[1]
|
Ural-Janssen, A., Meers, E., Ros, G.H., Vingerhoets, R. and Strokal, M. (2025) Mitigating Nutrient Losses in Europe: Synergistic Solutions for Air and Water Pollution by 2050. Resources, Conservation and Recycling, 222, Article ID: 108472. https://doi.org/10.1016/j.resconrec.2025.108472
|
[2]
|
李雅, 殷丽萍, 刘丹, 等. 中国抗生素污染现状及对浮游生物的影响[J]. 应用生态学报, 2023, 34(3): 853-864.
|
[3]
|
dos Santos Silva, M.N., da Silva Santana, I.L., Jorge Correia Guedes, G.A., Ribeiro, B.G., Lima Silva, C.d.O., Napoleão, D.C., et al. (2025) Conversion of Agro-Industrial Wastes as Highly Efficient Adsorbents in the Removal of Pollutants: Characterization and Study of Dye Adsorption in Water. Chemical Engineering Science, 309, Article ID: 121442. https://doi.org/10.1016/j.ces.2025.121442
|
[4]
|
Blach, T. and Engelhart, M. (2025) Limitations of Treating Hydrothermal Carbonization Process Water in a Membrane Bioreactor and a Sequencing Batch Reactor on Pilot Scale. Journal of Environmental Chemical Engineering, 13, Article ID: 115304. https://doi.org/10.1016/j.jece.2024.115304
|
[5]
|
Chen, M., Tian, S., He, T., Qin, L., Liu, H., et al. (2025) Microbial Consortium Composed of Efficient Denitrifying Strains and Bacterial Groups from Toilet Water for Enhancing Blackwater Treatment. Journal of Environmental Chemical Engineering, 13, Article ID: 117676. https://doi.org/10.1016/j.jece.2025.117676
|
[6]
|
Okpara, E.C., Wojuola, O.B., Quadri, T.W. and Banks, C.E. (2024) An Overview of Advanced Oxidation Processes Using Copper-Based Catalytic Degradation of Organic Pollutants in Water. Applied Materials Today, 36, Article 102053. https://doi.org/10.1016/j.apmt.2023.102053
|
[7]
|
Están García, A., Crespí Sánchez, N., Turnes Palomino, G. and Palomino Cabello, C. (2025) MOF Derived Porous Fe-Cu@Carbon Catalyst for the Degradation of Bisphenol a through a Persulfate-Based Advanced Oxidation Process. Microporous and Mesoporous Materials, 381, Article ID: 113366. https://doi.org/10.1016/j.micromeso.2024.113366
|
[8]
|
Luo, H., Zeng, Y., He, D. and Pan, X. (2021) Application of Iron-Based Materials in Heterogeneous Advanced Oxidation Processes for Wastewater Treatment: A Review. Chemical Engineering Journal, 407, Article ID: 127191. https://doi.org/10.1016/j.cej.2020.127191
|
[9]
|
Wang, X., Feng, L., Deng, Y., Lynch, I., Ma, J. and Ning, P. (2025) Nanoscale Zero-Valent Iron Loaded on Boron-Doped Coffee Grounds Highly Efficiently Activates Peroxymonosulfate to Degrade Tetracycline. Journal of Water Process Engineering, 76, Article ID: 108196. https://doi.org/10.1016/j.jwpe.2025.108196
|
[10]
|
Zhang, R., Zhu, Y., Dong, J., Yao, Z., Zeng, G., Sheng, X., et al. (2024) Fluoranthene Degradation in a Persulfate System Activated by Sulfidated Nano Zero-Valent Iron (S-nZVI): Performance and Mechanisms. Water Science & Technology, 89, 225-240. https://doi.org/10.2166/wst.2024.007
|
[11]
|
Zuo, Q., Ma, Y., Ma, G., Zhang, M., Li, M., Wei, B., et al. (2025) Sulfide Nanoscale Zero-Valent Iron Activated Persulfate Improves the Degradation Efficiency of OBS (Sodium P-Perfluorous Nonenoxybenzenesulfonate). Chemical Engineering Science, 315, Article ID: 121875. https://doi.org/10.1016/j.ces.2025.121875
|
[12]
|
Li, Y., Zhao, X., Yan, Y., Yan, J., Pan, Y., Zhang, Y., et al. (2019) Enhanced Sulfamethoxazole Degradation by Peroxymonosulfate Activation with Sulfide-Modified Microscale Zero-Valent Iron (S-mFe0): Performance, Mechanisms, and the Role of Sulfur Species. Chemical Engineering Journal, 376, Article ID: 121302. https://doi.org/10.1016/j.cej.2019.03.178
|
[13]
|
Yu, X., Jin, X., Wang, N., Yu, Y., Zhu, X., Chen, M., et al. (2022) Transformation of Sulfamethoxazole by Sulfidated Nanoscale Zerovalent Iron Activated Persulfate: Mechanism and Risk Assessment Using Environmental Metabolomics. Journal of Hazardous Materials, 428, Article ID: 128244. https://doi.org/10.1016/j.jhazmat.2022.128244
|
[14]
|
Wu, G., Kong, W., Gao, Y., Kong, Y., Dai, Z., Dan, H., et al. (2022) Removal of Chloramphenicol by Sulfide-Modified Nanoscale Zero-Valent Iron Activated Persulfate: Performance, Salt Resistance, and Reaction Mechanisms. Chemosphere, 286, Article ID: 131876. https://doi.org/10.1016/j.chemosphere.2021.131876
|
[15]
|
Zeng, J., Liu, J., Su, W., Tang, J., Luo, Z., Tang, F., et al. (2023) Persulfate Activation by Sulfide-Modified Nanoscale Zero-Valent Iron for Metronidazole Degradation: Mechanism, Major Radicals and Toxicity Assessment. Journal of Water Process Engineering, 53, Article ID: 103733. https://doi.org/10.1016/j.jwpe.2023.103733
|
[16]
|
Shu, Z., Yang, H., Ye, S., Li, H., Yang, Z., Li, C., et al. (2025) Iron Scrap Derived Nano Zero-Valent Iron/Biochar Activated Persulfate for P-Arsanilic Acid Decontamination with Coexisting Microplastics. Journal of Environmental Sciences, 151, 733-746. https://doi.org/10.1016/j.jes.2024.04.031
|
[17]
|
Xue, Y., Kamali, M., Liyakat, A., Bruggeman, M., Muhammad, Z., Rossi, B., et al. (2023) A Walnut Shell Biochar-Nano Zero-Valent Iron Composite Membrane for the Degradation of Carbamazepine via Persulfate Activation. Science of the Total Environment, 899, Article ID: 165535. https://doi.org/10.1016/j.scitotenv.2023.165535
|
[18]
|
Yang, Y., Zhu, J., Zeng, Q., Zeng, X., Zhang, G. and Niu, Y. (2023) Enhanced Activation of Peroxydisulfate by Regulating Pyrolysis Temperature of Biochar Supported nZVI for the Degradation of Oxytetracycline. Journal of the Taiwan Institute of Chemical Engineers, 145, Article ID: 104775. https://doi.org/10.1016/j.jtice.2023.104775
|
[19]
|
Shao, F., Wang, Y., Mao, Y., Shao, T. and Shang, J. (2020) Degradation of Tetracycline in Water by Biochar Supported Nanosized Iron Activated Persulfate. Chemosphere, 261, Article ID: 127844. https://doi.org/10.1016/j.chemosphere.2020.127844
|
[20]
|
Ding, Y., Li, M., Zhang, Q., Zhang, Y., Xia, Z., Liu, X., et al. (2023) Sulfidized State and Formation: Enhancement of Nanoscale Zero-Valent Iron on Biochar (S-nZVI/BC) in Activating Peroxymonosulfate for Acid Red 73 Degradation. Journal of Environmental Chemical Engineering, 11, Article ID: 110114. https://doi.org/10.1016/j.jece.2023.110114
|
[21]
|
Yan, J., Guo, Z., Sun, Y., Yan, Z., Liu, R., Chen, Y., et al. (2025) Mechanism Insight into Sulfidated Nano Zero-Valent Iron/biochar Activated Persulfate for Highly Efficient Degradation of p-chloroaniline. Chemosphere, 375, Article ID: 144229. https://doi.org/10.1016/j.chemosphere.2025.144229
|
[22]
|
Xie, R., Wang, M., Li, W. and Song, J. (2023) Degradation of 2-Chlorophenol in Aqueous Solutions Using Persulfate Activated by Biochar Supported Sulfide-Modified Nanoscale Zero-Valent Iron: Performance and Mechanisms. Water, 15, Article No. 2805. https://doi.org/10.3390/w15152805
|
[23]
|
Xue, W., Chen, X., Liu, H., Li, J., Wen, S., Guo, J., et al. (2024) Activation of Persulfate by Biochar-Supported Sulfidized Nanoscale Zero-Valent Iron for Degradation of Ciprofloxacin in Aqueous Solution: Process Optimization and Degradation Pathway. Environmental Science and Pollution Research, 31, 10950-10966. https://doi.org/10.1007/s11356-024-31931-z
|