肠道菌群及其代谢物和ART妊娠结局的相关性研究
The Correlation Study of Gut Microbiota and Its Metabolites with ART Pregnancy Outcomes
DOI: 10.12677/md.2025.154054, PDF, HTML, XML,   
作者: 任士威:济宁医学院临床医学院(附属医院),山东 济宁;郭 焕*:济宁医学院附属医院临床检验科,山东 济宁
关键词: 辅助生殖技术(ART)肠道菌群妊娠结局Assisted Reproductive Technology (ART) Gut Microbiota Pregnancy Outcomes
摘要: 这篇论文综述了辅助生殖技术(ART)的进展及其对妊娠结果和胎儿发育的影响。文中强调不孕症的日益普遍,各种ART技术的发展及其对胚胎和胎儿健康潜在的影响。文章还探讨了母体肠道菌群及其代谢物对胚胎发育和妊娠结果的作用,指出ART可能导致母体肠道菌群及其代谢产物的变化,从而影响胎盘功能和胚胎发育能力。进一步研究了ART与母体肠道菌群及其代谢物通过调控机制影响胎盘功能及胚胎发育能力之间关系的重要性,以及这些关系对妊娠结局和胎儿发育的影响,对于进一步提高辅助生殖技术的成功率和胎儿健康具有重要的意义。
Abstract: This paper reviews the advancements in Assisted Reproductive Technology (ART) and its impact on pregnancy outcomes and fetal development. The article emphasizes the increasing prevalence of infertility, the development of various ART techniques, and their potential effects on embryo and fetal health. It also explores the role of maternal gut microbiota and its metabolites in embryo development and pregnancy outcomes, pointing out that ART may lead to changes in maternal gut microbiota and its metabolites, thereby affecting placental function and embryo development. The paper further investigates the importance of the relationship between ART, maternal gut microbiota, and its metabolites in regulating placental function and embryo development, and how these relationships impact pregnancy outcomes and fetal development. These findings are crucial for improving the success rate of ART and ensuring fetal health.
文章引用:任士威, 郭焕. 肠道菌群及其代谢物和ART妊娠结局的相关性研究[J]. 医学诊断, 2025, 15(4): 403-410. https://doi.org/10.12677/md.2025.154054

1. 引言

随着当前社会的生活节奏不断加快、心理压力的不断增大、人们生活习惯及饮食改变、晚婚、晚育的年轻人越来越多及各种原因导致的不孕不育症发病率逐步上升,约为15% [1]。人类辅助生殖技术(assisted reproductive technology, ART)是运用医学技术及方法对配子、合子、胚胎进行人工操作,以达到受孕目的的技术[2]。自1978年第一个试管婴儿出生以来,辅助生殖技术(ART)已成为治疗不孕不育的有效方法[3]。在中国,选择ART妊娠的比例大约占1.7%,并且所占比例在逐年上升[4]。近年来,ART所包含的技术发展的十分迅猛,例如体外受精(IVF),胞浆内精子注射(ICSI),冷冻胚胎移植(FET),卵母细胞捐赠(OD),囊胚培养,宫内授精和着床前基因检测非整倍体(PGT-A)等技术。众所周知,在发育的关键时期,基因组正在经历显著的表观遗传学重塑,容易受到环境因素的影响。健康与疾病的发育起源(DOHaD)假说指出,在发育的关键时期(子宫内或早期),任何损伤都有可能改变个体的表型,这可能导致胎儿后期疾病的发作[5] [6]。在受精过程或胚胎早期进行一系列的外源性人工干预很有可能会损伤胚胎或在ART实验室中,其他化学和物理因素如培养气体、温度、pH值等也可能对胚胎产生不利影响[7]。虽然绝大多数通过ART出生的胎儿都是健康的,但ART的使用,可能与几种健康问题有关,比如妊娠期糖尿病的风险、妊娠高血压、胎盘发育和功能改变[8]-[10],以及不良围产期后果,如围产期死亡率、先天性缺陷和表观遗传疾病[11] [12]

众所周知,体内细菌的数量与人类细胞的数量相同[13]。这些微生物中存在的遗传信息量至少是人类基因组中遗传信息量的150倍[14]。其中以胃肠道微生物最多,肠道微生物群落具有免疫调节、生物合成代谢、营养吸收的功能,人体健康离不开稳定的共生肠道微生物环境。越来越多的证据表明,婴儿的内在宿主微环境因素(如胎龄)与外源因素(如分娩方式)相结合,推动了微生物的早期生命形成和成熟,而内在因素似乎发挥了更关键的作用[15]-[17]。因此,产前阶段至关重要,在这个阶段,生物系统的发育可能决定婴儿微生物组的选择和形成,并影响免疫系统发育、代谢功能和潜在的未来健康[18]。肠道微生物群及其产物可能影响胚胎发育的所有过程,从配子的形成到受精、着床、胎盘、流产、分娩新生儿,以及生命周期关键时期的代谢程序和重编程[19]。ART有很多程序,先前的研究表明,这些程序对母体微环境和胚胎有潜在影响[20]。因此在生物学上可能导致后代肠道微生物组的改变。比如,据报道,用于ART治疗的黄体期支持药物的主要成分黄体酮改变了小鼠妊娠期间的肠道微生物组成[21]。此外,ART法妊娠早产的风险更高[22]。这是一个可能与新生儿肠道微生物组的成熟程度和稳定性有关的内在因素[16]。新生儿第一次胎粪中发现的细菌反映了微生物群的最早定植和形成,然后在接下来的几天时间里,新生儿的肠道微生物群逐步受到饮食、营养和医学因素的影响[15] [18] [23]

综上所述,在过去几年中,人类对微生物的研究取得了很大的进展,而辅助生殖治疗过程是否会改变母体微生物群落结构的研究很有限,这有可能是一个潜在的影响机制。因此,探索辅助生殖技术与母体肠道菌群及其代谢物之间的关系,以及这些关系对胎盘功能及胚胎发育能力乃至对胎儿发育及孕妇妊娠结局的影响,对于进一步提高辅助生殖技术的成功率和胎儿健康具有重要的意义。这篇文章对目前在这方面的研究进展进行综述,以供参考。

2. ART对妊娠结局及胎儿发育的影响

当前,普遍存在这样一种看法:与自然受孕相比,辅助生殖技术(ART)所致妊娠面临更高的不良结局风险。这种观点部分源于ART所增加的多胎妊娠率,而多胎妊娠本身伴随着更高的不良结局风险。然而,有项研究证明了包括体外受精(IVF)、胞浆内精子注射(ICSI)、植入前基因检测(PGT)和睾丸吸精(TESA)这四种ART治疗具有相似的同卵双胞胎(MZT)率。它们对MZT妊娠结局有不同的影响,但对新生儿结局无显著影响[24]。尽管如此,当将分析范围限定在单胎妊娠上时,一系列研究均指出相比于非辅助生殖的单胎妊娠,ART妊娠在母体和围生期结局方面存在明显的劣势[7] [25]。在全球范围内,双胎妊娠的发生率在过去二十年显著增加,这一现象与孕育年龄的提升、辅助生殖技术(ART)的广泛应用以及人口多样性的变化紧密相关。高龄产妇更有可能怀上双胞胎,这在一定程度上与辅助生殖技术(ART)的更频繁使用有关[26]。Wang等人发现,在高龄产妇中,通过体外受精(IVF)受孕的双胞胎与自然受孕的双胞胎和高龄产妇所生单胎相比,早产的绝对风险更高[27]。相较于单胎妊娠,双胎妊娠面临更高的流产、死胎[28]的风险,并且无并发症的双胎妊娠对心血管的需求更高,并显示出与有妊娠高血压疾病(HDP)的单胎妊娠相当的母体心脏重塑[29]。此外,双胎妊娠是出现HDP的风险因素[30]。单绒毛膜(MC)和双绒毛膜(DC)妊娠之间先兆子痫的风险没有差异[31]。双胎的绒毛膜性及羊膜性对其结局有重大影响[32]。与双绒毛膜双胎相比,单绒毛膜双胎因单个胎盘内胎儿循环系统的相互连接,或极少数因单羊膜性引发的先天性畸形和脐带纠缠,导致不良结局风险显著增加[33]。一项研究分析出双胎妊娠与单胎妊娠不良妊娠结局的风险因素不同,可能是由于双胎妊娠固有的更高风险和绒毛膜性的效应,掩盖了个别因素的效应[34]。但很少有流行病学研究根据绒毛膜性对发现进行分层。研究必须根据绒毛膜性进行调整,以实现有意义的结果。

3. 母体肠道菌群及其代谢产物可对胚胎发育及妊娠结局产生一定的影响

近年来,随着微生物组研究的快速发展,科学家们逐渐认识到肠道菌群及其代谢产物在人类健康中扮演着重要角色。特别是在妊娠期间,母体肠道菌群的变化不仅影响母体健康,还可能通过多种机制影响胚胎的发育及妊娠结局。

母体肥胖被证实会引起代谢综合症、低度炎症、内分泌因子变化、胎盘功能改变以及肠道菌群的改变,这些因素共同影响胚胎的生长和发育,包括大脑发育。肥胖期间,肠道菌群的变化尤为关键,因为这些微生物及其代谢产物能够穿过血–脑屏障,直接影响胎儿的神经发育和大脑功能[35]。孕期母体的肠道菌群不仅对维持能量稳态和母胎免疫能力至关重要,还通过其代谢物直接或间接影响胚胎的大脑发育和功能​​。例如,短链脂肪酸(SCFAs)等肠道菌群的代谢产物,被证实能够通过血液循环影响神经元的发育和神经传递物质的表达。此外,母体肠道菌群的失衡,特别是在肥胖或高脂饮食的背景下,与胚胎神经发育障碍和后期生命中的神经精神疾病风险增加有关。这表明肠道菌群及其代谢产物在胚胎大脑发育中可能起到了桥梁作用,将母体的营养和代谢状态传递给胚胎。肥胖母体的胎盘显示出脂质含量增加和炎症介质水平升高,这些改变可能会影响胎盘的功能,从而干扰胎儿大脑发育所需的营养和代谢产物的传递。胎盘的这些变化还可能导致胎儿大脑中某些关键神经发育相关基因的表达改变,进一步影响胚胎的神经系统发育[35] [36]。肠道微生物群的构成在妊娠的不同阶段有不同的变化,尤其是在妊娠晚期,这些变化导致代谢、免疫和激素变化的差异,这些变化对于健康的妊娠和胎儿发育是必要的,也是非常有益的[37]。反过来,激素水平的急剧变化,如雌激素和孕激素水平的变化,也会影响肠道功能和菌群构成,并伴有独特的炎症反应和免疫变化。例如,与妊娠期单核细胞增生李斯特菌感染相关的问题,部分是因为雌激素和黄体酮水平升高,导致早产或死产等不良后果[38]。母体肠道菌群的变化对胚胎发育及妊娠结局具有重要影响。这些发现强调了维护孕期健康肠道菌群平衡的重要性,不仅对母体健康至关重要,也对胚胎的健康发育和长期健康具有深远影响。未来的研究需要进一步探索肠道菌群及其代谢产物具体如何影响胚胎发育和妊娠结局,以及如何通过干预母体肠道菌群来优化妊娠结果和胚胎健康。

4. ART可能导致母体肠道菌群及其代谢产物的改变

ART孕妇的卵子促排、胚胎着床、妊娠维持都会有大剂量激素的应用。有研究表明,激素影响肠道菌群的组成和免疫应答,外源性雌激素会导致肠道菌群失调[39]。有研究显示,ART孕产妇的肠道菌群在门水平的相对丰度分布更为一致,尤其表现为厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)的比例相对固定,而自然妊娠孕产妇则呈现出更大的多样性。此外,ART 孕产妇的变形菌门(Proteobacteria)丰度显著高于自然妊娠组,Alpha多样性和丰富度指数均较低,提示大剂量激素的使用可能导致母体肠道菌群多样性下降、结构趋同,从而引发菌群失衡[40]。此外,动物模型发现性激素也会影响肠道微生物群的 组成[41]。另外,在ART治疗期间大量的雌激素的应用有可能会降低宫内氧含量[42]并抑制某些厌氧菌的生存,例如拟杆菌。同时,孕酮具有抑制宫内含氧量增加的作用[42],有利于拟杆菌定植。这些微生物群落定植环境的变化可能对后期微生物群落的成熟产生潜在的影响。综合目前的临床研究与动物实验结果,进一步提示ART大剂量激素干预可能通过影响母体肠道菌群的组成和多样性,引发菌群失衡,并为其潜在影响妊娠结局提供了微生态学层面的依据。

5. 肠道菌群–代谢物影响胎盘功能及胚胎发育能力及可能机制

肠道菌群是人体最复杂的微生态系统之一,包含数百万种微生物,它们在消化、免疫调节和疾病发展中发挥着关键作用。近年来,研究开始揭示肠道菌群及其代谢物对胎盘功能和胚胎发育的潜在影响。胎盘是母体和胚胎之间的关键交界面,不仅负责氧气和营养物质的交换,还调节免疫反应和内分泌功能,是维持正常妊娠的重要器官。肠道菌群失衡可能会通过一些机制影响胎盘的功能。肠道菌群失衡可导致炎症因子的释放,这些因子通过血液循环传播,可能到达胎盘,引起胎盘炎症。例如,炎症因子如IL-6和TNF-α的增加与胎盘炎症和功能障碍有关[43]。肠道菌群通过其代谢物影响宿主的内质网应激反应,这一过程在胎盘功能维持中尤为重要。内质网应激是一种细胞应对蛋白质折叠异常的机制,过度的内质网应激被认为与多种疾病的发生发展有关,包括妊娠并发症如先兆子痫。研究表明,内质网应激在调节胎盘的自噬过程中起着关键作用,自噬是一种细胞清理受损蛋白质和细胞器的过程,对于维持胎盘细胞的正常功能至关重要[43]。内质网应激的调节涉及到多个信号通路,如PERK、IRE1和ATF6通路,这些通路通过不同的机制响应蛋白质折叠紊乱,恢复细胞的正常功能。肠道菌群代谢物可能通过影响这些通路中的特定分子来调节内质网应激,进而影响胎盘功能和胚胎发育[44]。此外,肠道菌群代谢物,如短链脂肪酸(SCFAs),已被证明能够穿过血–胎盘屏障,直接影响胎盘细胞的功能。这些代谢物可以作为信号分子,参与调节内质网应激反应,从而影响胎盘细胞的自噬和存活。例如,肠道菌群产生的丁酸盐被发现可以减少胎盘细胞的内质网应激,提高其抵抗氧化应激的能力[45]。特定的胎盘疾病,如先兆子痫、胎儿生长受限(FGR)和早产,与肠道菌群失衡有关。先兆子痫患者的肠道菌群组成与健康孕妇不同,这种差异可能通过影响母体的炎症反应和代谢状态,间接影响胎盘的健康和功能[46]。胎儿生长受限(FGR)与胎盘供血不足和营养传输不良有关。研究发现,FGR患者的肠道菌群失衡可能通过改变代谢物的产生和调节,如SCFAs和胆汁酸,进而影响胎盘的营养传输功能[47]。有研究发现了卵巢功能与肠道菌群调节之间通过微生物代谢物的链接,对改善卵巢功能具有潜在价值。通过调节肠道菌群及其代谢物,特别是通过改善胆汁酸和维生素D的代谢,可能对提高卵子质量和胚胎发育有积极影响[48]。未来的研究需要进一步探讨肠道菌群如何通过具体的分子机制影响胎盘细胞的内质网应激反应,以及这些作用如何在不同的妊娠阶段和不同的妊娠并发症中发挥作用。此外,了解肠道菌群在胚胎早期发育中的作用也是未来研究的重要方向。综上所述,ART所致的母体激素水平变化可通过影响肠道菌群及其代谢物,进而调节胎盘功能,最终作用于胚胎发育,形成一个复杂的调控网络。为更清晰地展示这种潜在的作用机制,本文绘制了一个简化示意图(见图1)。

ART治疗中使用的大剂量激素可能引起母体肠道菌群失衡,导致其代谢产物(如短链脂肪酸、胆汁酸)水平和构成发生变化。这些代谢产物可通过血液循环影响胎盘,调节炎症反应、内质网应激和自噬等过程,进而干扰胎盘功能,影响胚胎正常生长发育,增加先兆子痫、胎儿生长受限(FGR)、早产等风险。

Figure 1. Hypothetical mechanism of ART effects on placental function and fetal development

1. ART影响胎盘功能和胚胎发育的假设性机制示意图

6. 总结与展望

对于不孕不育夫妇来说,除了注重辅助生殖技术的实施,关注肠道菌群的健康也是值得考虑的重要方面。ART可能导致母体肠道菌群及其代谢物变化,这些变化又可能通过某些调控机制影响胎盘功能及胚胎发育能力进而影响妊娠结局及胎儿的发育。目前对于这些调控机制之间的关系还存在许多未知。需要进一步的研究来探究ART对母体肠道菌群结构和功能的影响,以及肠道菌群及其代谢产物通过哪些调控机制影响胎盘功能及胚胎发育能力和未来胎儿的发育。在未来,广泛的功能性研究将使利用肠道菌群作为某些疾病的生物标志物成为可能,而以特定和定向的方式操纵肠道菌群将推动该领域的发展,并且开发新技术和策略以预防或减轻ART可能带来的不良后果,而且通过深入了解辅助生殖技术与母体肠道菌群及其代谢物和与胎儿发育之间的机制关系,可以为个体化辅助生殖技术的实施提供科学依据和指导,以更好地保障母婴健康。

NOTES

*通讯作者。

参考文献

[1] 马黔红. 辅助生殖技术的新进展[J]. 中国计划生育和妇产科, 2017, 9(1): 4-7.
[2] 乔杰. 人类辅助生殖技术的新进展[J]. 中国实用妇科与产科杂志, 2008(1): 33-34.
[3] Hu, L., Bu, Z., Huang, G., Sun, H., Deng, C. and Sun, Y. (2020) Assisted Reproductive Technology in China: Results Generated from Data Reporting System by CSRM from 2013 to 2016. Frontiers in Endocrinology (Lausanne), 11, Article No. 458.
https://doi.org/10.3389/fendo.2020.00458
[4] Bai, F., Wang, D.Y., Fan, Y.J., Qiu, J., Wang, L., Dai, Y., et al. (2020) Assisted Reproductive Technology Service Availability, Efficacy and Safety in Mainland China: 2016. Human Reproduction, 35, 446-452.
https://doi.org/10.1093/humrep/dez245
[5] Fleming, T.P., Velazquez, M.A. and Eckert, J.J. (2015) Embryos, Dohad and David Barker. Journal of Developmental Origins of Health and Disease, 6, 377-383.
https://doi.org/10.1017/s2040174415001105
[6] Barker, D.J.P. (1995) The Fetal and Infant Origins of Disease. European Journal of Clinical Investigation, 25, 457-463.
https://doi.org/10.1111/j.1365-2362.1995.tb01730.x
[7] Berntsen, S., Söderström-Anttila, V., Wennerholm, U., Laivuori, H., Loft, A., Oldereid, N.B., et al. (2019) The Health of Children Conceived by ART: “The Chicken or the Egg?”. Human Reproduction Update, 25, 137-158.
https://doi.org/10.1093/humupd/dmz001
[8] Vrooman, L.A. and Bartolomei, M.S. (2017) Can Assisted Reproductive Technologies Cause Adult-Onset Disease? Evidence from Human and Mouse. Reproductive Toxicology, 68, 72-84.
https://doi.org/10.1016/j.reprotox.2016.07.015
[9] Feuer, S.K., Camarano, L. and Rinaudo, P.F. (2012) ART and Health: Clinical Outcomes and Insights on Molecular Mechanisms from Rodent Studies. Molecular Human Reproduction, 19, 189-204.
https://doi.org/10.1093/molehr/gas066
[10] Maroufizadeh, S., Navid, B., Alizadeh, A., Amini, P., Almasi-Hashiani, A., Mohammadi, M., et al. (2019) Risk of Gestational Diabetes Mellitus Following Assisted Reproductive Technology: Systematic Review and Meta-Analysis of 59 Cohort Studies. The Journal of Maternal-Fetal & Neonatal Medicine, 34, 2731-2740.
https://doi.org/10.1080/14767058.2019.1670790
[11] Zhao, J., Yan, Y., Huang, X. and Li, Y. (2018) Do the Children Born after Assisted Reproductive Technology Have an Increased Risk of Birth Defects? A Systematic Review and Meta-Analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 33, 322-333.
https://doi.org/10.1080/14767058.2018.1488168
[12] Bloise, E., Feuer, S.K. and Rinaudo, P.F. (2014) Comparative Intrauterine Development and Placental Function of ART Concepti: Implications for Human Reproductive Medicine and Animal Breeding. Human Reproduction Update, 20, 822-839.
https://doi.org/10.1093/humupd/dmu032
[13] Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533.
https://doi.org/10.1371/journal.pbio.1002533
[14] Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65.
https://doi.org/10.1038/nature08821
[15] La Rosa, P.S., Warner, B.B., Zhou, Y., Weinstock, G.M., Sodergren, E., Hall-Moore, C.M., et al. (2014) Patterned Progression of Bacterial Populations in the Premature Infant Gut. Proceedings of the National Academy of Sciences, 111, 12522-12527.
https://doi.org/10.1073/pnas.1409497111
[16] Korpela, K., Blakstad, E.W., Moltu, S.J., Strømmen, K., Nakstad, B., Rønnestad, A.E., et al. (2018) Intestinal Microbiota Development and Gestational Age in Preterm Neonates. Scientific Reports, 8, Article No. 2453.
https://doi.org/10.1038/s41598-018-20827-x
[17] Pattaroni, C., Watzenboeck, M.L., Schneidegger, S., Kieser, S., Wong, N.C., Bernasconi, E., et al. (2018) Early-Life Formation of the Microbial and Immunological Environment of the Human Airways. Cell Host & Microbe, 24, 857-865.e4.
https://doi.org/10.1016/j.chom.2018.10.019
[18] Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al. (2015) Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host & Microbe, 17, 690-703.
https://doi.org/10.1016/j.chom.2015.04.004
[19] Qi, X., Yun, C., Pang, Y. and Qiao, J. (2021) The Impact of the Gut Microbiota on the Reproductive and Metabolic Endocrine System. Gut Microbes, 13, 1-21.
https://doi.org/10.1080/19490976.2021.1894070
[20] Fleming, T.P., Watkins, A.J., Velazquez, M.A., Mathers, J.C., Prentice, A.M., Stephenson, J., et al. (2018) Origins of Lifetime Health around the Time of Conception: Causes and Consequences. The Lancet, 391, 1842-1852.
https://doi.org/10.1016/s0140-6736(18)30312-x
[21] Nuriel-Ohayon, M., Neuman, H., Ziv, O., Belogolovski, A., Barsheshet, Y., Bloch, N., et al. (2019) Progesterone Increases Bifidobacterium Relative Abundance during Late Pregnancy. Cell Reports, 27, 730-736.e3.
https://doi.org/10.1016/j.celrep.2019.03.075
[22] Hansen, M., Kurinczuk, J.J., Bower, C. and Webb, S. (2002) The Risk of Major Birth Defects after Intracytoplasmic Sperm Injection and in Vitro Fertilization. New England Journal of Medicine, 346, 725-730.
https://doi.org/10.1056/nejmoa010035
[23] Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J., Knight, R., et al. (2010) Succession of Microbial Consortia in the Developing Infant Gut Microbiome. Proceedings of the National Academy of Sciences, 108, 4578-4585.
https://doi.org/10.1073/pnas.1000081107
[24] Li, Y., Chang, Q. and Mai, Q. (2023) Pregnancy and Neonatal Outcomes of Monozygotic Twins Resulting from Assisted Reproductive Technology: A 10-Year Retrospective Study. Reproductive Biology and Endocrinology, 21, Article No. 51.
https://doi.org/10.1186/s12958-023-01104-7
[25] Pandey, S., Shetty, A., Hamilton, M., Bhattacharya, S. and Maheshwari, A. (2012) Obstetric and Perinatal Outcomes in Singleton Pregnancies Resulting from IVF/ICSI: A Systematic Review and Meta-Analysis. Human Reproduction Update, 18, 485-503.
https://doi.org/10.1093/humupd/dms018
[26] De la Calle, M., Bartha, J.L., García, L., Cuerva, M.J. and Ramiro-Cortijo, D. (2021) Women Aged over 40 with Twin Pregnancies Have a Higher Risk of Adverse Obstetrical Outcomes. International Journal of Environmental Research and Public Health, 18, Article No. 13117.
https://doi.org/10.3390/ijerph182413117
[27] Wang, Y., Shi, H., Chen, L., Zheng, D., Long, X., Zhang, Y., et al. (2021) Absolute Risk of Adverse Obstetric Outcomes among Twin Pregnancies after in Vitro Fertilization by Maternal Age. JAMA Network Open, 4, e2123634.
https://doi.org/10.1001/jamanetworkopen.2021.23634
[28] Birth Characteristics in England and Wales (2017)
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthcharacteristicsinenglandandwales/2017
[29] Giorgione, V., Melchiorre, K., O’Driscoll, J., Khalil, A., Sharma, R. and Thilaganathan, B. (2022) Maternal Echocardiographic Changes in Twin Pregnancies with and without Pre‐Eclampsia. Ultrasound in Obstetrics & Gynecology, 59, 619-626.
https://doi.org/10.1002/uog.24852
[30] Giorgione, V., Briffa, C., Di Fabrizio, C., Bhate, R. and Khalil, A. (2021) Perinatal Outcomes of Small for Gestational Age in Twin Pregnancies: Twin vs. Singleton Charts. Journal of Clinical Medicine, 10, Article No. 643.
https://doi.org/10.3390/jcm10040643
[31] Carter, E.B., Bishop, K.C., Goetzinger, K.R., Tuuli, M.G. and Cahill, A.G. (2015) The Impact of Chorionicity on Maternal Pregnancy Outcomes. American Journal of Obstetrics and Gynecology, 213, 390.e1-390.e7.
https://doi.org/10.1016/j.ajog.2015.05.027
[32] Kilby, M., Gibson, J. and Ville, Y. (2018) Falling Perinatal Mortality in Twins in the UK: Organisational Success or Chance? BJOG: An International Journal of Obstetrics & Gynaecology, 126, 341-347.
https://doi.org/10.1111/1471-0528.15517
[33] Gibson, J.L., Castleman, J.S., Meher, S. and Kilby, M.D. (2019) Updated Guidance for the Management of Twin and Triplet Pregnancies from the National Institute for Health and Care Excellence Guidance, UK: What’s New That May Improve Perinatal Outcomes? Acta Obstetricia et Gynecologica Scandinavica, 99, 147-152.
https://doi.org/10.1111/aogs.13785
[34] Whittaker, M., Greatholder, I., Kilby, M.D. and Heazell, A.E.P. (2023) Risk Factors for Adverse Outcomes in Twin Pregnancies: A Narrative Review. The Journal of Maternal-Fetal & Neonatal Medicine, 36, Article ID: 2240467.
https://doi.org/10.1080/14767058.2023.2240467
[35] Basak, S., Das, R.K., Banerjee, A., Paul, S., Pathak, S. and Duttaroy, A.K. (2022) Maternal Obesity and Gut Microbiota Are Associated with Fetal Brain Development. Nutrients, 14, Article No. 4515.
https://doi.org/10.3390/nu14214515
[36] Sajdel-Sulkowska, E.M. (2023) The Impact of Maternal Gut Microbiota during Pregnancy on Fetal Gut-Brain Axis Development and Life-Long Health Outcomes. Microorganisms, 11, Article No. 2199.
https://doi.org/10.3390/microorganisms11092199
[37] Koren, O., Goodrich, J.K., Cullender, T.C., Spor, A., Laitinen, K., Kling Bäckhed, H., et al. (2012) Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 150, 470-480.
https://doi.org/10.1016/j.cell.2012.07.008
[38] García-Gómez, E., González-Pedrajo, B. and Camacho-Arroyo, I. (2013) Role of Sex Steroid Hormones in Bacterial-Host Interactions. BioMed Research International, 2013, Article ID: 928290.
https://doi.org/10.1155/2013/928290
[39] Khalili, H. (2015) Risk of Inflammatory Bowel Disease with Oral Contraceptives and Menopausal Hormone Therapy: Current Evidence and Future Directions. Drug Safety, 39, 193-197.
https://doi.org/10.1007/s40264-015-0372-y
[40] 王方, 郑剑兰, 汪文雁, 等. 辅助生殖技术与妊娠期糖尿病孕产妇肠道菌群的特异表达[J]. 发育医学电子杂志, 2021, 9(2): 114-121.
[41] Org, E., Mehrabian, M., Parks, B.W., Shipkova, P., Liu, X., Drake, T.A., et al. (2016) Sex Differences and Hormonal Effects on Gut Microbiota Composition in Mice. Gut Microbes, 7, 313-322.
https://doi.org/10.1080/19490976.2016.1203502
[42] Ng, K.Y.B., Mingels, R., Morgan, H., Macklon, N. and Cheong, Y. (2017) In Vivo Oxygen, Temperature and Ph Dynamics in the Female Reproductive Tract and Their Importance in Human Conception: A Systematic Review. Human Reproduction Update, 24, 15-34.
https://doi.org/10.1093/humupd/dmx028
[43] Lau, E., Lee, C., Li, B. and Pierro, A. (2021) Endoplasmic Reticulum Stress in the Acute Intestinal Epithelial Injury of Necrotizing Enterocolitis. Pediatric Surgery International, 37, 1151-1160.
https://doi.org/10.1007/s00383-021-04929-8
[44] Nakashima, A., Cheng, S., Kusabiraki, T., Motomura, K., Aoki, A., Ushijima, A., et al. (2019) Endoplasmic Reticulum Stress Disrupts Lysosomal Homeostasis and Induces Blockade of Autophagic Flux in Human Trophoblasts. Scientific Reports, 9, Article No. 11466.
https://doi.org/10.1038/s41598-019-47607-5
[45] Lopez-Tello, J., Schofield, Z., Kiu, R., Dalby, M.J., van Sinderen, D., Le Gall, G., et al. (2022) Maternal Gut Microbiota Bifidobacterium Promotes Placental Morphogenesis, Nutrient Transport and Fetal Growth in Mice. Cellular and Molecular Life Sciences, 79, Article No. 386.
https://doi.org/10.1007/s00018-022-04379-y
[46] Ke, X., You, K., Pichaud, M., Haiser, H.J., Graham, D.B., Vlamakis, H., et al. (2021) Gut Bacterial Metabolites Modulate Endoplasmic Reticulum Stress. Genome Biology, 22, Article No. 292.
https://doi.org/10.1186/s13059-021-02496-8
[47] Tao, Z., Chen, Y., He, F., Tang, J., Zhan, L., Hu, H., et al. (2023) Alterations in the Gut Microbiome and Metabolisms in Pregnancies with Fetal Growth Restriction. Microbiology Spectrum, 11, e00076-23.
https://doi.org/10.1128/spectrum.00076-23
[48] Li, A., Li, F., Song, W., Lei, Z., Sha, Q., Liu, S., et al. (2023) Gut Microbiota-Bile Acid‐Vitamin D Axis Plays an Important Role in Determining Oocyte Quality and Embryonic Development. Clinical and Translational Medicine, 13, e1236.
https://doi.org/10.1002/ctm2.1236