|
[1]
|
马黔红. 辅助生殖技术的新进展[J]. 中国计划生育和妇产科, 2017, 9(1): 4-7.
|
|
[2]
|
乔杰. 人类辅助生殖技术的新进展[J]. 中国实用妇科与产科杂志, 2008(1): 33-34.
|
|
[3]
|
Hu, L., Bu, Z., Huang, G., Sun, H., Deng, C. and Sun, Y. (2020) Assisted Reproductive Technology in China: Results Generated from Data Reporting System by CSRM from 2013 to 2016. Frontiers in Endocrinology (Lausanne), 11, Article No. 458. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bai, F., Wang, D.Y., Fan, Y.J., Qiu, J., Wang, L., Dai, Y., et al. (2020) Assisted Reproductive Technology Service Availability, Efficacy and Safety in Mainland China: 2016. Human Reproduction, 35, 446-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Fleming, T.P., Velazquez, M.A. and Eckert, J.J. (2015) Embryos, Dohad and David Barker. Journal of Developmental Origins of Health and Disease, 6, 377-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Barker, D.J.P. (1995) The Fetal and Infant Origins of Disease. European Journal of Clinical Investigation, 25, 457-463. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Berntsen, S., Söderström-Anttila, V., Wennerholm, U., Laivuori, H., Loft, A., Oldereid, N.B., et al. (2019) The Health of Children Conceived by ART: “The Chicken or the Egg?”. Human Reproduction Update, 25, 137-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Vrooman, L.A. and Bartolomei, M.S. (2017) Can Assisted Reproductive Technologies Cause Adult-Onset Disease? Evidence from Human and Mouse. Reproductive Toxicology, 68, 72-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Feuer, S.K., Camarano, L. and Rinaudo, P.F. (2012) ART and Health: Clinical Outcomes and Insights on Molecular Mechanisms from Rodent Studies. Molecular Human Reproduction, 19, 189-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Maroufizadeh, S., Navid, B., Alizadeh, A., Amini, P., Almasi-Hashiani, A., Mohammadi, M., et al. (2019) Risk of Gestational Diabetes Mellitus Following Assisted Reproductive Technology: Systematic Review and Meta-Analysis of 59 Cohort Studies. The Journal of Maternal-Fetal & Neonatal Medicine, 34, 2731-2740. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhao, J., Yan, Y., Huang, X. and Li, Y. (2018) Do the Children Born after Assisted Reproductive Technology Have an Increased Risk of Birth Defects? A Systematic Review and Meta-Analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 33, 322-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bloise, E., Feuer, S.K. and Rinaudo, P.F. (2014) Comparative Intrauterine Development and Placental Function of ART Concepti: Implications for Human Reproductive Medicine and Animal Breeding. Human Reproduction Update, 20, 822-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
La Rosa, P.S., Warner, B.B., Zhou, Y., Weinstock, G.M., Sodergren, E., Hall-Moore, C.M., et al. (2014) Patterned Progression of Bacterial Populations in the Premature Infant Gut. Proceedings of the National Academy of Sciences, 111, 12522-12527. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Korpela, K., Blakstad, E.W., Moltu, S.J., Strømmen, K., Nakstad, B., Rønnestad, A.E., et al. (2018) Intestinal Microbiota Development and Gestational Age in Preterm Neonates. Scientific Reports, 8, Article No. 2453. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Pattaroni, C., Watzenboeck, M.L., Schneidegger, S., Kieser, S., Wong, N.C., Bernasconi, E., et al. (2018) Early-Life Formation of the Microbial and Immunological Environment of the Human Airways. Cell Host & Microbe, 24, 857-865.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al. (2015) Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host & Microbe, 17, 690-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Qi, X., Yun, C., Pang, Y. and Qiao, J. (2021) The Impact of the Gut Microbiota on the Reproductive and Metabolic Endocrine System. Gut Microbes, 13, 1-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fleming, T.P., Watkins, A.J., Velazquez, M.A., Mathers, J.C., Prentice, A.M., Stephenson, J., et al. (2018) Origins of Lifetime Health around the Time of Conception: Causes and Consequences. The Lancet, 391, 1842-1852. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Nuriel-Ohayon, M., Neuman, H., Ziv, O., Belogolovski, A., Barsheshet, Y., Bloch, N., et al. (2019) Progesterone Increases Bifidobacterium Relative Abundance during Late Pregnancy. Cell Reports, 27, 730-736.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hansen, M., Kurinczuk, J.J., Bower, C. and Webb, S. (2002) The Risk of Major Birth Defects after Intracytoplasmic Sperm Injection and in Vitro Fertilization. New England Journal of Medicine, 346, 725-730. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J., Knight, R., et al. (2010) Succession of Microbial Consortia in the Developing Infant Gut Microbiome. Proceedings of the National Academy of Sciences, 108, 4578-4585. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, Y., Chang, Q. and Mai, Q. (2023) Pregnancy and Neonatal Outcomes of Monozygotic Twins Resulting from Assisted Reproductive Technology: A 10-Year Retrospective Study. Reproductive Biology and Endocrinology, 21, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pandey, S., Shetty, A., Hamilton, M., Bhattacharya, S. and Maheshwari, A. (2012) Obstetric and Perinatal Outcomes in Singleton Pregnancies Resulting from IVF/ICSI: A Systematic Review and Meta-Analysis. Human Reproduction Update, 18, 485-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
De la Calle, M., Bartha, J.L., García, L., Cuerva, M.J. and Ramiro-Cortijo, D. (2021) Women Aged over 40 with Twin Pregnancies Have a Higher Risk of Adverse Obstetrical Outcomes. International Journal of Environmental Research and Public Health, 18, Article No. 13117. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, Y., Shi, H., Chen, L., Zheng, D., Long, X., Zhang, Y., et al. (2021) Absolute Risk of Adverse Obstetric Outcomes among Twin Pregnancies after in Vitro Fertilization by Maternal Age. JAMA Network Open, 4, e2123634. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Birth Characteristics in England and Wales (2017) https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthcharacteristicsinenglandandwales/2017
|
|
[29]
|
Giorgione, V., Melchiorre, K., O’Driscoll, J., Khalil, A., Sharma, R. and Thilaganathan, B. (2022) Maternal Echocardiographic Changes in Twin Pregnancies with and without Pre‐Eclampsia. Ultrasound in Obstetrics & Gynecology, 59, 619-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Giorgione, V., Briffa, C., Di Fabrizio, C., Bhate, R. and Khalil, A. (2021) Perinatal Outcomes of Small for Gestational Age in Twin Pregnancies: Twin vs. Singleton Charts. Journal of Clinical Medicine, 10, Article No. 643. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Carter, E.B., Bishop, K.C., Goetzinger, K.R., Tuuli, M.G. and Cahill, A.G. (2015) The Impact of Chorionicity on Maternal Pregnancy Outcomes. American Journal of Obstetrics and Gynecology, 213, 390.e1-390.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kilby, M., Gibson, J. and Ville, Y. (2018) Falling Perinatal Mortality in Twins in the UK: Organisational Success or Chance? BJOG: An International Journal of Obstetrics & Gynaecology, 126, 341-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gibson, J.L., Castleman, J.S., Meher, S. and Kilby, M.D. (2019) Updated Guidance for the Management of Twin and Triplet Pregnancies from the National Institute for Health and Care Excellence Guidance, UK: What’s New That May Improve Perinatal Outcomes? Acta Obstetricia et Gynecologica Scandinavica, 99, 147-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Whittaker, M., Greatholder, I., Kilby, M.D. and Heazell, A.E.P. (2023) Risk Factors for Adverse Outcomes in Twin Pregnancies: A Narrative Review. The Journal of Maternal-Fetal & Neonatal Medicine, 36, Article ID: 2240467. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Basak, S., Das, R.K., Banerjee, A., Paul, S., Pathak, S. and Duttaroy, A.K. (2022) Maternal Obesity and Gut Microbiota Are Associated with Fetal Brain Development. Nutrients, 14, Article No. 4515. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sajdel-Sulkowska, E.M. (2023) The Impact of Maternal Gut Microbiota during Pregnancy on Fetal Gut-Brain Axis Development and Life-Long Health Outcomes. Microorganisms, 11, Article No. 2199. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Koren, O., Goodrich, J.K., Cullender, T.C., Spor, A., Laitinen, K., Kling Bäckhed, H., et al. (2012) Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 150, 470-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
García-Gómez, E., González-Pedrajo, B. and Camacho-Arroyo, I. (2013) Role of Sex Steroid Hormones in Bacterial-Host Interactions. BioMed Research International, 2013, Article ID: 928290. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Khalili, H. (2015) Risk of Inflammatory Bowel Disease with Oral Contraceptives and Menopausal Hormone Therapy: Current Evidence and Future Directions. Drug Safety, 39, 193-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
王方, 郑剑兰, 汪文雁, 等. 辅助生殖技术与妊娠期糖尿病孕产妇肠道菌群的特异表达[J]. 发育医学电子杂志, 2021, 9(2): 114-121.
|
|
[41]
|
Org, E., Mehrabian, M., Parks, B.W., Shipkova, P., Liu, X., Drake, T.A., et al. (2016) Sex Differences and Hormonal Effects on Gut Microbiota Composition in Mice. Gut Microbes, 7, 313-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ng, K.Y.B., Mingels, R., Morgan, H., Macklon, N. and Cheong, Y. (2017) In Vivo Oxygen, Temperature and Ph Dynamics in the Female Reproductive Tract and Their Importance in Human Conception: A Systematic Review. Human Reproduction Update, 24, 15-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Lau, E., Lee, C., Li, B. and Pierro, A. (2021) Endoplasmic Reticulum Stress in the Acute Intestinal Epithelial Injury of Necrotizing Enterocolitis. Pediatric Surgery International, 37, 1151-1160. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Nakashima, A., Cheng, S., Kusabiraki, T., Motomura, K., Aoki, A., Ushijima, A., et al. (2019) Endoplasmic Reticulum Stress Disrupts Lysosomal Homeostasis and Induces Blockade of Autophagic Flux in Human Trophoblasts. Scientific Reports, 9, Article No. 11466. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Lopez-Tello, J., Schofield, Z., Kiu, R., Dalby, M.J., van Sinderen, D., Le Gall, G., et al. (2022) Maternal Gut Microbiota Bifidobacterium Promotes Placental Morphogenesis, Nutrient Transport and Fetal Growth in Mice. Cellular and Molecular Life Sciences, 79, Article No. 386. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ke, X., You, K., Pichaud, M., Haiser, H.J., Graham, D.B., Vlamakis, H., et al. (2021) Gut Bacterial Metabolites Modulate Endoplasmic Reticulum Stress. Genome Biology, 22, Article No. 292. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Tao, Z., Chen, Y., He, F., Tang, J., Zhan, L., Hu, H., et al. (2023) Alterations in the Gut Microbiome and Metabolisms in Pregnancies with Fetal Growth Restriction. Microbiology Spectrum, 11, e00076-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Li, A., Li, F., Song, W., Lei, Z., Sha, Q., Liu, S., et al. (2023) Gut Microbiota-Bile Acid‐Vitamin D Axis Plays an Important Role in Determining Oocyte Quality and Embryonic Development. Clinical and Translational Medicine, 13, e1236. [Google Scholar] [CrossRef] [PubMed]
|