分离效率,显著增强了光催化活性。该复合材料对甲基橙(MO)、苯酚和亚甲基蓝(MB)的降解率分别达到49%、74%和99%,充分证明了CQDs在提升污染物光催化降解性能方面的卓越作用[64]。有研究并探究出了一种木质素衍生碳量子点(CQD)改性的(BOI/CN)复合材料,用于光催化去除Cr (VI.)和左氧氟沙星(LEV)。碳点的改性使光捕获、电荷分离和电子转移性能实现了协同增强,对Cr (VI)的光还原效率达到100%,LEV的降解效率为94.8% [65]。并且也研究了碳点修饰的BiOCl超薄纳米片和碳化蛋壳膜的一种复合材料(三维分层CQDs/BiOCl/CEM复合材料),用于去除水中多种有机污染物,BiOCl独特的3D分层结构和显性暴露的{0 0 1}面使吸附增强,CQDs修饰的存在使光催化活性的提高,使用该复合材料可在可见光照射8小时后从实际废水样品中去除73%的COD [66]。通过两步法制备了碳量子点复合三维花状αFeOOH材料(CQD@FeOOH):先采用电化学刻蚀法构筑富含活性边缘的αFeOOH基底,再经尿素/乙醇溶液协同介导实现碳点复合。该材料在光催化–芬顿协同体系中对难降解苯酚的降解速率常数(k)达原始αFeOOH的2.8倍,展现卓越催化性能。碳量子点(CQDs)在αFeOOH上成功修饰形成Fe-O-C键,αFeOOH与CQDs的强相互作用促进了光生电子的快速界面转移(αFeOOH→CQDs),同时强化了可见光光子吸收[67]。根据以上研究表明,碳量子点(CQDs)作为多功能修饰剂,通过构建高效复合光催化材料,显著提升了污染物降解性能[68] [69]。所以通过以上总结得到,碳点通过光催化或电子传递增强植物对有机污染物的降解[70]

4. 当前研究的争议与挑战

尽管碳点在植物修复领域展现出显著潜力,但在机制解析、风险评估和应用转化三个维度仍存在争议与挑战。

在机制层面,碳点功能与效应目前仍具有不确定性,首先,虽然荧光碳点已被证实可增强有机污染物降解,但其荧光特性是否直接参与降解过程尚未明确。当前研究面临的关键难点在于:无法有效区分降解效率的提升究竟是源自荧光基团的光催化作用、电子传递功能,还是其作为载体的间接影响;其次,不同植物物种、不同粒径和表面修饰碳点及环境介质的差异,导致其安全浓度范围波动较大,例如水稻对氮掺杂碳点的耐受阈值为50 mg/L,而拟南芥则为20 mg/L,很难建立剂量效应关系的普适性规律。

另外,环境风险评估是另一关键问题,碳点在土壤或水中的长期残留行为尚不清晰,其纳米尺度带来的强迁移性可能导致食物链累积;功能化基团(如氨基、巯基)的生物累积风险及修饰剂脱附对微生物代谢、植物生理等生态过程的干扰也仍存在隐患。此外,碳点对非靶标生物(蚯蚓、浮游动物等)的毒性基础数据严重缺失,致使生态安全性评价难以有效开展。

技术与成本壁垒严重制约碳点规模化应用,主流制备法低产高耗,而绿色生物质水热法产物稳定性欠佳。更关键的是,实验室验证的高修复效率(例如黑麦草提效30%降解石油烃)在田间场景中难以实现,并且土壤质地、气候因素及田间管理措施会干扰碳点作用,造成修复效果不稳定。

突破这些挑战的核心在于多学科交叉研究,需要精准调控碳点特性、构建风险评估框架、开发田间适用技术,才能实现碳点从实验室到实际修复场景的转化。例如我们可以通过筛选低毒合成原料(如天然生物质替代化学试剂)、控制表面残留杂质来降低碳点对土壤微生物、植物根系的毒性;构建一个基于碳点理化性质的植物毒性预测模型框架;针对不同气候区、耕作制度的特点,调整碳点剂型与施用时机。通过以上技术开发,推动其从实验室成果转化为实际生产力。

5. 未来研究方向

未来碳点应用于植物修复的发展路径需集中于定向设计、协同技术创新和环境风险管控三大关键领域,旨在突破现有瓶颈并促进规模化应用。

在碳点的定向设计方面,可以优化碳点的表面修饰基团,提升其靶向吸附能力,例如硫脲改性的碳点可以高效捕获汞离子Hg2+、镉离子Cd2+;对于深层土壤和水体修复,可以开发响应性碳点,例如近红外光激发的氮掺杂碳点,其穿透性强,可以在光照下同时实现光催化降解污染物和提高植物吸收效率,克服传统技术对深层区域作用不足的局限。

联合修复技术的创新是提升效率的关键路径,一方面可以整合碳点与功能材料,例如nZVI复合体通过提升电子传递效率加速氯代有机物降解;碳点负载菌剂形成的复合载体,可提供碳源并改善根际环境以激活微生物代谢。另一方面是结合基因工程,改造植物特定的转运蛋白(如重金属ATP酶),促进碳点与污染物的共转运,最终提高植物提取污染物的效率。

环境风险的系统评估是可持续应用的前提:需引入生命周期分析(LCA)方法,从碳点制备方法、运输到应用后的残留全过程量化环境成本,优先推广低能耗、低污染的绿色合成工艺;同时,借助机器学习模型整合碳点理化性质(粒径、表面电荷)、植物生理响应及污染物特性等多维度数据,建立碳点–植物–污染物相互作用的预测模型,精准评估其在不同环境介质中的迁移转化规律及生态毒性,为风险防控提供科学依据。

要实现碳点的可持续应用,系统的环境风险评估是不可或缺的前提。这需要从两方面着手:一方面,需对碳点全生命周期的环境成本进行量化分析,涵盖从制备、运输到应用后残留的完整链条,并在此基础上优先推广低能耗、低污染的绿色合成工艺;另一方面,可利用机器学习技术整合多维度数据——包括碳点的理化性质(如粒径、表面电荷等)、植物的生理响应以及污染物的特性等,构建碳点–植物–污染物相互作用模型,以此精准评估碳点在不同环境介质中的迁移转化规律及生态毒性,为风险防控策略的制定提供科学支撑。

通过上述方向的突破,可实现碳点在植物修复中“高效功能–安全应用”的协同优化,推动其从实验室研究向工程化应用的跨越。

6. 结论

综上所述,碳点作为一类兼具功能性与环境相容性的绿色纳米材料,在植物修复中展现出较为重要的价值:其通过调控植物生理代谢改善植物的生长特性,借助表面官能团的螯合作用与载体功能促进污染物的吸收转运,并通过调节植物–微生物互作强化修复体系的协同效应,为重金属与有机污染物的高效清除提供了新途径。这种“材料–植物–微生物”的协同机制,既突破了传统植物修复效率低下的瓶颈,又规避了部分纳米材料高毒性的局限,凸显了其在生态修复领域的独特应用潜力。

然而,碳点从实验室研究走向田间应用的转化仍需跨越多重障碍。这要求材料学、植物生理学、环境毒理学等多学科的深度融合:材料学需推动碳点的功能定制化设计与绿色合成工艺优化,实现靶向修复功能与低成本制备的平衡;植物生理学需解析碳点与植物细胞的纳米界面作用机制,明确“低促高抑”效应的分子调控网络;环境毒理学则需建立全生命周期的风险评估体系,量化其长期残留与非靶标生态影响。唯有通过跨学科协作破解机制争议、环境风险与应用局限等核心问题,才能真正释放碳点在植物修复中的技术价值,为污染环境的可持续治理提供兼具效率与安全性的创新方案。

致 谢

本工作得到国家自然科学基金面上项目的支持(基金号:42271301)。

NOTES

*通讯作者。

参考文献

[1] Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I. and Dumat, C. (2017) A Comparison of Technologies for Remediation of Heavy Metal Contaminated Soils. Journal of Geochemical Exploration, 182, 247-268.
https://doi.org/10.1016/j.gexplo.2016.11.021
[2] Shah, V. and Daverey, A. (2020) Phytoremediation: A Multidisciplinary Approach to Clean up Heavy Metal Contaminated Soil. Environmental Technology & Innovation, 18, Article ID: 100774.
https://doi.org/10.1016/j.eti.2020.100774
[3] Zhu, Y., Xu, F., Liu, Q., Chen, M., Liu, X., Wang, Y., et al. (2019) Nanomaterials and Plants: Positive Effects, Toxicity and the Remediation of Metal and Metalloid Pollution in Soil. Science of the Total Environment, 662, 414-421.
https://doi.org/10.1016/j.scitotenv.2019.01.234
[4] Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., et al. (2016) Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicology and Environmental Safety, 126, 111-121.
https://doi.org/10.1016/j.ecoenv.2015.12.023
[5] Coelho, D.G., da Silva, V.M., Martins, A.O., de Araújo, H.H., de Souza Miranda, R., Araújo, E.F., et al. (2025) Unraveling the Unique and Associated Physiological Challenges of Iron, Manganese and Arsenic on Pistia stratiotes L. for Phytoremediation of Multi-Contaminated Water. Science of the Total Environment, 980, Article ID: 179517.
https://doi.org/10.1016/j.scitotenv.2025.179517
[6] Ma, F., Zhang, Q., Xu, D., Hou, D., Li, F. and Gu, Q. (2014) Mercury Removal from Contaminated Soil by Thermal Treatment with FeCl3 at Reduced Temperature. Chemosphere, 117, 388-393.
https://doi.org/10.1016/j.chemosphere.2014.08.012
[7] Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q., et al. (2018) Remediation of Multiple Heavy Metal-Contaminated Soil through the Combination of Soil Washing and in Situ Immobilization. Science of the Total Environment, 635, 92-99.
https://doi.org/10.1016/j.scitotenv.2018.04.119
[8] Regier, N., Larras, F., Bravo, A.G., Ungureanu, V., Amouroux, D. and Cosio, C. (2013) Mercury Bioaccumulation in the Aquatic Plant Elodea Nuttallii in the Field and in Microcosm: Accumulation in Shoots from the Water Might Involve Copper Transporters. Chemosphere, 90, 595-602.
https://doi.org/10.1016/j.chemosphere.2012.08.043
[9] Xie, H., Ma, Y., Wang, Y., Sun, F., Liu, R., Liu, X., et al. (2021) Biological Response and Phytoremediation of Perennial Ryegrass to Halogenated Flame Retardants and Cd in Contaminated Soils. Journal of Environmental Chemical Engineering, 9, Article ID: 106526.
https://doi.org/10.1016/j.jece.2021.106526
[10] Li, T., Di, Z., Islam, E., Jiang, H. and Yang, X. (2011) Rhizosphere Characteristics of Zinc Hyperaccumulator Sedum alfredii Involved in Zinc Accumulation. Journal of Hazardous Materials, 185, 818-823.
https://doi.org/10.1016/j.jhazmat.2010.09.093
[11] Cai, X., Fu, J., Li, X., Peng, L., Yang, L., Liang, Y., et al. (2022) Low-Molecular-Weight Organic Acid-Mediated Tolerance and Pb Accumulation in Centipedegrass under Pb Stress. Ecotoxicology and Environmental Safety, 241, Article ID: 113755.
https://doi.org/10.1016/j.ecoenv.2022.113755
[12] da Silva, E.B., Mussoline, W.A., Wilkie, A.C. and Ma, L.Q. (2019) Arsenic Removal and Biomass Reduction of As-Hyperaccumulator Pteris Vittata: Coupling Ethanol Extraction with Anaerobic Digestion. Science of the Total Environment, 666, 205-211.
https://doi.org/10.1016/j.scitotenv.2019.02.161
[13] Yaashikaa, P.R., Kumar, P.S., Jeevanantham, S. and Saravanan, R. (2022) A Review on Bioremediation Approach for Heavy Metal Detoxification and Accumulation in Plants. Environmental Pollution, 301, Article ID: 119035.
https://doi.org/10.1016/j.envpol.2022.119035
[14] Xu, Q., Cai, H., Li, W., Wu, M., Wu, Y. and Gong, X. (2022) Carbon Dot/Inorganic Nanomaterial Composites. Journal of Materials Chemistry A, 10, 14709-14731.
https://doi.org/10.1039/d2ta02628g
[15] Ozfidan-Konakci, C., Yildiztugay, E., Arikan-Abdulveli, B., Alp-Turgut, F.N., Baslak, C. and Yıldırım, M. (2024) The Characterization of Plant Derived-Carbon Dots and Its Responses on Chlorophyll a Fluorescence Kinetics, Radical Accumulation in Guard Cells, Cellular Redox State and Antioxidant System in Chromium Stressed-Lactuca sativa. Chemosphere, 356, Article ID: 141937.
https://doi.org/10.1016/j.chemosphere.2024.141937
[16] Zhang, M., Hu, L., Wang, H., Song, Y., Liu, Y., Li, H., et al. (2018) One-Step Hydrothermal Synthesis of Chiral Carbon Dots and Their Effects on Mung Bean Plant Growth. Nanoscale, 10, 12734-12742.
https://doi.org/10.1039/c8nr01644e
[17] Li, X., Li, R., Zhan, M., Hou, Q., Zhang, H., Wu, G., et al. (2024) Combined Magnetic Biochar and Ryegrass Enhanced the Remediation Effect of Soils Contaminated with Multiple Heavy Metals. Environment International, 185, Article ID: 108498.
https://doi.org/10.1016/j.envint.2024.108498
[18] Li, J., Baker, A.J.M., Ye, Z., Wang, H. and Shu, W. (2012) Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges. Critical Reviews in Environmental Science and Technology, 42, 2113-2152.
https://doi.org/10.1080/10643389.2011.574105
[19] Serrano, M.F., López, J.E., Henao, N. and Saldarriaga, J.F. (2024) Phosphorus-Loaded Biochar-Assisted Phytoremediation to Immobilize Cadmium, Chromium, and Lead in Soils. ACS Omega, 9, 3574-3587.
https://doi.org/10.1021/acsomega.3c07433
[20] Sánchez, S., Baragaño, D., Gallego, J.R., López-Antón, M.A., Forján, R. and González, A. (2024) Valorization of Steelmaking Slag and Coal Fly Ash as Amendments in Combination with Betula Pubescens for the Remediation of a Highly As-and Hg-Polluted Mining Soil. Science of the Total Environment, 927, Article ID: 172297.
https://doi.org/10.1016/j.scitotenv.2024.172297
[21] Huang, H., Zhao, R., Guo, G., He, Y., Chen, S., Zhu, Y., et al. (2024) Effect of Various Phosphorus Levels on the Extraction of Cd, the Transformation of P, and Phosphorus-Related Gene during the Phytoremediation of Cd Contaminated Soil. Environmental Research, 251, Article ID: 118389.
https://doi.org/10.1016/j.envres.2024.118389
[22] Liu, W., Yu, T., Cao, H., Peng, X., Yang, Y. and Li, R. (2023) Effects of EDTA and Organic Acids on Physiological Processes, Gene Expression Levels, and Cadmium Accumulation in Solanum nigrum under Cadmium Stress. Journal of Soil Science and Plant Nutrition, 23, 3823-3833.
https://doi.org/10.1007/s42729-023-01302-7
[23] Jiang, M., Liu, S., Li, Y., Li, X., Luo, Z., Song, H., et al. (2019) EDTA-Facilitated Toxic Tolerance, Absorption and Translocation and Phytoremediation of Lead by Dwarf Bamboos. Ecotoxicology and Environmental Safety, 170, 502-512.
https://doi.org/10.1016/j.ecoenv.2018.12.020
[24] Guo, J., Xu, H., Yin, F., Cao, J., Xu, X., Li, C., et al. (2024) Synergistic Remediation of Cd-Contaminated Soil with Pure Natural Adsorption Material and Hyperaccumulator Plant. Agronomy, 14, Article No. 1299.
https://doi.org/10.3390/agronomy14061299
[25] Bakshi, M. and Kumar, A. (2023) Co-Application of TiO2 Nanoparticles and Hyperaccumulator Brassica juncea L. for Effective Cd Removal from Soil: Assessing the Feasibility of Using Nano-Phytoremediation. Journal of Environmental Management, 341, Article ID: 118005.
https://doi.org/10.1016/j.jenvman.2023.118005
[26] Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., et al. (2018) Impacts of Carbon Dots on Rice Plants: Boosting the Growth and Improving the Disease Resistance. ACS Applied Bio Materials, 1, 663-672.
https://doi.org/10.1021/acsabm.8b00345
[27] Wang, H., Kang, Y., Yang, N., Li, H., Huang, S., Liang, Z., et al. (2022) Inhibition of UV-B Stress in Lettuce through Enzyme-Like Scutellaria baicalensis Carbon Dots. Ecotoxicology and Environmental Safety, 246, Article ID: 114177.
https://doi.org/10.1016/j.ecoenv.2022.114177
[28] Zhao, S., Li, C., Wu, C., Hu, J., Zhang, Z., Lei, B., et al. (2024) Effects of Multifunctional Cerium-Doped Carbon Dots on Photosynthetic Capacity and Nutritional Quality of Lettuce. Environmental Science: Nano, 11, 3137-3149.
https://doi.org/10.1039/d4en00374h
[29] Zhang, Y., Huang, Y., Jiang, J., Chen, J., Han, W., Liu, Y., et al. (2024) Transfer, Transportation, and Adsorption of UV-B by Mg-N Co Doped Carbon Quantum Dots: Response of Growth Indicators, Antioxidant Effect and Mechanism Explanation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 307, Article ID: 123618.
https://doi.org/10.1016/j.saa.2023.123618
[30] Xiao, L., Guo, H., Wang, S., Li, J., Wang, Y. and Xing, B. (2019) Carbon Dots Alleviate the Toxicity of Cadmium Ions Cd2+) toward Wheat Seedlings. Environmental Science: Nano, 6, 1493-1506.
https://doi.org/10.1039/c9en00235a
[31] Li, M., Zhang, P., Adeel, M., Guo, Z., Chetwynd, A.J., Ma, C., et al. (2021) Physiological Impacts of Zero Valent Iron, Fe3O4 and Fe2O3 Nanoparticles in Rice Plants and Their Potential as Fe Fertilizers. Environmental Pollution, 269, Article ID: 116134.
https://doi.org/10.1016/j.envpol.2020.116134
[32] Antunes, D.R., Forini, M.M.L.H., Coqueiro, Y.A., Pontes, M.S., Lima, P.H.C., Cavalcante, L.A.F., et al. (2024) Effect of Hyaluronic Acid-Stabilized Silver Nanoparticles on Lettuce (Lactuca sativa L.) Seed Germination. Chemosphere, 364, Article ID: 143080.
https://doi.org/10.1016/j.chemosphere.2024.143080
[33] Kang, Y., Qin, H., Wang, G., Lei, B., Yang, X. and Zhong, M. (2024) Selenium Nanoparticles Mitigate Cadmium Stress in Tomato through Enhanced Accumulation and Transport of Sulfate/selenite and Polyamines. Journal of Agricultural and Food Chemistry, 72, 1473-1486.
https://doi.org/10.1021/acs.jafc.3c07504
[34] Esfandiari, N., Bagheri, Z., Ehtesabi, H., Fatahi, Z., Tavana, H. and Latifi, H. (2019) Effect of Carbonization Degree of Carbon Dots on Cytotoxicity and Photo-Induced Toxicity to Cells. Heliyon, 5, e02940.
https://doi.org/10.1016/j.heliyon.2019.e02940
[35] Xu, Y., Lu, Y., Li, J., Liu, R. and Zhu, X. (2020) Effect of Graphene Quantum Dot Size on Plant Growth. Nanoscale, 12, 15045-15049.
https://doi.org/10.1039/d0nr01913e
[36] Li, Y., Xu, X., Lei, B., Zhuang, J., Zhang, X., Hu, C., et al. (2021) Magnesium-Nitrogen Co-Doped Carbon Dots Enhance Plant Growth through Multifunctional Regulation in Photosynthesis. Chemical Engineering Journal, 422, Article ID: 130114.
https://doi.org/10.1016/j.cej.2021.130114
[37] Su, L., Ma, X., Zhao, K., Shen, C., Lou, Q., Yin, D., et al. (2018) Carbon Nanodots for Enhancing the Stress Resistance of Peanut Plants. ACS Omega, 3, 17770-17777.
https://doi.org/10.1021/acsomega.8b02604
[38] Li, J., Xiao, L., Cheng, Y., Cheng, Y., Wang, Y., Wang, X., et al. (2019) Applications of Carbon Quantum Dots to Alleviate Cd2+ Phytotoxicity in Citrus Maxima Seedlings. Chemosphere, 236, Article ID: 124385.
https://doi.org/10.1016/j.chemosphere.2019.124385
[39] Alikhani, M., Mirbolook, A., Sadeghi, J. and Lakzian, A. (2023) Effect of a New Slow-Release Zinc Fertilizer Based on Carbon Dots on the Zinc Concentration, Growth Indices, and Yield in Wheat (Triticum aestivum). Plant Physiology and Biochemistry, 200, Article ID: 107783.
https://doi.org/10.1016/j.plaphy.2023.107783
[40] Milenković, I., Zhou, Y.Q., Borišev, M., Serafim, L.F., Chen, J.Y., ElMetwally, A.E., et al. (2024) Modeling of Orange Carbon Dots-CO2 Interaction and Its Effects on Photosynthesis and Productivity in Maize and Green Beans. Journal of Environmental Informatics, 43, 80-91.
https://doi.org/10.3808/jei.202400511
[41] Yan, X., Xu, Q., Li, D., Wang, J. and Han, R. (2021) Carbon Dots Inhibit Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis. Ecotoxicology and Environmental Safety, 216, Article ID: 112168.
https://doi.org/10.1016/j.ecoenv.2021.112168
[42] Banerjee, R., Goswami, P., Chakrabarti, M., Chakraborty, D., Mukherjee, A. and Mukherjee, A. (2021) Cadmium Selenide (CdSe) Quantum Dots Cause Genotoxicity and Oxidative Stress in Allium cepa Plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 865, Article ID: 503338.
https://doi.org/10.1016/j.mrgentox.2021.503338
[43] Abdel-Wahab, D.A., Othman, N.A.R.M. and Hamada, A.M. (2019) Effects of Copper Oxide Nanoparticles to Solanum nigrum and Its Potential for Phytoremediation. Plant Cell, Tissue and Organ Culture (PCTOC), 137, 525-539.
https://doi.org/10.1007/s11240-019-01588-5
[44] Răcuciu, M., Barbu-Tudoran, L. and Oancea, S. (2025) Evaluation of Phytotoxicity and Genotoxicity of TMA-Stabilized Iron-Oxide Nanoparticle in Corn (Zea mays) Young Plants. Scientific Reports, 15, Article No. 18951.
https://doi.org/10.1038/s41598-025-03872-1
[45] Zhang, T., Wang, Q. and Rui, Y. (2025) The Impact of Nanomaterials on Plant Health: A Review of Exposure, Toxicity, and Control. Environmental Science: Nano, 12, 2965-2982.
https://doi.org/10.1039/d5en00037h
[46] Dev, A., Srivastava, A.K. and Karmakar, S. (2017) Nanomaterial Toxicity for Plants. Environmental Chemistry Letters, 16, 85-100.
https://doi.org/10.1007/s10311-017-0667-6
[47] Yan, A. and Chen, Z. (2019) Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. International Journal of Molecular Sciences, 20, Article No. 1003.
https://doi.org/10.3390/ijms20051003
[48] Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., Rehman, H.U., et al. (2020) Nanotechnology in Agriculture: Current Status, Challenges and Future Opportunities. Science of the Total Environment, 721, Article ID: 137778.
https://doi.org/10.1016/j.scitotenv.2020.137778
[49] Azim, Z., Singh, N.B., Singh, A., Amist, N., Niharika, Khare, S., et al. (2022) A Review Summarizing Uptake, Translocation and Accumulation of Nanoparticles within the Plants: Current Status and Future Prospectus. Journal of Plant Biochemistry and Biotechnology, 32, 211-224.
https://doi.org/10.1007/s13562-022-00800-6
[50] Li, J., Wang, Z., Zhang, Y., Cao, X., Lian, F. and Gu, S. (2023) Novel Selenium-Doped Carbon Quantum Dots Derived from Algae Effectively Enhanced the Delivery and Accumulation of Selenium in Tomato Plants (Lycopersicum esculentum) via Foliar Application. Environmental Science: Nano, 10, 866-878.
https://doi.org/10.1039/d2en00918h
[51] Puglisi, I., La Bella, E., Rovetto, E.I., Stevanato, P., Fascella, G. and Baglieri, A. (2022) Morpho-Biometric and Biochemical Responses in Lettuce Seedlings Treated by Different Application Methods of Chlorella vulgaris Extract: Foliar Spray or Root Drench? Journal of Applied Phycology, 34, 889-901.
https://doi.org/10.1007/s10811-021-02671-1
[52] Ji, Y., Yue, L., Cao, X., Chen, F., Li, J., Zhang, J., et al. (2023) Carbon Dots Promoted Soybean Photosynthesis and Amino Acid Biosynthesis under Drought Stress: Reactive Oxygen Species Scavenging and Nitrogen Metabolism. Science of the Total Environment, 856, Article ID: 159125.
https://doi.org/10.1016/j.scitotenv.2022.159125
[53] Ji, Y., Cheng, B., Le Yue, Bai, S., Cao, X., Li, J., et al. (2024) Biomass-Derived Carbon Dots Enhanced Maize (Zea mays L.) Drought Tolerance by Regulating Phyllosphere Microorganisms and Ion Fluxes. Environmental and Experimental Botany, 226, Article ID: 105913.
https://doi.org/10.1016/j.envexpbot.2024.105913
[54] Yao, Y., Yue, L., Cao, X., et al. (2025) Carbon Dots Embedded in Nanoporous SiO2 Nanoparticles for Enhancing Photosynthesis in Agricultural Crops.
[55] Liu, Y., Liu, D., Han, X., Chen, Z., Li, M., Jiang, L., et al. (2024) Magnesium-Doped Carbon Quantum Dot Nanomaterials Alleviate Salt Stress in Rice by Scavenging Reactive Oxygen Species to Increase Photosynthesis. ACS Nano, 18, 31188-31203.
https://doi.org/10.1021/acsnano.4c09001
[56] Panahirad, S., Dadpour, M., Gohari, G., Akbari, A., Mahdavinia, G., Jafari, H., et al. (2023) Putrescine-Functionalized Carbon Quantum Dot (Put-CQD) Nanoparticle: A Promising Stress-Protecting Agent against Cadmium Stress in Grapevine (Vitis vinifera Cv. Sultana). Plant Physiology and Biochemistry, 197, Article ID: 107653.
https://doi.org/10.1016/j.plaphy.2023.107653
[57] Tian, R., Zhan, S., He, G., Wang, Z., Zhang, Z. and Wang, X. (2025) Research and Application Discussion on New Technology for Detecting Cadmium Ions Based on a Near-Red Light Carbon Dot Fluorescence Quenching Method. Analytical Methods, 17, 611-620.
https://doi.org/10.1039/d4ay01760a
[58] Liu, X., Niu, X., Tian, Y., Jiang, Y., Cheng, C., Wang, T., et al. (2025) Adsorption Behavior of Carbon Dots on La3+ and the Multiple Effects on the Growth of Mung Bean Seedlings under La3+ Stress. Environmental Science: Nano, 12, 805-823.
https://doi.org/10.1039/d4en00530a
[59] Chen, Q., Cao, X., Liu, B., Nie, X., Liang, T., Suhr, J., et al. (2021) Effects of Functional Carbon Nanodots on Water Hyacinth Response to Cd/Pb Stress: Implication for Phytoremediation. Journal of Environmental Management, 299, Article ID: 113624.
https://doi.org/10.1016/j.jenvman.2021.113624
[60] Chen, Q., Liu, B., Man, H., Chen, L., Wang, X., Tu, J., et al. (2020) Enhanced Bioaccumulation Efficiency and Tolerance for Cd(Ⅱ) in Arabidopsis Thaliana by Amphoteric Nitrogen-Doped Carbon Dots. Ecotoxicology and Environmental Safety, 190, Article ID: 110108.
https://doi.org/10.1016/j.ecoenv.2019.110108
[61] Xing, G., Chen, Q., Sun, Y., Wang, J., Zhou, J., Sun, L., et al. (2024) Synergistic Promotion Mechanism and Structure-Function Relationship of Nonmetallic Atoms Doped Carbon Nanodots Driving Tagetes patula L. to Remediate Cadmium-Contaminated Soils. Journal of Hazardous Materials, 480, Article ID: 136479.
https://doi.org/10.1016/j.jhazmat.2024.136479
[62] Yahaya Pudza, M., Zainal Abidin, Z., Abdul Rashid, S., Md Yasin, F., Noor, A.S.M. and Issa, M.A. (2020) Eco-Friendly Sustainable Fluorescent Carbon Dots for the Adsorption of Heavy Metal Ions in Aqueous Environment. Nanomaterials, 10, Article No. 315.
https://doi.org/10.3390/nano10020315
[63] Chung Hui, K., Lun Ang, W. and Soraya Sambudi, N. (2021) Nitrogen and Bismuth-Doped Rice Husk-Derived Carbon Quantum Dots for Dye Degradation and Heavy Metal Removal. Journal of Photochemistry and Photobiology A: Chemistry, 418, Article ID: 113411.
https://doi.org/10.1016/j.jphotochem.2021.113411
[64] Kalantarian, K. and Sheibani, S. (2025) Ag and Carbon Quantum Dot-Modified Fe2O3/g-C3N4 Nanocomposites for Efficient Photocatalytic Degradation of Organic Pollutants and Hydrogen Production. International Journal of Hydrogen Energy, 140, 343-361.
https://doi.org/10.1016/j.ijhydene.2025.05.291
[65] Zhu, L., Shen, D., Zhang, H., Luo, K.H. and Li, C. (2023) Fabrication of Z-Scheme Bi7O9i3/g-C3N4 Heterojunction Modified by Carbon Quantum Dots for Synchronous Photocatalytic Removal of Cr(Ⅵ) and Organic Pollutants. Journal of Hazardous Materials, 446, Article ID: 130663.
https://doi.org/10.1016/j.jhazmat.2022.130663
[66] Zhou, Q., Huang, W., Xu, C., Liu, X., Yang, K., Li, D., et al. (2021) Novel Hierarchical Carbon Quantum Dots-Decorated BiOCl Nanosheet/Carbonized Eggshell Membrane Composites for Improved Removal of Organic Contaminants from Water via Synergistic Adsorption and Photocatalysis. Chemical Engineering Journal, 420, Article ID: 129582.
https://doi.org/10.1016/j.cej.2021.129582
[67] Wu, P., Zhou, C., Li, Y., Zhang, M., Tao, P., Liu, Q., et al. (2021) Flower-Like FeOOH Hybridized with Carbon Quantum Dots for Efficient Photo-Fenton Degradation of Organic Pollutants. Applied Surface Science, 540, Article ID: 148362.
https://doi.org/10.1016/j.apsusc.2020.148362
[68] Zhang, X., Wu, M., Hou, A., Xie, K., Li, F. and Gao, A. (2024) Boron-Doped Carbon Quantum Dot/Carbon Nanorod/Graphitic Carbon Nitride Composites for Photocatalytic Degradation of Organic Pollutants. ACS Applied Nano Materials, 7, 13501-13511.
https://doi.org/10.1021/acsanm.4c01800
[69] Xu, K., Zhang, Q., Wang, C., Xu, J., Bu, Y., Liang, B., et al. (2022) 0D Boron Carbon Nitride Quantum Dots Decorated 2D Bi4O5i2 as 0D/2D Efficient Visible-Light-Driven Photocatalysts for Tetracyclines Photodegradation. Chemosphere, 289, Article ID: 133230.
https://doi.org/10.1016/j.chemosphere.2021.133230
[70] Huang, X., Qiao, K., Li, L., Liu, G., Xu, X., Lu, R., et al. (2019) Preparation of a Magnetic Graphene/Polydopamine Nanocomposite for Magnetic Dispersive Solid-Phase Extraction of Benzoylurea Insecticides in Environmental Water Samples. Scientific Reports, 9, Article No. 8919.
https://doi.org/10.1038/s41598-019-45186-z