[1]
|
Ural-Janssen, A., Meers, E., Ros, G.H., Vingerhoets, R. and Strokal, M. (2025) Mitigating Nutrient Losses in Europe: Synergistic Solutions for Air and Water Pollution by 2050. Resources, Conservation and Recycling, 222, Article ID: 108472. https://doi.org/10.1016/j.resconrec.2025.108472
|
[2]
|
李雅, 殷丽萍, 刘丹, 等. 中国抗生素污染现状及对浮游生物的影响[J]. 应用生态学报, 2023, 34(3): 853-864.
|
[3]
|
dos Santos Silva, M.N., da Silva Santana, I.L., Jorge Correia Guedes, G.A., Ribeiro, B.G., Lima Silva, C.d.O., Napoleão, D.C., et al. (2025) Conversion of Agro-Industrial Wastes as Highly Efficient Adsorbents in the Removal of Pollutants: Characterization and Study of Dye Adsorption in Water. Chemical Engineering Science, 309, Article ID: 121442. https://doi.org/10.1016/j.ces.2025.121442
|
[4]
|
Blach, T. and Engelhart, M. (2025) Limitations of Treating Hydrothermal Carbonization Process Water in a Membrane Bioreactor and a Sequencing Batch Reactor on Pilot Scale. Journal of Environmental Chemical Engineering, 13, Article ID: 115304. https://doi.org/10.1016/j.jece.2024.115304
|
[5]
|
Chen, M., Tian, S., He, T., Qin, L., Liu, H., et al. (2025) Microbial Consortium Composed of Efficient Denitrifying Strains and Bacterial Groups from Toilet Water for Enhancing Blackwater Treatment. Journal of Environmental Chemical Engineering, 13, Article ID: 117676. https://doi.org/10.1016/j.jece.2025.117676
|
[6]
|
Okpara, E.C., Wojuola, O.B., Quadri, T.W. and Banks, C.E. (2024) An Overview of Advanced Oxidation Processes Using Copper-Based Catalytic Degradation of Organic Pollutants in Water. Applied Materials Today, 36, Article 102053. https://doi.org/10.1016/j.apmt.2023.102053
|
[7]
|
Están García, A., Crespí Sánchez, N., Turnes Palomino, G. and Palomino Cabello, C. (2025) MOF Derived Porous Fe-Cu@Carbon Catalyst for the Degradation of Bisphenol a through a Persulfate-Based Advanced Oxidation Process. Microporous and Mesoporous Materials, 381, Article ID: 113366. https://doi.org/10.1016/j.micromeso.2024.113366
|
[8]
|
Luo, H., Zeng, Y., He, D. and Pan, X. (2021) Application of Iron-Based Materials in Heterogeneous Advanced Oxidation Processes for Wastewater Treatment: A Review. Chemical Engineering Journal, 407, Article ID: 127191. https://doi.org/10.1016/j.cej.2020.127191
|
[9]
|
Wang, X., Feng, L., Deng, Y., Lynch, I., Ma, J. and Ning, P. (2025) Nanoscale Zero-Valent Iron Loaded on Boron-Doped Coffee Grounds Highly Efficiently Activates Peroxymonosulfate to Degrade Tetracycline. Journal of Water Process Engineering, 76, Article ID: 108196. https://doi.org/10.1016/j.jwpe.2025.108196
|
[10]
|
Zhang, R., Zhu, Y., Dong, J., Yao, Z., Zeng, G., Sheng, X., et al. (2024) Fluoranthene Degradation in a Persulfate System Activated by Sulfidated Nano Zero-Valent Iron (S-nZVI): Performance and Mechanisms. Water Science & Technology, 89, 225-240. https://doi.org/10.2166/wst.2024.007
|
[11]
|
Zuo, Q., Ma, Y., Ma, G., Zhang, M., Li, M., Wei, B., et al. (2025) Sulfide Nanoscale Zero-Valent Iron Activated Persulfate Improves the Degradation Efficiency of OBS (Sodium P-Perfluorous Nonenoxybenzenesulfonate). Chemical Engineering Science, 315, Article ID: 121875. https://doi.org/10.1016/j.ces.2025.121875
|
[12]
|
Li, Y., Zhao, X., Yan, Y., Yan, J., Pan, Y., Zhang, Y., et al. (2019) Enhanced Sulfamethoxazole Degradation by Peroxymonosulfate Activation with Sulfide-Modified Microscale Zero-Valent Iron (S-mFe0): Performance, Mechanisms, and the Role of Sulfur Species. Chemical Engineering Journal, 376, Article ID: 121302. https://doi.org/10.1016/j.cej.2019.03.178
|
[13]
|
Yu, X., Jin, X., Wang, N., Yu, Y., Zhu, X., Chen, M., et al. (2022) Transformation of Sulfamethoxazole by Sulfidated Nanoscale Zerovalent Iron Activated Persulfate: Mechanism and Risk Assessment Using Environmental Metabolomics. Journal of Hazardous Materials, 428, Article ID: 128244. https://doi.org/10.1016/j.jhazmat.2022.128244
|
[14]
|
Wu, G., Kong, W., Gao, Y., Kong, Y., Dai, Z., Dan, H., et al. (2022) Removal of Chloramphenicol by Sulfide-Modified Nanoscale Zero-Valent Iron Activated Persulfate: Performance, Salt Resistance, and Reaction Mechanisms. Chemosphere, 286, Article ID: 131876. https://doi.org/10.1016/j.chemosphere.2021.131876
|
[15]
|
Zeng, J., Liu, J., Su, W., Tang, J., Luo, Z., Tang, F., et al. (2023) Persulfate Activation by Sulfide-Modified Nanoscale Zero-Valent Iron for Metronidazole Degradation: Mechanism, Major Radicals and Toxicity Assessment. Journal of Water Process Engineering, 53, Article ID: 103733. https://doi.org/10.1016/j.jwpe.2023.103733
|
[16]
|
Shu, Z., Yang, H., Ye, S., Li, H., Yang, Z., Li, C., et al. (2025) Iron Scrap Derived Nano Zero-Valent Iron/Biochar Activated Persulfate for P-Arsanilic Acid Decontamination with Coexisting Microplastics. Journal of Environmental Sciences, 151, 733-746. https://doi.org/10.1016/j.jes.2024.04.031
|
[17]
|
Xue, Y., Kamali, M., Liyakat, A., Bruggeman, M., Muhammad, Z., Rossi, B., et al. (2023) A Walnut Shell Biochar-Nano Zero-Valent Iron Composite Membrane for the Degradation of Carbamazepine via Persulfate Activation. Science of the Total Environment, 899, Article ID: 165535. https://doi.org/10.1016/j.scitotenv.2023.165535
|
[18]
|
Yang, Y., Zhu, J., Zeng, Q., Zeng, X., Zhang, G. and Niu, Y. (2023) Enhanced Activation of Peroxydisulfate by Regulating Pyrolysis Temperature of Biochar Supported nZVI for the Degradation of Oxytetracycline. , 145, Article ID: 104775. https://doi.org/10.1016/j.jtice.2023.104775
|
[19]
|
Shao, F., Wang, Y., Mao, Y., Shao, T. and Shang, J. (2020) Degradation of Tetracycline in Water by Biochar Supported Nanosized Iron Activated Persulfate. Chemosphere, 261, Article ID: 127844. https://doi.org/10.1016/j.chemosphere.2020.127844
|
[20]
|
Ding, Y., Li, M., Zhang, Q., Zhang, Y., Xia, Z., Liu, X., et al. (2023) Sulfidized State and Formation: Enhancement of Nanoscale Zero-Valent Iron on Biochar (S-nZVI/BC) in Activating Peroxymonosulfate for Acid Red 73 Degradation. Journal of Environmental Chemical Engineering, 11, Article ID: 110114. https://doi.org/10.1016/j.jece.2023.110114
|
[21]
|
Yan, J., Guo, Z., Sun, Y., Yan, Z., Liu, R., Chen, Y., et al. (2025) Mechanism Insight into Sulfidated Nano Zero-Valent Iron/biochar Activated Persulfate for Highly Efficient Degradation of p-chloroaniline. Chemosphere, 375, Article ID: 144229. https://doi.org/10.1016/j.chemosphere.2025.144229
|
[22]
|
Xie, R., Wang, M., Li, W. and Song, J. (2023) Degradation of 2-Chlorophenol in Aqueous Solutions Using Persulfate Activated by Biochar Supported Sulfide-Modified Nanoscale Zero-Valent Iron: Performance and Mechanisms. Water, 15, Article No. 2805. https://doi.org/10.3390/w15152805
|
[23]
|
Xue, W., Chen, X., Liu, H., Li, J., Wen, S., Guo, J., et al. (2024) Activation of Persulfate by Biochar-Supported Sulfidized Nanoscale Zero-Valent Iron for Degradation of Ciprofloxacin in Aqueous Solution: Process Optimization and Degradation Pathway. Environmental Science and Pollution Research, 31, 10950-10966. https://doi.org/10.1007/s11356-024-31931-z
|